This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Experimental study of hybrid loop heat pipe using pump assistance for high heat flux system

, and

Published under licence by IOP Publishing Ltd
, , Citation Iwan Setyawan et al 2018 IOP Conf. Ser.: Earth Environ. Sci. 105 012011 DOI 10.1088/1755-1315/105/1/012011

1755-1315/105/1/012011

Abstract

Loop heat pipe is a promising thermal control system, the same as a heat pipe, to realize the efficient release of heat from electric appliances. It is suitable for applications in electronics that have higher power density. Meanwhile, the heat pipe loop (LHP) can also be considered for adoption in the manufacture of solar hot water systems, due to its unique features such as effective thermal conductance and flexible design embodiments. However, the start-up problem of the LHP and transport distance and higher heat release capacity is still existed influencing the operating stability of the device. Base on the problem, this study focuses to carry out work on the developing a novel LHP system in order to provide a robust solution for significant enhance the ability energy transfer. This novel LHP is a conventional LHP that was modified by adding a diaphragm pump to accelerate the fluid transportation (called as hybrid loop heat pipe, HLHP). The pump is installed on the liquid line complete with a reservoir. It will work passively using the wick capillary pressure when there is no sign the occurrence of dry-out. In another hand, the pump was only activated when the evaporator temperature tends increased extremely because of the failure of start-up. The experimental result showed that installed diaphragm pump in LHP modified system was able to prevent the occurrence of dry-out and significantly reduced the evaporator temperature. This study will contribute to energy savings and the utilization of renewable energy.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1755-1315/105/1/012011