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Gaussian quantum states which leads to a non-trivial generalization
of Pauli’s reconstruction problem and we state a simple tomographic
characterization of such states.

Keywords: Covariance matrix, Gaussian state, polar duality; Lagrangian
plane; uncertainty principle
MSC classification 2020: 52A20, 52A05, 81510, 42B35

1 Introduction

The covariance matrix is a fundamental concept in beth classical and quan-
tum mechanics, serving distinct purposes in each domain: In classical me-
chanics, the covariance matrix is employed, to characterize statistical rela-
tionships and correlations between different variables within a system [5].
In quantum mechanics, the covariance matrixsholds particular significance
in the context of quantum correlations [6]4 According to Born’s rule, the
quantum covariance matrix encapsulates all available statistical information
about a quantum state. Moreover, cevariance matrices serve as a power-
ful tool for detecting entanglement;, playing a key role in identifying and
analyzing quantum entangled states |7, 33].

Notably, the quantum covariance: matrix fully characterizes Gaussian
states, their Wigner distributionsrare parametrized by their covariance ma-
trices and their centera, This correspondence is central to the discussion in
the present paper to address the problem of the determination of covariance
matrices from partial data. This problem is not new and has been studied by
many authors, see for instance Rehdcek et al. [30]. We have initiated such
a study from a wider point of view in [15, 20, 18] using the notion of polar
duality from convex geometry; the present work considerably extends and
synthesizes,these preliminary works. More precisely, let 3 be an arbitrary
real positive definite 2n x 2n matrix; such a matrix can always be viewed as
the covariance, of the multivariate Gaussian distribution

o) = —— e ) 1)

(2m)"vVdet &

(We ate using the notation 2 = (z,p) € R} x R}}); this distribution qualifies
as a the-Wigner distribution of a quantum state provided that we impose a
constraint on X; the latter is usually chosen to be [3, 10, 22, 28]:

ih
The eigenvalues of X + %J are all > 0 (2)

Page 2 of 29



Page 3 of 29

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-120257.R2

where J is the standard symplectic matrix. We have shown [11, 12, 22sthat
this condition is equivalent to

The covariance ellipsoid Qs contains a quantum blob (3)

(a quantum blob is a symplectic ball with radius v/%); in [11, 22] we also for-
mulated these conditions using the topological notion of symplecticcapacity
[9] which is closed related to Gromov’s symplectic non=squéezing theorem.
On the operator level the conditions (2) and (3) guarantees that the trace
class operator with Weyl symbol (27h)"p is positive semidefinite and has
trace one, and thus qualifies as a density operator [19].

The main results of this paper are

e Theorem 12 which states that a generalized Gaussian (and hence a co-
variance matrix) can be reconstructed frem the knowledge of only two
marginal distributions of along a pair of transVerse Lagrangian planes;
it provides a generalization of the solution of Pauli’s reconstruction
problem;

e Theorem 13 provides a geometric interpretation of the previous re-
sults; identifies Gaussianrstates with quantum blobs viewed as John
ellipsoids of a convex seticonstrueted using the notion of Lagrangian
polar duality, which can be viewed as a geometric variant of the un-
certainty principle:

e Theorem 16 uses the notion of symplectic polar duality Q — Q" we
introduces in.[213,17]. We prove that in order to prove that a phase
space ellipsoid £2is the covariance ellipsoid of a Gaussian quantum
state it suffices that Q" N ¢ c QN ¢ for one Lagrangian subspace £
(and hénce for,all).

Notation and.terminology We will denote by w the standard symplectic
form on R?" =R7 x R? that is, in matrix form, w(z,2’) = Jz - 2’ where
0 I
-1 0
vectors u, v € R™ is written u - v. We denote by Sym, . (m,R) the convex
set of all.symmetric positive definite real m X m matrices.

The group of all automorphisms of the symplectic space (R??, w) leaving
the standard symplectic form invariant is called the (standard) symplectic
group and is denoted by Sp(n). The properties of Sp(n) and of its double
covering, the metaplectic group Mp(n) are summarized in the Appendix A.

z Z2(z,p)tye"= (2/,p)7T and J = . The scalar product of two
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A linear subspace of (R?" w) with dimension n is on which w vanishes
identically is called a Lagrangian subspace (or plane); the set of all Las
grangian subspaces of (R?", w) will be denoted by Lag(n), and i§ ¢alled the
Lagrangian Grassmannian of (R?",w).

Let B?"(v/h) be the ball with center 0 and radius v/ in/R?" (eqdipped
with the usual Euclidean norm). The image S(B?"(v/h))mof that ball by
S € Sp(n) is called a quantum blob. T

2 The RSUP for Gaussians

The Robertson—Schrédinger uncertainty principle (RSUP) is, as opposed
to the elementary Heisenberg inequalities, a fundamental concept in quan-
tum mechanics that describe the trade-off between the uncertainties in the
measurements of two non-commuting obgérvablesysuch as position and mo-
mentum. These inequalities are typically expresséd in terms of standard
deviations or (co)variances.

2.1 Multivariate Correlated Gaussians

We denote by ¢g the standardiGaussian (called “fiducial state” by Littlejohn
[24]) and by W ¢y its Wigner function:

(;50(33) — (ﬂ_h)—n/4e—|m|2/2h : ng)o(:t?) _ (Wﬁ)_ne_lz|2/h; (4)
2.4+ 4a2and |2|? = |22 + |p|?. Consider now the set
Gaussp(n) of all centered generalized Gaussians: we have 1 xy € Gaussy(n)
if and only if >

here |z|2 =

1 .
Vi@ E 0 (5)" (det X)W ar (Xt )

where X<and, Y are symmetric real n X n matrices such that X > 0 and
v € R i§ a real eonstant. This function is normalized to unity: ||} v |2 =1
and its Wigner transform is given by [10, 14]

Wik yxy(2) = (%)nei%aZ2 (6)

where G'is the symmetric and symplectic matrix

ao (X YyxX-ly vx-!
- X1y X!
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1
2
3
4
5
6
7
8 (The result seems to back to Bastiaans, see [24].) Observe that G ‘=nSTS
?O where 1/2

X 0
1; S = <X—1/2Y X—1/2> € Sp(n). (8)
13 An almost trivial, but fundamental, observation is that every 1/1} v € Gaussg(n)
14 can be obtained from the standard Gaussian using elementary Qetaplectic
12 transformations, namely
1; Yy =1"Vy My gb0. (9)
19 In fact:
20
;; Proposition 1 The metaplectic group Mp(n) acts tramsitively on Gaussians
23 Vxy = ¢g<,y up to a unimodular factor:
24 S
25 Mp(n) x Gaussy(n) — Gaussp(n).
26
27 Proof. To see this it is sufficient, in view of formula (9) to show that if
28 S € Mp(n) then S¢g = i#px y for somewu € R and xy € Gaussp(n). In
29 view of the pre-Iwasawa factorization,(Appendix A, formula (76)) we have
30 S = mMP(S) = Vp M R and hence
31
gg § = i‘/}pMLpé. (10)
gg We claim that It follows that ﬁqﬁo = "¢ for some i € R. In fact we have,
36 by the symplectic covariance of the Wigner transform,
37 > .
38 Wi(Rgo)(2) = Weo(R™ 2) = Weo(2)
39
40 the second equality in.view of the rotational invariance of ¢q; it follows that
41 N S
42 Spo = £i"'VpMp oRpo = it 2 p
43
44 hence S¢p € Gausso(n) as claimed (this result can also be obtained using
45 Fourier integral operators, at the cost of much more complicated calcula-
46 tions dnvolving Cayley transforms (see e.g. [24]). There remains to show
Z; that Sy %4 € Gaussy(n) for all ¢}, € Gaussg(n). Every S € Mp(n) can
49 be wiitten S = Y7p]\/4\L7m1§ (m € A{O,Q}) corresponding to the pre-Iwasaw
50 factorization of S = 7MP(S). For S’ € Mp(n); we have
51
gg Spxy = S"YVy M2 oo = Spo = Ve Mp,mBReo.
54
55 o
56
57
58
59
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We claim that ﬁ(bo = i#¢g for some pu € R. We have
W (Reo)(2) = Weo(R™2) = We(2)
the second equality in view of the rotational invariance of ¢g; hence
Sy = Sgo = Ve M, mRoo = 912 p € Galtoso (W)

2.2 The multivariate RSUP

A mixed Gaussian quantum state centered at{zp isha demsity operator p on
L?(R™) whose Wigner distribution p is of the type

1
(2m)"Vdet &

where ¥ is the covariance (or noise) matrix; the'condition p > 0 is equivalent
to saying that the eigenvalues of the Hermitian matrix E—l—%ﬂ] are > 0 [3, 10],
which we write for short as the Lowner ordering;:

e—%Z_l(z—zo)-’(z—zo) (11)

p(z) =

ih
E+%J20 (12)

The state p is pure if and only if det ¥ = (g)% (see below). The condition
(12) is equivalent to(the following three statements:
Claim 2 The symplec)ic eigenvalues Xy, ..., \s of ¥ are all > %h;

n

Claim 3 ¢Lhe covariance ellipsoid Qy, = {z : %Zflz -z < 1} contains a
quantum blob'Q = S(B?"(v/h)) (S € Sp(n));

Claim 4 The symplectic capacity of the covariance ellipsoid is at least wh.

Recall {10]-that the symplectic eigenvalues of a positive definite matrix
are thé numbers\? >0, (0 < j < n) such that the i)} are the eigenvalues
of JX (which are the same as those of the antisymmetric matrix X/2.7%1/2),
The terminology “quantum blob” to denote a symplectic ball with radius
v/l was introduced in [12, 11]). For the notion of symplectic capacity and its
applications to the uncertainty principle see [11]. The proof of the first claim
is well-known and widespread in the literature, see for instance [3, 12, 22]. It
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is easily proven using Williamson’s symplectic diagonalization theorem,[10]
9 which says that for every ¥ > 0 there exists S € Sp(n) such that

1 AY 0

12 »=8TDS , D= nxn (13)
OTLXTL A'

14 where A = diag(\{,...,A¥). The proof of the second claim easilysfollows

from a geometric argument; see [11, 22]. The case wherée A %h for

17 all j is of particular interest; in this case we have X = gSTS (and hence
18 det X = (%)%) and so that
20 ]. 71571

21 p(2) = e 35T SRS - 20)

23 that is

2 plz) = W (S¢0) (= — )= WIT(20)Bb0) (=)

26 where S € Mp(n) covers S and f(zo) is the Heisenberg—Weyl displacement
27 operator [10]:

28 T(=0)S4(w) = e "SaR "2 — ).

30 From these considerationsfollowsithat the Wigner distribution of the Gaussian
31 state p is the Wigner function ofia multivariate Gaussian T'(z0)x y centered
32 at zg. We will writeshe covariance matrix in block-form

34
sy <§3XX Xxp

, Tpxy =3%% 14
ZPX EPP) PX XP ( )

. N
with X¥xx = (0d5z, )18, k<m 2PP = (Op;py )1<jk<n: ZPP = (Ow;p ) 1< k<n-

Proposition'5 Let. Y. be the covariance matrix of the Gaussian state p; (i)
This state 4s pure, that is there exists Vxy such that p = 1)xy, if and only
42 if

43 1

44 YxxXpp — (ZXP)Q = thjnxn (15)

46 ExxXxp=YpxXxx , UpXXpp = Xpplxp- (16)

48 (ii) Weghave (Xxp)? > 0, i.e. the eigenvalues of (Xxp)? are > 0 hence the
49 generalizes Heisenberg inequality Xxx>pp > %QIan holds.

51 Proof. Suppose that p is a pure state; then 3 = %STS and the conditions
52 (15)—(16) are just a restatement of the relations (72) in APPENDIX A,
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taking into account the fact that STS > 0. To prove that (Xxp)2> 0
we note that since XxxXxp = YpxXxx we have Xxp = E;(IXEPXEXX
hence X xp and Y px have the same eigenvalues; since Xpx = E§ p these
eigenvalues must be real, hence those of (Xxp)? are > 0. =

In particular, when n = 1 one recovers the usual saturated Robertson—

Schrodinger uncertainty principle
~

2 h?
OaxaOpp — Ogp = Z
satisfied by all pure one-dimensional Gaussian states.
Note that when ¥ is diagonal, i.e. the state is a tensor product of one-
dimensional functions one recovers the well-known, fact that the Heisenberg
uncertainty inequalities are saturated (redude to equalities): 04 ;4j0p;p =
h%/4 for all j = 1,...,n.

2.3 Orthogonal projections of the covariance ellipsoid

We begin with a general result. For.M € Symy4 (2n, R) we define the phase
space ellipsoid
Q={zeR™: Mzpz < h}. (17)

Writing M in block-matrix.form M = ( ) where the blocks

Mpx Mpp
are n X n matrices the condition M, € Sym , , (2n,R) ensures us [34] that
Mxx >0, Mpp > 0, and Mpx = M;P . Using classical formulas for the
inversion of block matrices [31] the inverse of M is

_ Mpp)! —(M/Mpp)~'MxpMp}
M= sl rr PP 18
<_MP]1:’MPX(M/MPP)1 (M/Mxx)™ ()
where M /Mpp and M /Mx x are the Schur complements:
M/Mpp = Mxx — MxpMppMpx (19)
M/Mxx = Mpp — Mpx M5 Mxp. (20)

The following results is well-known (see for instance [13] and the references
therein):

Lemma 6, The orthogonal projections 11,, ) and P = 11,,8 on the coor-
dinateysubspaces {x = Ry X 0 and p = 0 x R} of the ellipsoid 2 are the
ellipsoids

HZXQ:{:L’ER;:(M/MPP)x'xﬁh} (21)
I, Q2 ={peRy: (M/Mxx)p-p < h}. (22)
8
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Consider now a Gaussian state (11) with covariance matrix ¥ = (
by definition the covariance (or Wigner) ellipsoid of this state is
Qs ={z:32712- 2 <1} (23)

Setting M = Ih¥~! the results above yield the inversgfof the covariance
matrix 3:

1 (2/2pp)~t —(2/3pp) 1 Bxpimt
N i g BT

Formula (24) immediately follows from (18) using the relations

h _ h _
Yxx = 5(M/Mpp) b, X pas M /Mx x) ! (25)
h —1 ’_1
Sxp = —5 (M/Mpp) MMxpMpp. (26)

Proposition 7 The orthogonal projections on the canonical coordinate sub-
spaces £x and fp of Qs are
I, Oy =z €RELY Lo 2 < 1} (27)
I, Q5 = {p@R}: 1X50p p < 1} (28)
Proof. The projection formulas (27) and (28) are a consequence of the
corresponding formulas (21) and (22). =
We next note the following remarkable fact showing that the notion of

polar duality is gelated to the uncertainty principle (see APPENDIX C for
a short review of polar duality):

Proposition 8 (i) The ellipsoids X = I1;, Qs and P = II,,Qyx, are such
that X" & Pawhere

X" ={p e Ry :sup,ex(p-z) < h} (29)

is the fi-polar-dual of X. (ii) We have the equality X" = P if and only if
Qs = B> (v/h) in which case X = BY%(Vh) and P = B%(V/h) (the centered
balls with radius VR in x and (p, respectively)

Proof. (i) Recall [17, 21] that if.

X={zeRl: Az -z < h} (30)

Yxx XxP
Ypx nXpp

)

)
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with A € Sym_ , (n,R), then its h-polar X" is the ellipsoid
X'={peRl:Ap.-p<h} (31)
It follows that if
P={peR}:Bp-p<h} (32)

(with B € Sym, . (n,R)) the inclusion X" C P holds if and onlyif AB >
I xn (i.e. the eigenvalues of AB are all > 1); this is equivalent to BA >
I, xn. Since we have here A = %hZ}lx and B = %hZ;}D (formulas (27) and
(21)) the inclusion X" c P will hold if and only if %hZE;(IXE;}D > Inxn
or, equivalently YXxxXpp > %h? But this is the generalized Heisenberg
inequality of Proposition 5. (ii) We have X" =Plif andionly if AB = I,,x,.
[ ]

Example 9 Let us illustrate the resultdabove im.the case n = 1. Here
YXxx = 0z > 0, Xpp = Opp > 0, and Yxp = ZPX = Ozp and the co-
vartance ellipse is

(X . g
Qs - P2 %P 22 < 33
2iop® Top PR opP S (33)

where D = 03505, — U:%p > ;llhz. ‘The orthogonal projections Qx and Qp of
Q on the © and p coordinate azes are the intervals

Qx = [~V20uz, V2000 + Qp = [—/20pp, /200 - (34)

Let Qg( be the polarfdual of x: it is the set of all numbers p such that
pr < h for —\/20., @ < /20.and is thus the interval
N

Qe = [—h/ V2002, 1/ 2044) .
Since 0y, Opg > %h we_have the inclusion
Qb cap (35)
whichireduces to the equality Q& = Qp if and only if the Heisenberg inequal-
ity asvsaturateds i.e. Ty 0p, = ih2 which is equivalent to o,p = 0.
3 Pauli’s Problem and its Generalizations

3.1 ' Paulis’ reconstruction problem

The Pauli reconstruction problem is a particular case of a larger class of
phase retrieval problems; see Grohs and Liehr [27] for recent advances on

10
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this difficult topic. Pauli asked in [29] whether the probability demsities
|v(z)[? and |(p)|? of a normed function ¢ € L?(R) uniquely detérmine abs
The answer is in general negative: consider the correlated Gaussian

bo) = () ¢ B edn (3%)
which has Fourier transform ~

i) = ()" T o (37)
and thus

z2 p?

= () o RS (i) < ()

Since we have

L

O2z0pp — O'gch =Aan (39)
the covariance o), can take any ‘of the two values +(0,,0p, — %hQ)l/ 2 30 the
Pauli problem has two possible solutiongiy® (“Pauli partners”: see Corbett’s
[4] review of Pauli’s problem). The same argument works for multivariate

Gaussians (5): settingX = %E)_(lX and ¥ = *%EXPZ;(}X we have

_ [ 1\n/4 det —1/4 12—1 i ) 2—1

Uxy (@) = (27)" et Zxx) " Mexp | = | 72Xk + 5 BxpExx @@
(40)
from which one infers that

WXA/(CE)P 2\(%)71/2 (det EXX)A/2 exp <—;E;(1Xx . x> (41)
B (0)P=(L)"? (det Spp) 2 exp <‘;EE}DP -p> - (1)

To find the covariance matrix 3 x p one then uses the Robertson—Schrédinger
formula (15)
h?
SxxSpp— (Exp)? = anm
which has multiple solutions in X xp.
Anether way of seeing Pauli’s problem is to use the Wigner formalism;
recall that the Wigner transform of ¢ € L2(R") is defined by

1

Wi (z,p) = <27rh

) [ ety (3)

11
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and if 1,9 € L*(R™) N L2(R™) then the marginal propertics

| W@ pdp = @), | Wi p)de = [0p) T (44)
hold [14]. Since W*(z,p) = Wi)(z, —p) the functions ¢ and ¢* haye the
same marginals, which is reflected by the relations (38) which are satisfied
by both v and its complex conjugate. This idea extends te more general
phase retrieval problems, see [27].

3.2 Lagrangian frames

We will henceforth call Lagrangian frame adpaiei(f, #)7of transverse La-
grangian subspaces (see APPENDIX B), that is (¢,#)ye Lag(n) x Lag(n)
and £ N ¢ = 0 (equivalently £ @ ¢ = R?" since dim ¢ = dim ¢ = n). When /¢
and ' are coordinate Lagrangian planes®x and+p jye will call it the canon-
ical Lagrangian frame. We denote by Fpagd(n) The following property will
be essential for our constructions te come (See[10]):

Lemma 10 The symplectic group Sp(n)nacts transitively on Frag(n). In
particular, every Lagrangian.frame (€,0') € Frag(n) can be obtained from
the canonical frame ({x,{p) by a symplectic transformation.

Proof. Let ({1,¢))%nd (¢2,¢,) betwo Lagrangian frames. Choose a ba-
sis (61@)131371 of 61 and a»basis (flj)lgjgn of 6/1 whose union (61@)131371 U
(fij)i<j<n is a symplectic basis, that is w(ei;,e1j) = w(fii, f1;) = 0 and
w(fii,e1j) = 0;; for Th< 4,7 < n. Similarly, choose bases (e2;)i1<i<n and
(f2j)1<j<n of fozand ?Q*Whose union is also a symplectic basis. The linear
automorphism of R?? defined by S(e1;) = ez; and S(f1;) = fo; for 1 <i<n
is in Sp(n).and we havedls, t}) = (S¢1,S¢;). m

3.3 Gaussian reconstruction by partial tomography

We are going to generalize the reconstruction procedure for Gaussians using
themotion of Lagrangian frame introduced above. For this we need to define
the intégral of a real integrable function p on phase space along an affine
subspace £(2) = 4z where / is a Lagrangian subspace of (R?", w). Assuming
[8, 10] that / is represented by the system of equations Az+Bp = 0 with AT B
(and ‘BT A) symmetric, and AT A+ BTB = I,,x,, (and ATA+ BT B = I,%,,)
we parametrize £(z) by z(u) = (z(u),p(u)), u € R", with

z(u) = —BTu+z , pu)=ATu+p (45)

12
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where z = (z,p) € R?" is arbitrary. Taking into account the factythat
AT A+ BTB = I,,«,, we then define the generalized line integral

/ p(s)ds = / p(=BTu+ 2, ATu + p)du. (46)
£(2) "

Applying this definition to the case where p = Wt with € L! (RM)QL?(R")
and choosing ¢ = £p we have B = 0 and A = I« so that{ in view of the
marginal properties (44),

[ wuds= [ Wi+ s o)l
KP('Z‘vp) R™
and, similarly, choosing £ = ¢p, and A = 0,4B = I,,xn,
/K Wos)ds = | W Aia b 10
X n

We'll generalize these relations below, but wefirst prove that for fixed z =
(x,p) the integral (46) is independent ofithe choice of parametrization (45).
To see this, we note that the Lagrangian subspace £ is the image of {x =
{(u,0) : u € R"} by the symplectieirotation ([8, 10]; Appendix A)

_pT T
RL ( o _2T> € Sp(n) N O(2n, R)

since ATA+ BTB = I,,+,, and BT A symmetric. Let a new parametrization
of /(z) be N

W) =—BTu+z, plu)=ATu+p

the matrices/A’ and. B’ satisfying relations similar to those of A and B, and
let R’ be the eorresponding symplectic rotation. The product R~ R’ leaves
{x invafiant: since it is a symplectic rotation we have R™'R’' = (0 H>
with H & O(n,R) hence the re-parametrization is

¢'(u) = —BTHu+z, p'(u) = ATHu +p

leading t6 the same value of the integral 46) since d(Hu) = du.
The following result relates the integral (46) to the notion of marginal
value'of the Wigner transform:

13
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Proposition 11 Let ¢ € Lag(n) and z = (x,p) be as above. Forw) €
LYR™) N L2(R™)) we have

 W)ds = 0v(Az + By (47)
(=

where U € Mp(n) covers the symplectic rotation U = <—AB §>\

Proof. The Lagrangian subspace ¢ is the image of the mementum space £p
by the symplectic rotation

- AT £BT
UT:U1:<BT AT)

hence, using the covariance relation W o Us =W (U) [10, 14],
| wotsds = [ WG (0 UGe, )i
£(z) R

> W (U)(0,u) + Uz, p))du

— | WAUv)(Az + Bp, Bz — Ap + u)du
Rn

=/ W(Uv)(Az + Bp,u)du
]Rn
hence (47) in viewsof the first marginal property (44). m
Formula (47) is closely related to the definition of the symplectic Radon
transform as givendn our paper [16]. The result below shows that, however,
we do not need the full ' power of the theory of inverse Radon transform to
reconstruct Gaussians:

Theorem 12 Let ((,0') € Frag(n) be a Lagrangian frame. The Wigner
transformy W xy (and hence the Gaussian xy itself, up to a unimodular
faetor)as uniquely determined by the knowledge of the integrals

/ Wix y(s)ds and Wipx y(s)ds
£(2) o(z)

for-all ~ € R*™,

14
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Proof. It is similar to that of Proposition 11 above. In view of Lemma 10
the symplectic group acts transitively on Frag(n) so we can find § € Sp(n)
such tat (£,0") = S(¢x,lp). Setting S = (g IB; let S € Mp(r) be one
of the two metaplectic operators covering S. Let ¢(Sz) =[Slx + Sz and
V'(Sz) = Slp + Sz; we have, using the covariance relatiomw Wpx y 0 S =
W(S xy), -

Wixy(s)ds= [ Wixy [S((0,u) + (@yp))fdu
0(8%) R"

= | W(5 "y, wip)du.
Rn

that is, in view of the first marginal formula (44),
! v
W¢X7y(8)ds N ’S_ ¢X7y($)’ . (48)
Similarly, using the second formula\(44);

Wapx y(8)ds=\|FS ' ¢x v (p)]2. (49)
£(Sz)

These values allow theldetermination of S ) x,y and, hence, of ¥xy. m

3.4 Geometric Interpretation

We now consider the‘ollowing situation: performing a large number of
measurements on the coordinates 1, ..., Tg, Pkt1, .-, Pn (With 1 < k < n)
we identify, this cloud of measurements with an ellipsoid X, carried by the
Lagrangian subspace ¢ with coordinates x1, ..., Tk, P41, ..., Pn and centered
at the originyn, Wemnow ask whether to this ellipsoid we can in some way
associate the covariance ellipsoid 2y of some pure Gaussian state with co-
variance matrix/Y. In view of the discussion above {2y has to be a quantum
bleb, i.e. theimage of the phase space ball B?"(v/h) by some S € Sp(n).
The answer is given by the following result, which actually holds for any
Lagrangian subspace (not necessarily a coordinate subspace). It introduces
a notion of polar duality between Lagrangian subspaces. (The basics of the
notion of polar duality for convex sets are shortly reviewed in Appendix C.)

15
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Theorem 13 Let ({,{') € Frag(n) be a Lagrangian frame in (R*",&)u, Let
Xy be a centered ellipsoid carried by £ and define the dual ellipsoid (Xg)?, c¥
by

(Xo)h = {2/ €0 :sup,epw(z,2) < B} (50)

(i) The John ellipsoid Q0 of the product X; x (X;)% is a quantum blob
S(BQ"(\/E))L (i) To that quantum blob corresponds the Gaussiampute state
@E(,y = +i"Spg where S € Mp(n) covers S.

Proof. (i) We recall [2] that the John ellipsoid of a convexset 48 the (unique)
ellipsoid of maximal volume contained in that setiyLet us first prove (i) for
the particular case (£,¢) = ({x,lp) and X,gn= Bi(/h). In this case
(XgX)?P = BR(Vh). We claim that the John éllipsoidiof B (vh) x BR(v/h)
is the trivial quantum blob B?*(v/h). To'see this we first note that the
inclusion

B>(Vh) ¢ By (Vb) ¥ BHA) (51)

is obvious, and that we cannot have
B(R) ¢ BY(ViNg B(VE)

if R > v/h. Assume now that théwJohn ellipsoid of B%(vh) x BR(V/h) is
defined by the inequality

Ax-x+ Bx-p+Cp-p<h

where A,C > 0 and ‘B are real % x n matrices. Since B%(v/h) x BR(Vh) is
invariant by the transfermation (z,p) — (p, z) so is its John ellipsoid and
we must thus have A& Giand B = BT. Similarly, B% (vh) x B(v/h) being
invariant by the partial reflection (x,p) — (—x,p) we get B = 0 so the John
ellipsoid of By (vVR)%B%(\/h) is defined by Az -2 + Ap - p < h. We next
observe that B%(yv/h) x B%(vh) an its John ellipsoid are invariant under
the transformations (x,p) — (Hxz, HP) where H € O(n,R) so we must
have AH = HA for all H € O(n,R), but this is only possible if A = A\«
for some Ane.R. The John ellipsoid of B%(v/h) x BR(v/h) is thus of the
type BQ”(\/?L/ \A) for some A > 1 and this concludes the proof in view of
thesinclusion (51) since the case A > R? is excluded. Consider now, again
when (#") = (¢x,lp), the case where X,, = A(B%(V/h)) is an ellipsoid
(A €8ym, ,(n,R)). We then have (XgX)ZfP = A~Y(BR%(VRh)) so that

Xey % (Xex)f, = Sa(BY (VR) x BR(Vh)

16
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A 0
0 At
is here the quantum blob S, (B?*(v/1)). Let us finally consider ‘the case of
an arbitrary Lagrangian frame (¢, ¢'). In view of the transitivity of the action
of Sp(n) on Fiag(n) we can find S € Sp(n) such that (¢,¢') = .S({x, {p); set
now Xy, = S71(Xy), this is an ellipsoid carried by (£x. We claim that we
have (XgX)?P =S H(Xp)h). Let z € S71(X,)}, that is §2 € (X). This is
equivalent to the conditions z € S™1' = £p and w(Sz,2') Lk for all 2’ € X,.
Since w(Sz,2') = w(z, S712') this is in turn equivalentto z& S~ 10 = (p
and w(z, S712') < hfor all S712' € S71(X,), thais to 2 € W(z, 2") < h for
all 2’ € X, which is the same thing as z € (Xg)}, which was to be proven.
Summarizing, we have shown that

where Sy = < ) € Sp(n) so that the John ellipsoid of X, (XgX)ZP

Xg X (Xg)?/ = S(XEX X (Xex)?p)'

.2
Since the John ellipsoid of X, x (ng)?P is S4(B?"(V/h)), that of X, x

(X¢)h is the quantum blob Q =8S4(B?"(v/h)). (i) (cf. [12]). The result
follows from the discussion above.,\SetnS’ = SS4. To Q = S'(B*"(Vh)) we
associate the positive definite symplectic matrix G = S’S’T. To the latter
corresponds the phase spacerGaussian, z — (wh)_”ef%Gz'Z , which is the
Wigner transform of i#S5’¢g for.any p€R. m

4 Polar Duality,and Covariance Ellipsoid

4.1 Symplectic polar duality

Here is another Varia?t of polar duality; it was introduced in our paper
[17] and used in [20] to characterize covariance ellipsoids (we are following
quite closely the presemfation in the latter paper). Let Q be a symmetric
convex body imrthe phase space (R*",w) (for instance an ellipsoid). We call
symplectic (h2)polar dual Q" of Q) the set

QM = {2 € R?™ : sup,cqw(z,2') < li}. (52)
It is related to the usual polar dual
Q" = {2/ € R*™ : sup,cq(z-2') < I}
by a_.symplectic rotation:

Qe = (J)" = J(Q"). (53)

17
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The symplectic polar dual is symplectically covariant in the sense that
(S = S(Q") for S € Sp(n). (54)

In fact, the condition S € Sp(n) is equivalent to STJS = J hence /"=
(ST)=1J. It follows that

(S = J(S(Q)" = J(sT) M)
= SJ(Q") = S(Q")

which is (54). In particular, since B2*(vh)" = B¥¥(+/h), we have
(S(B>"(Vh)))" = S(B (VH) (55)

so the quantum blobs S(B?*(v/'h)), S € Sp(@), ate fixed points of the trans-
formation  — Q" it is easy to show that they &re the only fixed points
of this transformation.

Proposition 14 Let Qx, be the covariance ellipsoid associated with the co-
variance matrix 3:

Qp = {z e R¥Mp Mz 2<h} , M =1t (56)

(i) Qs is quantized (that is, contains’a quantum blob) if and only if we have
the inclusion Qg’w C Qs. (it) The equality Qg’w = Oy holds if and only if
there exists S € Sp(f) such that Qs = S(B*(Vh)) (i.e. if and only if Qx
is a quantum blob)s ~

Proof. (i) Supposethat there exists S € Sp(n) such that Q = S(B**(v/h)) C
Q. By theéranti-monetonicity of (symplectic) polar duality this implies that
we have Q8% @ Q" = Q C Q, which proves the necessity of the condition.
Suppose/converselyrthat we have Q"% C €. Since

O ={zeR™": M '2.-2<h} (57)
we haye, using (53),
O = {z e R (<M 1)z 2 <) (58)

hence the inclusion Qg’w C Qy is equivalent to M < (—=JM~1J) (< stands
here for the Lowner ordering). Performing a symplectic diagonalization (13)

18
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of M and using the relations JS— = ST.J, (ST)~1J = JS this is equivalent
to

M =S8TDS < ST(—JD7tJ)S

that is to D < —JD~!J. In the notation in (13) this implies that we
have A“ < (A¥)~! and hence Ay < 1forl<j<mn;thus D < I and
M = STDS < STS. The inclusion S(B?*"(vVh)) C Q follows. Letsfis next
prove the statement (ii) The condition is sufficient since, S(B>"(Vh))"* =
S(B*(v/h)). Assume conversely that Qg’w = Qy. Then therelexists S €

Sp(n) such thatQ = S(B?*(vh)) C Qx. It follows that Q%w cQw=qQ
hence Q% = Q5 C Q so that Q = Q. m

Here is an example:

Example 15 Consider again the covariance ellipse

a. ag. a.
O - 22 Ozp Jom 2 | 59
Siop® T pPETLDES (59)

: o —0
with D = 04p0pp — 02, = $h?. Hereld = o ( 77 ') hence the
—Ozp Ozxx

symplectic polar dual of Qzvis

20pp 5 - 40 yp vt 20,4

hw .
Q57" : 72 T 72 P 2

p* <L

The condition Qg’w =0s s equivalent to D = ihz so that Qy is indeed a
quantum blob.

N
4.2 A tomographic result

We are goingito prove asstronger statement, which can be seen as a “tomo-
graphic” result, since it involves the intersection of the covariance ellipsoid
with a (liagrangian) subspace. Let us begin with a simple example in the
case n = 1.

Théorem 16-(i) The ellipsoid @ contains a quantum blob Q = S(B**(v/h))
(S € Sp(n)) if and only if there exists ¢ € Lag(n) such that

Qe nrcane (60)

in which case we have Q" N ¢ C QN for all £ € Lag(n). (i) The equality
QBN = QN1 holds (for some, and hence for all, £ € Lag(n)) if and only
if Q is a quantum blob.

19
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Proof. (i) The necessity of the condition (60) is trivial (Proposition 14)s Let
us prove that this condition is also sufficient. Setting as usual M (= %hZ‘l
and

Qg:{z:Mz-zgh}:{z:%E_lzwgh} (61)
we have
QLY = {2 e R . (~JM ™ )z 2 < h}4 R (62)
Performing a symplectic diagonalization (13) of M we get
Qy = Sflﬂthl/z ) Q%w = Sil(Qthlﬂ)h’w (63)

where 5 p-1/, and its dual are explicitly given by
Qthl/z = {ZGRZTL DZZSFL}
(Q;—LDA/Q)"W ={zeR* . Dilz. 2 < h}.

where we have used the identity —JD7tJ = D7 et us first assume that
{={0x =R"™ x 0. Then

QﬁDfl/ngX:{CUERnZAwﬂf'.’IISFL}

and
(p-1)" Ol =@ eR" : (AY) 'z -2 < K}

Now, the condition

(p=1/2)" Nlx C Qup-1/o N Lx

is equivalent to (A“)T! > A% that is to D~! > D, which implies (QhD—l/Q)h’w C

Qpp-1/2, and Qpp=a j2.contains a quantum blob in view of Proposition 14.
We have thus proven/our result in the case where ¥ = AD~1/2 and ¢ = (.
For the general'casé we take £ = S~'/x where S is a Williamson diagonal-
izing matrixfor 3 in.view of (63) we have

QL =15 p-1/5N S x =S5 (Qp-1/5 N lx)
Q52 N =S Qp1/0)"™ NSy = STH(Qp-1/2)™ N Lx)
and hence Qg’w N{¢ C Qs N{if and only if (QhD_1/2)h"” C Qpp-1/2- It now
suffices to apply Proposition 14. To prove (ii) it is sufficient to note that the
equality
(Qp-1/2)" Nlx = Qup-1/5 N Lx

is equivalent to (A“)~! = A“ that is to A“ = I,,»,,. Since we have in this case
M= STSy in view of (13), the proof in the general case can be completed
as above. m
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Example 17 With the notation of the previous examples, we have

o o o
Qs : PP2 _ Z2%P 21T 2 < 64
2iopT T p PPt opl = (64)
20 4o 20
r7 .
Qg” h;’me — h;:ppx + h;me <1 (65)
with D = 04z0pp — ng = ihQ. We have ~

Qe Nilx = [*\/2D/Uppv \/QD/JPP]

QLY Ny = [~Ti)\/20pp, B/ \/20pp)

and Qg’w Nix C Qs NLx if and only if hfy/20p, < \/2D/O'pp which is
equivalent to D > %h? More generally, if Pq »p = ax for any a € R then

OssN¥, and Q;’w N4, are determined by the z'nequ%lities

Qgﬂéa:(%—%cﬂ—%cﬁ)ﬁgl

ng N4, : (20pp — 40wpa—|— 2920 a2> 2 <1

h? h? h?

and the inclusion
QLR C Qs N i, (66)

is equivalent to the inequality

2 N 2
where k = 2(h* /4 — D)/h#D. Now 032,6° — 2030 + opp > 0 for every a € R

(because 02, — Tpe0pp = =D < 0 since X2 > 0) and hence the inclusion (66)
holds if dnd only ifsk-< 0, that is, if and only if D > h?/4 which is the
Robertson=Schrédinger inequality ensuring us that Qyx contains a quantum
blob (and is itself @'quantum blob when D = h?/4).

4.3 +The case of mixed states

Sofar sve have been considering pure states. Let us generalize our discussion
to more general mixed states. We assume that p is what we have called in
[19] a.“Feichtinger state”, i.e. a density operator whose Wigner distribution
p is regular enough to allow the existence of the covariance matrix

= Z — (R Z—ZT z)az
2= [ =) (@) (e (68)
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Z) = |nan 2p(2)dz is the mean value vector). In order to represent a
R
quantum state a necessary condition is that [3, 28]

A
¥+ %J is semidefinite positive (69)

which we write for short as ¥ + %hJ > 0 (this conditionfequivalent to the
uncertainty principle in its strong Robertson—Schrodinger form,%id.). One
shows [28] that (69) implies that the covariance matrix % of a quantum
state is always definite positive, and, conversely, that (69) is'sufficient for
Gaussian mixed states: a Gaussian of the type (11) introdueed above, that
is
_ 1 — s Uz —20)(z—z0)
plz) = 2 dets (70)

is the Wigner distribution of a mixed quantum state if and only if the con-
dition (69) holds. Recall that this contitionds equivalent to saying that the
covariance ellipsoid Qy : %Z_l,z“z < 1 contains a quantum blob, from which
follows that the orthogonal projetions of (2ss2%6n any conjugate plane z;, p;
has area at least mh.

In view of Theoren 16 Qs contains a quantum blob Q = S(B?*(v/h))if
and only if there exists ¢ & Lag(@)such that Q"“ N ¢ C QN ¢ in which case
we have Q" N ¢ c QN for alli.c Lag(n). It follows that:

Corollary 18 The Gaussian 70 is the Wigner distribution of a mized quan-
tum state if and onlyfits covariance ellipsoid satifies the condition Qg’w NnecC
Qs N YL for some (and hence all) ¢ € Lag(n).

N
Proof. It is just a restatemnt of Theoren 16. m

5 Diseussion and Conclusions

Theorem 13 shows that we can identify any pure Gaussian state with a geo-
metric object, the Cartesian product Xy x (X, g)?,. The physical interpretation
of this correspondence is the following: once a cloud of position-momentum
measurements issmade on a given Lagrangian plane £, the latter is approxi-
mated by an ellipsoid X,. One then chooses a transversal Lagrangian plane
¢ and one calculates the polar dual (X;)}, of X, on ¢'; the covariance el-
lipsoid of the Gaussian state we are looking for is then simply the maximal
volume ellipsoid of the convex product X, x (Xg)?,, and the latter uniquely
determines the state (which is here supposed to be centered at the origin;
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the general case is trivially obtained using phase space translation“or, the
Heisenberg displacement operator). Theorem 16, on the other hand, shows
that one can test whether a covariance ellipsoid is that of a quantum state
by intersecting it with a single arbitrary Lagrangian plane.This is typi-
cally a tomographic result which might have both theoretical and practical
applications.

It would be interesting (and important!) to extend the_.approach and
results of this paper to non-Gaussian states; non-Gaussian features are in-
dispensable in many quantum protocols, especially to reach a guantum com-
putational advantage (see the interesting discussions in Ravet al. [25] and
Walschaers [32]). A possible approach could be to generalize the “geomet-
ric states” described by Theorem 13 to the ¢ase where X, no longer is an
ellipsoid, but an arbitrary convex body. Ahe Lagrangian plane ¢ would
then be replaced with a Lagrangian submanifold of phase space (i.e. a n-
dimensional submanifold where the tangent spacesa@re all Lagrangian). We
will come back to these intriguing and potentially fruitful possibilities in
future work.

An interesting point raised by,one,of the Reviewers is the question of
what happens for reduced covarianece matrices where obtaining purity or
von entropy Neumann is possible? These questions will be answered in a
forthcoming article (There are, some delicate points to elucidate, and we
have found they deserve to be diseussed in a sequel of this work).

APPENDIX A. The Groups Sp(n), U(n), and Mp(n)

For details and proefsssee [10]. The symplectic group Sp(n) consists of all
linear automorphisms S @ R?” — R?" such that w(Sz,S72') = w(z,?') for
all (z2,2') € R xMR?". /A symplectic basis of (R?", o) being chosen once
for all, we can write this condition in matrix form S7JS = SJST = J and,
writing S-€.Sp(m), insblock-matrix form

S— (é g) (71)

where the entriesr A, B, C, D are n X n matrices, these conditions are then
easily seen to be equivalent to the two following sets of equivalent conditions:

ATC, B'D symmetric, and ATD —CTB =1 (72)
ABT, ¢DT symmetric, and ADT — BCT =1. (73)
23
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It follows from the second of these sets of conditions that the inverse of.S is
_ pT BT
S 1 == <—CT AT > . (74)

There are several ways to describe the generators of the group Sp(n). We
will use here the following:

~
I 0 L=t 0 o I
where P = PT and det L # 0.

The subgroup Sp(n) N O(2n,R) of symplectic rotations is denoted by
U(n); this notation comes from the fact that U(m),is identified with the

unitary group U(n,C) via the monomorphism 4 + iB — (—AB i)

The symplectic group is a connected Lie groupycontractible to U(n) =
U(n,cC) and therefore has covering groups Spq( n) of all orders; the double
covering Spy(n) has a unitary Tepresentation<in LQ(R”) the metaplectic

group Mp(n). The latter is generated by the operators Vo P, M L,m, and J
defined by

V_p(a) = e3P "h(w) , My (x) = i™/[det Ly (La)

(the integer m corresponding to a cheice of arg det L), and J being essentially
the Fourier transform:

7 1 "2 —iga’ / /
N I

Denoting by 7P\ the covering projection Mp(n) — Sp(n) we have

~

Me(V_p) = Vop , WP (M) = Mg, 7P(J) = J.
We (will alse, use the following factorization results: given S € Sp(n)
writtén in block form (71) we have the pre-Iwasawa factorization [3, 26]:

Thefe existunique matrices P = PT and L = LT > 0 and R € Sp(n)NO(2n)
such that

S =VpMLR. (76)
These matrices are given by
—(CAT + DBT)(AAT + BBT)™! (77)
L= (AAT + BBT)"1/2, (78)
24
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writing R = <_EF g) the n x n blocks E and F' are given by
E = (AAT + BB")"Y24 | F = (AAT + BB")"'/2B. (79)

The matrix R is a symplectic rotation: R € Sp(n) N O(2n,R).

APPENDIX B. Lagrangian Subspaces

By definition a Lagrangian coordinate subspace is a n-dimensional subspace
l(a,) Of the (R2", w) given by the relations (o) =0,and p(g) Where a and j3
form a partition of the set of integers {1, ..., n }anThusy fordnstance, 1 = 0
and p; = 0 defines coordinate Lagrangian subspaces in R*. The choices
a = and B = () correspond to the canonical ecoordinate planes £x and /p,
respectively. Let £(, ) be a Lagrangian goordinate subspace; we assume for
notational simplicity that o = {1,...,k}, 8 = {k+%,...,n} (1 <k <n). It
is represented by the equation

Az +Bp =0 (80)

where A and B are the diagonal matrices’ A = Ixxr @ O(y—p)x(n—k) and
B = Ogxk @ Lin—k)x(n—k)" A remarkable feature of coordinate Lagrangian
subspaces is that the symplectiéform w vanishes identically on them if 2z, 2’ €
{(a,p) then w(z, z) =@, This motivates the following definition [8, 10]: a n-
dimensional subspace £ 6f R?" is called a Lagrangian subspace (or plane) if
w(z,z) =0 for all z, 2" € /."(Lagrangian subspaces intervene in many areas
of mathematical physics; for|instance they are the tangent spaces to the
invariant tori of classiealymechanics [1, 8]). In the case n = 1 Lagrangian
planes are just the straight lines through the origin in the phase plane. In
the general case they are represented by equations Ax + Bp = 0 where
rank(A, B) =n and A'B = BT A [8]. It turns out that every Lagrangian
subspace.can be obtained from any Lagrangian coordinate subspace using a
symplec¢tic transformation. This follows from the fact the symplectic group
Sp(n)“acts transitively on the set Lag(n) of all Lagrangian subspaces of
(R2%@w) (see,[10] for a proof using symplectic bases). In particular:

The action U(n) x Lag(n) — Lag(n) is transitive

where U(n) C Sp(n) is the group of symplectic rotations (see Appendix A).
Let (o 5) € Lag(n) be a Lagrangian coordinate subspace. It follows that
There exists non-unique) S, g), SEQ 5) € Sp(n) such that

08) = Siag)lx = S(aplp
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(notice that we can take Szaﬂ) = S(a,8)J)-

APPENDIX C. h-Polar Duality

Let X C R} be a convex body: X is compact and convex, and has non-
empty interior int(X). If 0 € int(X) we define the i-polar’dual X" & RY of
X by -

X" ={p e R™ : sup,ex(p- z) < b} (81)

where £ is a positive constant (we have X" = hX° where Xis the traditional
polar dual from convex geometry). The following preperties of polar duality
are obvious:

o (X" = X (reflexivity) and X C Y ==Y ¢ X% (anti-monotonicity),
e For all L € GL(n,R): R

(Lxy S x" (s2)

(scaling property). In particulaz (AX)E=A"1X" for all A € R, A # 0.

We can view X and X" as subsets of phase space by the identifications
Ry =R} x 0 and R} = 0 X R, Writing {x = RY x 0 and £p = 0 X R} the
transformation X — X" is aimapping £x — ¢p. With this interpretation
formula (82) can be rewritten in symplectic form as

(M1 X)" = M+ X" (83)

-1
L 0 > is in Sp(n). Notice that My : {x — {x and

O £”
My, bp — Up.
Suppose now that X is an ellipsoid centered at the origin:

where M, =

X={zeRl: Az -z < h} (84)
where A€ Sym, (1. R). The polar dual X" of X is the ellipsoid
X'"={peR}: A 'p.-p<h}. (85)

Indparticular the polar dual of the ball B%(vVh) = {z : |z| < VA} is
(B%(VR)" = BR(Vh).
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