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Abstract
We probe the character of knotting in open, confined polymers, assigning 
knot types to open curves by identifying their projections as virtual knots. 
In this sense, virtual knots are transitional, lying in between classical knot 
types, which are useful to classify the ambiguous nature of knotting in open 
curves. Modelling confined polymers using both lattice walks and ideal 
chains, we find an ensemble of random, tangled open curves whose knotting 
is not dominated by any single knot type, a behaviour we call weakly knotted. 
We compare cubically confined lattice walks and spherically confined ideal 
chains, finding the weak knotting probability in both families is quite similar 
and growing with length, despite the overall knotting probability being quite 
different. In contrast, the probability of weak knotting in unconfined walks is 
small at all lengths investigated. For spherically confined ideal chains, weak 
knotting is strongly correlated with the degree of confinement but is almost 
entirely independent of length. For ideal chains confined to tubes and slits, 
weak knotting is correlated with an adjusted degree of confinement, again 
with length having negligible effect.

Keywords: confined random walks, knot recognition, knot statistics, open 
knots
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1.  Introduction

Random walks are natural models of flexible polymers, and statistical quantities can be probed 
by their computer simulation where experiments would be challenging [1, 2]. An intriguing 
feature of polymers, and the random walks which model them, is the possibility they might 
be knotted [3–9]. It has long been established that as the chain length of polymers increases, 
chains which do not contain a knot become exponentially rare, and the knots which do occur 
become increasingly complex [5, 6]. However, length is not the sole property which affects 
the probability of knotting. Unsurprisingly, polymers which are compact (i.e. enclosed within 
small volumes), whether through solvent conditions or external confinement, are also more 
likely to be knotted, with knotting more likely to be complex [10–17]. The presence of knots 
in these systems has physical consequences, for example in the ejection of viral DNA from a 
bacteriophage capsid [18], or in merely restricting the available space of conformations which 
can be explored in a given window of time. This has potential ramifications for microfluidic 
systems which use a variety of confined environments [19–21].

Many previous investigations of this knot proliferation have dealt with ring polymers  
[4, 11, 15, 22–27]. This has the advantage that any knots in the polymer are invariant (except 
through cutting and glueing processes such as the action of DNA topoisomerases and recom-
binases). However, most physical polymers are linear and open-ended, which presents a prob-
lem, as knots are only defined mathematically in closed curves, up to ambient isotopy. While 
an open curve is always topologically trivial, its spatial conformation can possess geometric 
resemblance to a knotted closed curve: the difference between an untied and tied shoelace is 
evident from inspection. If the endpoints of the polymer are on strands extended away from 
its bulk, it is relatively easy to close the ends unambiguously, trapping the knotted area for 
identification. However, when the endpoints lie within the polymer tangle (which is especially 
common in compact curves), this operation is much more difficult to define without ambigu-
ity; there might be several possible knot types captured depending on the chosen closure path 
through the tangle [28]. Therefore there is an inherent ambiguity in determining whether an 
open curve may be described as knotted, and if so, identifying the type of ‘open knot’.

In such situations, a standard method is to take many closures according to a statistical 
rule, and look for the most common knot type; this might involve extending the endpoints on 
straight lines to a point on the surface of a large sphere enclosing and centred on the curve, 
thus giving a closed curve with a definite knot type for each point on the sphere [29–31]. We 
call this method sphere closure. Upon averaging over area on the sphere closures, usually the 
most common knot—i.e. the modal average—is taken to represent the knot type of the open 
curve. This is not the only means of identifying knots in proteins, and indeed one of the earli-
est observed, deeply knotted proteins was identified by a non-statistical, geometric relaxation 
algorithm [32].

Complementing the sphere closure approach, we presented an alternative closure method 
based on identifying projections of the open curve as virtual knots [33], a generalization of 
the familiar, classical knots which can be interpreted as lying ‘in-between’ the standard knot 
types [34]. Our method, which we call virtual closure, involves projecting the open 3D space 
curve to an open knot diagram, and we consider projections in all directions over the sphere. 
The open knot diagrams are interpreted either as non-classical virtual knots, or classical knots; 
in the following, to avoid confusion, we refer to a knot only as virtual if it is not of a classical 
type, and these non-classical virtual knots types have been partially classified [35]. By taking 
many projections from uniform directions, we again build up a picture of the knotting of the 
open curve. Including the possibility that an open curve projection is identified as a virtual knot 
increases the sensitivity to identifying how an open space curve may be knotted—quantifying 
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the inherent ambiguity—with a subtlety missed by sphere closure. In [33] we mainly applied 
this method to knotted proteins; here we extend it to more general open random walks.

Recently, consideration of open curves has led to the study of knotoids [36]. These are 
essentially open knot diagrams of the sort that result from projections of open curves, and they 
behave very similarly to the virtual knots which occur as open knot diagrams. Indeed, while 
knotoids in principle can distinguish open curve projections better than virtual knots, in prac-
tice suitably powerful knotoid invariants have not been used to our knowledge. By considering 
knotoid diagrams as drawn in the plane (rather than the surface of a sphere, like virtual knot 
diagrams), open curve projections can be further distinguished with a simple extension of the 
Jones polynomial [37]. The important common feature of virtual closure and knotoid methods 
is that the problem of open curve knot recognition is mapped to distinguishing ensembles of 
open knot diagrams, instead of ensembles of closed curves as in sphere closure.

In trying to understand how an open curve might be identified as (virtually) knotted, we 
consider the statistics of the knot types that occur over different projections. As mentioned 
above, in earlier sphere closure studies, an open curve is identified with the most common 
knot type occurring over different closures, even if this does not cover over 50% of closures. 
For example, the trivial unknot may be the single most common knot type, occurring in 40% 
of closures. Should we say this curve is unknotted, despite 60% of closures being knotted 
(albeit in different ways)? 

We attempted to resolve this in [33] by defining an open space curve to be knotted if at least 
50% of closures result in a non-trivial knot (classical or virtual). Situations where the single 
most common knot type is non-trivial and covers at least 50% of closures we call strongly 
knotted. This leaves situations where the most common knot type occurs in less than 50% 
of closure directions, interpreted as significant ambiguity in the knot type of the open curve. 
Such space curves are called called weakly knotted: they are definitely tangled, but not in a 
way that can be recognised as a single knot type, classical or virtual. It is weak knotting that 
confounds the classification of knotting in open curves.

Unconfined, open polymers typically appear as space curves whose endpoints are extended 
away from the bulk [22, 38], and are therefore likely to be either unknotted or strongly knot-
ted. Knotting ambiguity is not of much concern in such systems, as observed in early studies 
of sphere closure, although not quite in these terms [29]. On the other hand, confined, open 
polymers tend to have more compact and complex conformations, and we expect each curve to 
project to different knot types in different directions, making these good candidates for weak 
knotting. There have already been indications of this from a study comparing knot recognition 
methods [28], in which the different methods tended to disagree on knot type increasingly 
often with tighter confinement.

While we do not investigate it directly here, there is an important link between weak knot-
ting and shallow knotting, in which the knot type of an open curve can be changed (often to 
the unknot), by removing a short length from one of the endpoints. Such shallow knotted 
configurations are common in protein knots and are also present as transition states in poly-
mer dynamics, for example during an untying process, making weak knotting an important 
indicator of this. We expect virtual closure to be a better detector of weak knotting than sphere 
closure, as knot projections might be identified as virtual as well as classical knot types.

Here we quantitatively investigate how confinement affects the weak knotting of open ran-
dom walks modelling confined open polymers. We generate random walks of three different 
types: cubically confined lattice walks, spherically-confined off-lattice walks and unconfined 
off-lattice walks, and compare the results for each. We focus our attention on spherically-
confined off-lattice walks, and then generalise to different confining geometries, namely tubes 
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and slits. We will see that while overall knotting probability is highly dependent on walk 
length—as is well known for ring polymers and closed random walks—this is not the case for 
weak knotting. Instead, the walk’s degree of confinement, determined by the relative radius of 
gyration of unconfined and confined walks of the same length, determines the weak knotting 
probability with no further contribution from length. Some examples of random walks in these 
different classes are shown in figure 1.

2.  Classical and virtual knotting of open walk closures

As in our survey of virtually knotted proteins [33], we employ both sphere closure and virtual 
closure to analyse the knotting of open random walks. For each open chain, we consider 100 
choices of closure direction, uniformly distributed over the sphere of directions according to 
the generalised spiral points algorithm of [39]. In sphere closure, we project the space curve 
into the plane perpendicular to the projection direction, keeping crossing information. We then 
join the ends of the projections, adding over-crossings where the closure arc crosses existing 
strands of the diagram, equivalent to joining the ends to a point on a sphere of arbitrarily large 
radius. Any projection of this closed curve, with crossings signed appropriately, gives a closed 
knot diagram of the same classical knot type. We find this type by calculating the Alexander 
polynomial of the knot diagram [4, 40]. While this may not be the strongest knot invariant, 
it distinguishes enough of the different knot types that occur in the analysis of a single curve 
that we can reliably judge the weakness of knotting. With a perfect knot invariant, we would 
expect to see a very marginal increase in weak knotting detections.

Under virtual closure, the endpoints of the projected diagram are joined making virtual cross-
ings with existing strands, which are not ‘classical’ over- or under-crossings, and indeed should 
not be interpreted as physical crossings. This procedure gives a closed (virtual) knot diagram 
whose topological information is only that of the classical crossings in the original projection. 
We use the generalised Alexander polynomial to distinguish virtual knot types [41, 42]. As 
the generalised Alexander polynomial cannot distinguish certain simple virtual knots, we also 
employ the Jones polynomial when necessary [43]. All classical knot types (including those 
with virtual crossings removable by virtual Reidemeister moves) have a generalised Alexander 
polynomial of zero; the classical Alexander polynomial then distinguishes these.

Examples are useful to illustrate the different closure mechanisms. Figure 2(a) shows an 
open curve embedded in 3-space, with (b) showing the corresponding projected diagram (the 

Figure 1.  Examples of the classes of open random walks investigated. (a) Cubically 
confined lattice walks. Off-lattice walks (b) confined to spheres; (c) confined to tubes; 
(d) confined to slits; (e) unconfined.
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diagram has been smoothed, but no crossings have changed). Figure 2(c) shows the closure 
of the projected diagram. Since no strands separate the endpoints, the closure introduces no 
additional crossings: both sphere and virtual closure identify this projection as trefoil knotted 
(i.e. classical knot type 31). Figure 2(d) shows the same open curve viewed from a different 
direction, with (e) the corresponding projected diagram. Here, joining the strands requires 
an extra crossing. Under sphere closure, this is an over-crossing, leading to a final diagram 
identified as a trefoil knot, as in (c). On the other hand, making this a virtual crossing instead 
gives the virtual knot shown in (f), the virtual trefoil v21. Identifying the projection as a virtual 
knot captures the fact that this diagram is intermediate between the classical unknot and the 
trefoil knot.

The possible classical knot types up to four crossings are shown in figure 2(g) with their 
usual labels [44]. The full set of virtual knots includes many more members than the virtual 
closures of projected knot diagrams which are our interest; those virtual knots which occur 
under virtual closure of an open space curve, of up to four classical crossings, are shown in 
figure 2(h). The labels here are from the virtual knot table [35], where we add the prefix ‘v’ 
to distinguish from the classical knots. All of these virtual knots except v412 are prime virtual 
knots, and appeared in the classification of more general prime virtual knots of genus 1 [45]. 
v412 in fact is a composite of two virtual trefoils, v21#v21, and is not prime as stated in [33]. 
Notably, that composite virtual knots appear with only four crossings, unlike the six crossing 
minimum seen in classical knots.

Evidently, virtual closure allows for many more possible knot types than sphere closure, 
for a curve or its projection of the same minimum classical crossing number (which we take 
as a measure of complexity). As in the example considered above, the virtual types occur 
in between classical knot types, and their identification sharpens the sense of ambiguity an 
open-chain projection can have between classical knot types. In particular, v21 is simpler—has 

Figure 2.  Examples of classical and virtual knot projections. (a) represents an open 
space curve, (b) its projected diagram and (c) the resulting closed knot diagram upon 
closing the endpoints unambiguously. (d) represents the same curve viewed from a 
different direction, (e) its projected diagram and (f) the resulting closed knot diagram 
on virtual closure. Sphere closure (including an over-crossing) results in the same knot 
as (c). (g) gives standard projections of the three classical knots of up to four crossings: 
the topologically trivial unknot, 01, the trefoil knot 31 and the figure 8 knot 41. (h) shows 
virtual knots possible from projections of open curves of up to four crossings, using the 
notation of [35].

K Alexander et alJ. Phys. A: Math. Theor. 53 (2020) 045001
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fewer classical crossings—than the simplest non-trivial classical knot 31, yet is still (virtually) 
knotted.

3.  Generating random walks

We investigate both lattice and off-lattice walks. All walks are equilateral and have a step length 
of 1. In each model, for a given chain length and degree of confinement, we perform statistics 
based on 10 000 walks. Our lattice walks, following [46], are segments of Hamiltonian walks 
on a cubic lattice of L × L × L  nodes, which are automatically self-avoiding. The off-lattice 
walks we investigate are ideal chains, often used to model polymers in theta conditions [1]. 
For unconfined walks, begin at the spatial origin without loss of generality and step one unit 
in a uniformly randomly chosen direction. This process is repeated until the walk reaches the 
desired length. Each step is independent of the walk’s history, and is not self-avoiding though 
generically does not cross itself.

It is more complicated to generate confined ideal chains. A simple algorithm is an accept-
reject method, where the walk is generated like an unconfined ideal chain, starting at a random 
point within the confining volume, but whenever a step would take the walk outside the con-
fined volume, it is rejected, and a new step sampled until a point inside the volume is returned. 
Boundaries implemented in this way are called absorbing boundaries—vertices of walks gen-
erating this way tend to avoid the region within a step length of the boundary.

A better sampling of walks confined within a sphere, very close to a uniform distribution, 
was proposed in [47]. Here, walks are generated like ideal chains, unless they are under a step 
length from the boundary, where each step is sampled from a distribution which increases 
towards the boundary. The radial density of walk vertices from each method is given in 
figure 3(a), compared to a uniform distribution.

It is easy to adapt this method for walks in slits by treating each parallel wall as an arbitrar-
ily large sphere. More difficult is adapting to tubes, which requires steps from within a step 
length of the boundary to be sampled from a differently shaped distribution than that of the 
sphere. We outline how we do this in appendix B. While the results are not as close to uniform 
as the spherical case, they are close enough that any effect on knotting statistics is likely to 
be small. The radial vertex densities of walks in tubes using absorbing boundary conditions, 
the original distribution shape and our corrected distribution compared to uniform are given 
in figure 3(b).

4.  Results

4.1.  Knotting in three-dimensionally confined random walks

We begin by investigating the dependence of knotting probability on chain length, comparing 
unconfined ideal chains, spherically confined ideal chains and walks on the finite cubic lattices 
of L × L × L  nodes where L  =  6 or 7. For the best comparison between ideal chains and lat-
tice walks, the ideal chains are confined to spheres of equivalent volume as the lattices, with 

radius R =
( 3

4π

)
1/3(L − 1) ≈ 3.1 and 3.72 respectively.

Figure 4(a) shows the probability that walks of N steps are knotted, i.e. if 50% or fewer 
closures are unknotted. The solid line gives the knotting probability under virtual closure 
and the dashed line knotting under sphere closure. For each walk model, knotting probability 
increases with length, and is strongly encouraged by confinement. The reduced flexibility 
of the lattice walks lowers the knotting probability compared to the ideal chains at shorter 
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lengths, but their knotting probability begins to overtake that of unconfined ideal chains at 
longer lengths. For the ideal chains, the knotting probability is very similar under sphere clo-
sure and virtual closure. There is a greater discrepancy in the lattice walk results, as the knots 
found are likely to be simpler (and hence more cases of v21 versus the unknot). For complex 
ideal chains, the two methods might disagree in the knot which occurs, but not whether it is 
knotted; on a lattice there are more conformations which are ‘only just’ knotted.

We now examine the conditional probability that, given a knotted walk, the knotting is 
weak, i.e. no single knot type occurs in 50% or more closures. Note that this is distinct from 
the probability of weak knotting; we want to capture the character of the knotted walks. The 
results for the same chains are plotted in figure 4(b); unlike the knotting considered above, 
unconfined walks display almost no weak knotting at any length. On the other hand, all con-
fined walks show an increase in weak knotting with length. Strikingly, under virtual closure 
the trends for ideal chains and lattice walks, for the same volume size, are very close. Sphere 
closure gives significantly less weak knotting, primarily due to the reduced number of knot 
types possible under sphere closure, which reduces the competition for the most common 
knot. Lattice walks show the greatest reduction, where the simplicity of the curves means the 
number of knot types accessible is less than in the geometrically complex ideal chains.

From these results we see that confinement drives knotting from almost entirely strong 
knotting to almost entirely weak knotting (as a measure of knot type ambiguity). To probe 
this effect directly, we consider ideal chains of fixed length confined in spheres of different 
radius, under virtual closure (which is more sensitive to weak knotting). The dependence of 
(weak) knotting of fixed-length chains with respect to reciprocal confining radius 1/R is shown 
in figures 4(c) and (d), where the unconfined walks are at zero. For all lengths investigated 
the knotting probabilities increase as the confining volume decreases until the probability 

Figure 3.  Distributions of vertices for spherically-confined random walks. (a) Radial 
distribution of vertices in a sphere with absorbing boundaries and boundaries using the 
model of [47] compared to a uniform distribution. (b) Radial distribution of vertices 
in a tube with absorbing boundaries and boundaries using the model of [47], and our 
modification of it, compared to a uniform distribution.
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Figure 4.  Knotting and weak knotting probabilities for the different random chain 
models. Plots on the left are for knotting probability, on the right conditional probability 
that knotting is weak. (a) Knotting and (b) probability knotting is weak, with different 
colours representing different chains as in the key. (c) and (d) show (weak) knotting in 
spherically confined ideal chains as the confining radius is varied. (e) and (f) show the 
same data as (c) and (d), plotted against the degree of confinement C as defined in (1).
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saturates, with longer chains more likely to be knotted. As expected, with tighter confinement 
the knotting is more likely to be weak, saturating with all knotted walks being weakly knotted.

When walks are unconfined (1/R → 0), the probability is small for knotting to be weak, 
for all walk lengths. Now, tightening the confinement means the probability of weak knotting 
rises faster for longer walks, as these are more constrained by a given confinement volume. 
We quantify this degree of confinement C as

C ≡
〈Rg(N, R = ∞)〉

〈Rg(N, R)〉
,� (1)

where 〈Rg(N, R)〉 is the average radius of gyration of the walk of length N confined to a sphere 
of radius R (〈Rg(N, R = ∞)〉 is the average radius of gyration of unconfined walks of length 
N). We expect C � 1, with C  =  1 suggesting no confinement.

The probability of knotting with respect to C is shown in figure 4(e). Clearly knotting prob-
ability increases with C, and also with chain length. However, this length dependence does not 
seem to be present for the probability knotting is weak against C, plotted in figure 4(f)—the 
points all lie close to the same curve, over the whole range from no weak knotting at C  =  1 
to a probability of unity at C ≈ 3. Thus the degree of confinement as parametrised by C has a 
crucial correlation with weak knotting, with unconfined walks not exhibiting weak knotting, 
and strongly confined knots almost surely weakly knotted, with the most common (virtual) 
knot type not covering a majority of closures.

Our definition of (weak) knotting places great emphasis on using 50% as a cutoff. However, 
it is unlikely that curves whose most common knot type covers 51% of closures and those 
with only 49% coverage are very different conformationally. For walks of a given length and 
confining radius, a more natural question is, what is the mean coverage of the most common 
knot? This proportion of closure directions covered by the most common knot for knotted 
curves is plotted against C in figure 5(a). Again, the dependence on C appears to be effectively 
independent of chain length, with a mean coverage of almost the whole sphere for C  =  1 
(unconfined), decreasing to about 25% at C  =  2.5. The precision in the results for larger C is 
limited by the number of closures (100 here) considered for each space curve, as in most cases 
there is a different knot type for each closure direction. This supports the previous result that, 
as the degree of confinement of a chain increases, the knotting is more likely to be weak, as 
the most common knot type drops below 50% at C ≈ 2. Plotted also is the coverage of virtual 
knots with C, which shows a similar N independence, rising as the mean coverage of the com-
monest knot falls. This suggests that with weaker knotting, a higher fraction of closures yields 
virtual knots.

More insight can be gained by considering the distribution of the coverage fraction of the 
most common knot, plotted in figure 5(b), where the different curves represent walks of differ-
ent lengths with a similar value of C. For walks with a low degree of confinement (C � 1.8) 
the distribution is weighted towards a large fractional coverage, i.e. knotting is often very 
strong. As C increases, the distribution shifts to lower coverage fractions, such that for most 
tightly confined walks (C � 3) the distribution is sharply peaked at low fractional coverage. It 
is easy to see how plot (a) results from the means of the distributions in (b).

In the Introduction, we stated that weak knotting mainly stems from the endpoints of the 
open random chains being close to or inside the tangled bulk of the curve. The plot in fig-
ure 5(c) verifies this statement, where the probability knotting is weak is plotted against the 
smaller displacement of the two endpoints from the walk centroid, normalised with respect 
to radius of gyration, once again binning according to C. For each value of C, the probability 
knotting is weak is constant up to a distance of about 0.7Rg (though dependent on C), then 
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decreases to 0, with the distance the weak knotting probability reaches zero being dependent 
on C. An end need only be buried slightly within a very complex walk to be weak. Of course, 
the radius of gyration of a strongly spherically confined walk is fixed at the confining radius.

4.2.  Knotting in off-lattice walks confined to tubes and slits

We now investigate the effect of different forms of confinement on knotting and weak knot-
ting, varying the number of confined dimensions from three in the sphere, to two in the tube, 
one in the slit and none when unconfined. The knotting probability against chain length for 
these different cases is plotted in figure 6(a), for two choices of confining radius, 2 (relatively 
tight) and 5 (loose). The radius of slits is half the distance between the walls. As before, knot-
ting probability increases with chain length, and as the confining radius decreases. There are 
fewer knots in tubes compared to spheres of equal radius and fewer yet in slits, as we would 
expect. Changing the confining radius has less effect on knotting in lower-dimensional con-
finement: there is little change in slits and less effect in tubes than spheres. We do not inves-
tigate sufficiently tight tubes and slits to see the non-monotonic change in knot probability 
found in [48].

Knotting is much more commonly weak in spheres than tubes and slits, shown in fig-
ure 6(b). The growth of weak knotting with length, compared to the previously seen effect in 
spheres, is modest in tubes and almost non-existent in slits, and the effect of tightening the 
confining radius in slits is again negligible.

These results should not be surprising since confinement in one and two dimensions, real-
ised by slits and tubes respectively, has a smaller impact than confinement in three dimensions 
in spheres. To see this directly, we plot the probability of weak knotting in these partially 
confined geometries against the degree of confinement C (defined in (1)) in figure 6(c). We 

Figure 5.  Further results for the virtual closure analysis of spherically confined ideal 
chains. (a) Mean coverage of the most common knot against the degree of confinement 
C (see (1)). In cyan is shown the mean coverage of virtual knots for the same walks. (b) 
The probability distribution of fraction of closures of the commonest knot type. Results 
for walks have been binned according to C. (c) Probability knotting is weak against the 
displacement from the centroid of the closer endpoint, divided by radius of gyration. 
Again, walks are binned by degree of confinement.
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investigate walks in tubes and slits over a much smaller range of degree of confinement than 
previously for spheres; nevertheless, the data indicates that probability knotting is weak 
against C is independent of confinement radius and walk length for both tube confinement and 
slit confinement, with knotting more likely to be weak, for fixed C, for slit confinement than 
tube, and tube than sphere. This is because partial confinement has a more significant effect on 
weak knotting than on the radius of gyration with respect to which it is normalised.

The radius of gyration fails to quantify the anisotropy of partially confined walks: com-
pared to the prolate, cigar-like shape expected for unconfined walks, walks in slits tend to be 
less prolate and walks in tubes more prolate. We therefore consider the rank two, symmetric 
gyration tensor S with components Sij,

Sij =
1
N

N∑
n=1

(r(n)
i − ri)(r

(n)
j − rj), i, j = 1, 2, 3,� (2)

where r(n) is the nth walk vertex, n = 1, . . . , N , and r = N−1 ∑N
n=1 r(n) is the walk centroid. 

With this terminology, the radius of gyration Rg =
√

trS. A suitable orthogonal transforma-
tion O (i.e. choice of Cartesian coordinate system) diagonalises this tensor,

Figure 6.  Knotting and weak knotting in random walks confined to spheres, tubes, slits 
and unconfined. Data for R  =  2 and R  =  5  are shown, exemplifying tight and loose 
confinement. (a) Probability of knotting against chain length. (b) Probability of weak 
knotting against chain length. (c) Probability of weak knotting against C, the degree of 
confinement relative to the radius of gyration.
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OSOT = diag[λ1,λ2,λ3],� (3)

where the axes are ordered so 0 < λ1 � λ2 � λ3, and clearly R2
g = λ1 + λ2 + λ3. Therefore 

αj =
√

3λj , j = 1, 2, 3 are the semi-axis lengths of the associated ellipsoid of inertia, indicat-
ing the shape of the walk (with notation following [49], where the αi were used to characterise 
the shape of knotted ring polymers).

The mean absolute value of each αj against 1/R for each kind of confined walk is plotted 
in figure 7(a). All walks start from the prolate shape of unconfined walks at 1/R → 0. The 
confinement is isotropic in spheres, so all αj are distributed like Rg, which for longer walks 
tends to the confining radius R. In tubes, α1 and α2 approach R, while the effect on the larg-
est semi-axis α3 is more limited. In slits, each semi-axis reduces as 1/R increases, but not to 
a great extent (unsurprising as, for the chains considered, α1 is often shorter than half the 
distance between the walls).

We also plot the relative size of the mean confined semi-axes compared to their mean 
unconfined sizes in figure 7(b). In spheres, as expected, the reduction with 1/R is largest for 
the largest semi-axis α3. However, in tubes for the longest walks, we find that α3 is the least 
relatively reduced, despite being the most reduced in absolute terms. We see this inversion in 
slits also in both long and short walks.

Figure 7.  The variation of semi-axes of the inertia ellipsoid of open walks confined to 
spheres, tubes and slits. (a) The absolute mean size of each semi-axis in confined walks 
of length N  =  50 and 200. (b) The mean size of each semi-axis in confined walks, 
relative to unconfined walks.
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This explains why the range of degree of confinement C (defined in (1)) is so much smaller 
in tubes and slits than in spheres. The radius of gyration is derived from the sum of squares of 
the semi-axis lengths, and, unconfined, we expect walks shaped such that α3 � α1,α2, there-
fore the radius of gyration is dominated by α3. In spheres, α3 greatly decreases with radius, 

Figure 8.  (a) probability that knotting is weak and (b) the mean coverage of the most 
common knot in ideal chains confined to different geometries, plotted against the 
adjusted degree of confinement, C� (as in (4)).

Figure 9.  Probability distribution for the coverage of the most common knot on virtual 
closure for knotted ideal chains (as in figure 5(b)), compared to all knotted proteins in 
the Protein Data Bank.
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and so C varies considerably. In tubes and slits, α3 is less affected by the confinement than 
α1 and α2, despite being somewhat reduced. This detail is lost in the radius of gyration, sug-
gesting we may get a better predictor of weak knotting if we put each semi-axis on the same 
footing. We propose the following adjusted degree of confinement, C�:

C� =
1
3

3∑
i=1

〈αi(N, R = ∞)〉
〈αi(N, R)〉

,� (4)

summing the mean size of each semi-axis relative to those of unconfined walks, and dividing 
by 3 to ensure C� = 1 for unconfined walks.

The probability knotting is weak against this adjusted degree of confinement for walks 
in each confinement shape is plotted in figure 8(a). We see that now all the values fall onto 
the same curve, regardless of the shape of confinement. Spheres probe the largest range of 
adjusted degree of confinement, followed by tubes and lastly by slits. Knotting is more likely 
to be weak for larger C�. Furthermore, we plot the mean coverage of the most common knot 
against the adjusted degree of confinement in figure 8(b). We see again that all the values for 
all walks lie on the same curve. With larger C�, the mean coverage of the most common knot 
is lower, i.e. the weaker the knotting. In summary, C� is strongly correlated with the weak 
character of knotting in confined walks, without further dependency on length of walk, or 
shape or radius of confinement.

5.  Discussion

We have performed a detailed numerical investigation into the cases when assigning a knot 
type to an open tangled curve is ambiguous, which we call ‘weak knotting’. While uncon-
fined open random walks can often be assigned a clear knot type, as walks are confined more 
and more tightly (i.e. within a progressively smaller radius), closures in different directions 
become assigned to more different knot types, with no one type dominant. We were able to 
quantify this ambiguity using a knot recognition method which used multiple closures to give 
a detailed picture of knotting. Identifying projections using virtual knots is more sensitive to 
knotting, and to the ambiguity of knotting over previous sphere closure schemes. Lattice and 
off-lattice walks were investigated, and while each showed different overall knotting, with 
lattice walks less likely to be knotted, the ambiguity in their knotting under confinement was 
very similar when measured using virtual closure.

In particular, we found that the relative radius of gyration of unconfined walks to confined 
walks is well correlated with the probability of weak knotting, independent of chain length. 
We also found that weak knotting is strongly correlated to walk endpoints being close to the 
walk centroid, i.e. within the bulk of the tangle. In other words, the knotting spectrum of open 
random walks grows more complex with confinement, and when their endpoints are more 
buried in the tangle. By varying the confining geometry, we found that a better predictor of 
weak knotting is using the relative reduction of each semi-axis of the characteristic ellipsoid 
of unconfined and confined walks.

This analysis shows that the distinction between weak and strong knotting is important 
when open chains are randomly tangled and confined within volumes smaller than the uncon-
fined radius of gyration. The methods introduced here should be useful in more extensive sta-
tistical analyses of the shapes of open macromolecule chains. Examples where this may prove 
important include systems of polymers which are compact through poor solvent conditions, or 
external confinement due to microfluidic environments or viral capsids.
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The original motivation of our initial investigation of virtual closure analysis of open 
chains was to study knotted proteins [33], which are examples of macromolecules which are 
compact and not completely flexible. Our results revealed that, while proteins in the Protein 
Data Bank are rarely knotted, almost 40% are weakly knotted. The combination of a low knot-
ting probability and a relatively high proportion of weak knotting is unlike any of the random 
walk models investigated here. Figure 9 provides more detail, showing a comparison between 
the distribution of most common knot coverage in knotted proteins versus knotted, spherically 
confined, off-lattice walks. Evidently, the protein case is very different from these walks, 
indicating the subtlety in modelling protein conformations as random chains. The distribution 
is relatively sharp, with a peak in most common knot coverage only slightly above 50%. If a 
method even more sensitive to weak knotting were used such as knotoids considered on the 
plane [37], now implemented by the knotted proteins database KnotProt [50], it would not be 
surprising to find most knotted proteins classified as weakly knotted. Much of the shape of 
this distribution can be attributed to the large number of knotted carbonic anhydrase structures 
which dominate the data set and are notable for the shallowness of their knotting. As it is 
highly likely that a shallowly knotted chain is also weakly knotted, this accounts in part for 
the large number of protein chains with low fractional coverage for their commonest knot.

The distinction between weak and strong knotting is likely to be useful in the analysis of 
open chain dynamics. For instance, during the process of knot formation, a flexible open chain 
passes through one or more weakly knotted conformations before reaching a final deeply 
knotted state. Similar transitions should be observable in unknotting pathways. In these situa-
tions, the weakly knotted state is likely to be unstable, quickly untying or securing a knot with 
some perturbation to the endpoints. In controlling chain dynamics, confinements or effective 
sizes might be manipulated to enhance the chance of a weakly knotted configuration, which 
might then make a further transition to a strongly knotted configuration. Further study of the 
weak-strong transitions may reveal further structure in these distinctions of knot types for 
open curves. An important extension to our work in this regard would be to investigate walks 
in tighter tubes and slits. In such extremely confined environments, the geometrical complex-
ity of the walks is likely to be reduced, resulting in a falling proportion of weak knots which 
we predict to be captured by a decreasing adjusted degree of confinement (defined in (4)) as 
confining radius is decreased. This is in line with the non-monotonic knotting behaviour pre-
viously seen [48]. This work cannot be fully carried out using the algorithms for generating 
walks described here, however, as these require a radius of at least 1.
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Appendix A. The virtual knot v412 is the composite of two virtual trefoils v21

We here briefly describe a sequence of classical and virtual Reidemeister moves, depicted in 
figure A1, demonstrating that the 4-crossing virtual knot v412 from the tabulation in [35] is 
not a prime virtual knot (in the sense of [45]), but in fact is the composite of two virtual trefoil 
knots v21. We indicated that this knot was prime in [33], although it does not appear in the 
classification of such virtual knots in [45].
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Beginning with a diagram of v412 isotopic to the form in [35], a sequence of classical 
Reidemeister moves leads to the diagram on the right of figure A1(c), with six classical cross-
ings and two virtual crossings, which is followed by a type III virtual Reidemeister move giv-
ing the form in figure A1(d). The indicated outside arc is now deformed through ‘the point at 
infinity’ (i.e. the diagram is properly considered as drawn on the sphere, and the arc is passed 
around the back of the sphere with respect to the diagram). A Reidemeister move of type II 
gives a form which is clearly composite, as required.

Appendix B.  Generating ideal chains in spheres, tubes and slits

To generate ideal chains confined to the sphere, we follow the algorithm of Diao et al [47] 
to ensure that walk vertices are uniformly distributed throughout the volume. Here we sum-
marise this model, with R representing the radius of the confining sphere centred at the ori-
gin, and X the previous endpoint of the walk whose next step is being considered, a distance 
r = |X| from the centre of the sphere. If X is further than a unit from the spherical boundary, 
the next point is chosen by stepping a unit in a uniformly random direction. If X is within a unit 
of the boundary, the next step’s direction is sampled from a distribution weighted towards the 
boundary: this depends on the choice of an azimuthal angle φ and polar angle θ with respect 
to an axis given by the direction of X with respect to the centre of the sphere. As the problem 

Figure A1.  Sequence of classical Reidemeister moves (indicated by RM II, RM III) and 
virtual Reidemeister moves (indicated VRM II, VRM III) and isotopies, demonstrating 
how v412, from the form given in [35], is a composite of two copies of v21, as discussed 
in more detail in the text.
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is axisymmetric, φ is uniformly distributed between 0 and 2π. The value of − cos θ is sampled 
differently in each of the following three ranges: angles which, on a unit sphere about X, lie 
further than a unit from the boundary, angles within a unit of the boundary, and outside the 
boundary. The values of − cos θ which lie within these categories are:

− cos θ =





further than a unit from the boundary, −1 � − cos θ � a(r, R);
within a unit of the boundary, a(r, R) < − cos θ � b(r, R);
outside the boundary, b(r, R) < − cos θ,

� (B.1)
where

a(r, R) =





1
2r (R

2 − r2 − 2R), r > R − 1 and R − 1 > min(r, |r − 1|);
−1, r > R − 1 and R − 1 � min(r, |r − 1|);
1, r � R − 1,

� (B.2)
marking the angle which would step a unit from the boundary, and

b(r, R) =

{
1
2r (R

2 − r2 − 1), r > R − 1;
1, r � R − 1,� (B.3)

marking the angle which would step to the boundary.
The probability density function (PDF) proposed by [47] from which − cos θ is sampled 

is uniform for angles further than a unit from the boundary, rises linearly within a unit of the 
boundary, and is zero outside of the boundary. Explicitly, this is

PDF(− cos θ) =





1
2 , −1 � − cos θ � a(r, R);
1
2 (1 + c[− cos θ − a(r, R)]), a(r, R) < − cos θ � b(r, R);
0, b(r, R) < − cos θ

� (B.4)
where

c =
4r((r + 1)2 − R2)

(2R − 1)2� (B.5)

for normalisation. The radial distribution of vertices for walks generated in this way is shown 
in figure 3(a), compared with both the desired uniform distribution and vertices for walks in 
absorbing boundaries.

We adapt this method to find distributions of vertices of chains confined in other geom-
etries. The case of confinement in slits, or between two parallel walls, is relatively straightfor-
ward by approximating each wall as a sphere with large radius, in practice 10 000. The same 
PDF gives almost uniformly distributed vertices in the slit.

Confinement in a tube is more challenging since the problem is no longer axisymmetric in 
the same way as the sphere. The following modification of the model of [47] gives a distribu-
tion of vertices close to uniform, although not quite as good as the spherical case. Align the 
tube along the z-axis, and take φ now as the polar angle with respect to this direction, with 
cosφ chosen uniformly between 0 and π. θ is now the azimuthal angle, and it again determines 
how close the step is to the boundary, which also now depends on φ. Once φ is chosen, the next 
step can only lie on a section of a circle situated within the tube. Unlike with spherical confine-
ment, the choice of φ alters the radius of this circle, from 1 at φ = π/2 to 0 at φ = 0 or π. To 
account for this when sampling θ, we scale the problem to give an effective r of
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reff = rX/ sinφ,� (B.6)

where rX is the actual radial distance of X, and an effective R of

Reff = Rtube/ sinφ,� (B.7)

where Rtube is the actual radius of the tube.
The tube-confined θ is sampled with respect to cylindrical radius between 0 and π, clock-

wise or anticlockwise at random. The PDF (B.4), removing the cosine, overcompensates the 
boundary-avoiding behaviour. In order to limit this rise in the region within a unit of the 
boundary to be slower than linear, we used the distribution

PDF(θ) =





1
π , −π � θ � α;
1
π (1 + c(θ − α)n), α < θ � β;
0, β < θ

� (B.8)

where the angles α = arccos(−a) and β = arccos(−b) are equivalent to the boundaries used 
in the case of the sphere case, and

c = − β(n + 1)
(β − α)n+1� (B.9)

for normalisation. The resulting radial distribution of walk vertices using this corrected PDF 
is plotted in figure 3(b) together with the distribution using an absorbing boundary, and the 
original spherical PDF. This used a value of n  =  0.6, which we found gave the closet fit to uni-
form. Evidently, the fit is an improvement, although not ideal. The small deviation is unlikely 
to have a large effect on the knotting statistics.
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