This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Brought to you by:
Paper

No-neighbours recurrence schemes for space-time Green's functions on a 3D simple cubic lattice

, and

Published 24 January 2018 © 2018 IOP Publishing Ltd
, , Citation Bastiaan P de Hon et al 2018 J. Phys. A: Math. Theor. 51 085201 DOI 10.1088/1751-8121/aaa558

1751-8121/51/8/085201

Abstract

Application of multivariate creative telescoping to a finite triple sum representation of the discrete space-time Green's function for an arbitrary numeric (non-symbolic) lattice point on a 3D simple cubic lattice produces a fast, no-neighbours, seventh-order, eighteenth-degree, discrete-time recurrence scheme.

For arbitrary numeric lattice points outside the diagonal symmetry planes, the seven numeric eighteenth-degree polynomial coefficients of the recurrence scheme are products of polynomials with integer coefficients that are linear in the recurrence index n, and two polynomials of degree four, and five polynomials of degree twelve that are irreducible over the field of integers. Owing to the symmetry of the scalar Green's function upon interchanging any of the lattice point coordinates, the twelfth degree polynomials with integer coefficients may each be expanded in terms of 102 elementary symmetric polynomials in symbolic lattice point coordinates. The recurrence schemes determined by the telescoper for 102 distinct numeric lattice points can be used to form linear systems of equations. These are solved for the coefficients of the elementary symmetric polynomials required to construct the symbolic polynomial coefficients of the generic 3D recurrence scheme.

Given its compact and straightforward 2D counterpart, this 3D recurrence scheme is far more intricate than expected, and is most efficiently presented through tables of coefficients. However, the scheme and the resulting lattice Green's function sequences also exhibit more features. The complexity reduces for lattice points on diagonal symmetry planes, yielding a fast no-neighbours, fifth-order, twelfth-degree, discrete-time recurrence scheme. An illustrative example reveals unexpected phenomena, e.g. a late-time, high-frequency interplay of resonances that appears anomalous but can be fully explained, and the possible occurrence of removable recurrence scheme singularities. These effects are studied in detail in separate papers.

Export citation and abstract BibTeX RIS

1. Introduction

On the face of it, continuous space and lattice-based (discrete) space seem worlds apart. However, they meet in physics models from either direction. Recent developments in symbolic discrete mathematics weave through these apparently different branches of physics.

On the one hand, in lattice-based physics research, e.g. in condensed matter physics, crystallography, and statistical physics, periodic arrangements of atoms on lattices dictate a discrete approach involving finite-cell-size interactions. The elementary building block in studying such interactions is the lattice Green's function (LGF), $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} P(\nvK;\xi)$ , i.e. the field at a lattice point $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK$ due to a unit excitation at the lattice origin $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK=\nv{0}$ , where the parameter ξ may be mapped to temporal frequency. Alternatively, upon expanding P in terms of a power series in ξ, the coefficient of $\xi^{n}$ is the probability that a random walker starting at $ \newcommand{\nv}[1]{\vec{#1}} \nv{0}$ on the lattice arrives at $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK$ in n steps. It is impossible to list all contributions to the theory of LGFs. As early as 1928 Courant, in a paper on difference equations on a 3D simple cubic lattice, derived an integral representation for the associated LGF [1]. At the lattice origin, this representation reduces to one of the three Watson integrals [2] for the respective simple, face-centred, and body-centred cubic lattices, further developments and generalisations of which have been described in the overview paper by Zucker [3]. The theory of LGFs has progressed in leaps and bounds over the past decade, following the lucid papers by Guttmann on the LGFs in arbitrary spatial dimensions in an enumerative combinatorics setting [4], and its connection with Picard–Fuchs ordinary differential equations of Calabi–Yau manifolds [5]. This has inspired a fundamental mathematical analysis in terms of the minimal linear differential operators that annihilate diagonals of rational functions in the framework of differential Galois groups [6, 7]. It was recognised that the integrands in the LGF integral representations are δ-finite holonomic functions [8], and hence that creative telescoping (or similar techniques) can be used to construct efficient recurrence relations for consecutive coefficients of a power expansion of $ \newcommand{\nv}[1]{\vec{#1}} P(\nv{0};\xi)$ in ξ, but also with respect to the lattice dimension $ \newcommand{\Gn}{\nu} \newcommand{\G}{G} \Gn$ (d in the papers cited here) for the polynomial coefficients of the linear differential operators that annihilate the LGFs [810].

On the other hand, in continuum physics, finite-difference discretisation is a widely accepted compromise in order to solve practical differential equations, and this was what motivated Courant, Friedrichs, and Lewy in their seminal paper [11], to which the LGF integral representation in [1] was an addition omitted from the former due to lack of space. Although the lattice-based and continuous space physics applications differ, the mathematical underpinning is exactly the same. Nevertheless, in the latter case, in the 1960s the interest shifted away from the elliptic case towards explicit schemes for solving hyperbolic initial-value problems through a marching scheme in discrete space-time. In the electromagnetism community this approach [12] has been dubbed the finite-difference time-domain (FDTD) method [13]. We denote the scalar counterpart of the asssociated discrete space-time-domain Green's function as $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} G_{\nvK}^{n}$ , and its Z-transform domain counterpart as $ \newcommand{\Gn}{\nu} \newcommand{\G}{G} \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} G_{\nvK}(Z)=P(-\nvK, \xi)\xi/(2\Gn)$ with $\xi=2/(Z+Z^{-1})$ .

Rather than the LGF at the lattice origin (or at other special symmetry lattice points) in arbitrary dimensions, we are primarily interested in LGF discrete time sequences for fixed spatial dimensions at arbitrary lattice points. Our motivation stems from almost two decades of work on discrete Green's function based boundary conditions [1416], and later, on discrete Green's function diakoptics, in which LGF discrete time sequences are used in a self-consistent combination with FDTD to capture the interactions between possibly disjoint computational FDTD domains and their lattice-based environment [1720]. Crucial to the success of discrete function diakoptics is the possibility to generate long LGF sequences on the fly. In [21] we constructed $ \newcommand{\Gn}{\nu} \newcommand{\G}{G} {\Gn}D$ and $ \newcommand{\Gn}{\nu} \newcommand{\G}{G} (\Gn-1)D$ nested combinatorial sums for the discrete time LGF sequences for a $ \newcommand{\Gn}{\nu} \newcommand{\G}{G} {\Gn}$ D simple cubic lattice. These sums are not practical for number crunching. However, for the 2D case those nested sums were amenable to univariate creative telescoping [2224], resulting in a fast, no-neighbours, third-order, sixth-degree discrete-time recurrence scheme for LGF sequences at arbitrary points on a square lattice.

Here, we employ multivariate creative telescoping [25] to obtain a fast no-neighbours, seventh-order, eighteenth-degree, discrete-time recurrence scheme for arbitrary lattice points on a 3D simple cubic lattice. This result is far more intricate than we had expected, but also much richer in features. The complexity reduces for lattice points on diagonal symmetry planes, resulting in a fast no-neighbours, fifth-order, twelfth-degree, discrete-time recurrence scheme.

In condensed-matter and other lattice-based physics, one is interested in the Brillouin zone dispersion of time-harmonic waves for wavelengths commensurate to the grid size, whereas in FDTD, one would like to sample sufficiently smooth wavefields fine enough in time so that dispersion due to wave-lattice interactions is suppressed. Our Green's function discrete time sequences apply to either field of research. Here we shall restrict ourselves to presenting the resulting no-neighbours recurrence schemes through compact tables of coefficients, and to discussing their ramifications and the features of an LGF discrete time sequence through an example.

2. Finite-sum representations for the LGF in $ \boldsymbol{ \newcommand{\Gn}{\nu} \newcommand{\G}{G} \Gn} $ dimensions

As mentioned in the introduction, our interest in discrete Green's-function diakoptics, [26], sparked the research reported here concerning the scalar 3D discrete space-time lattice Green's function (LGF) on a simple cubic lattice with lattice points $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \newcommand{\Kt}{\K_{2}} \newcommand{\Kd}{\K_{3}} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK=(\Ko, \Kt, \Kd)$ . This LGF is also referred to as the scalar FDTD Green's function, and satisfies a unit-excitation discrete wave equation.

In this section, we consider the more general case of a simple hypercubic lattice in $ \newcommand{\Gn}{\nu} \newcommand{\G}{G} \Gn$ spatial dimensions, for which the discrete wave equation can be written in terms of a second-order explicit scheme

Equation (1)

in which n is a discrete time index, and $ \newcommand{\nm}[1]{\mathsf{#1}} \nm{a}$ denotes the (unit) adjacency matrix. The source term $ \newcommand{\Gd}{\delta} \newcommand{\G}{G} \newcommand{\nv}[1]{\vec{#1}} \Gd_{\nv{0}}\Gd_{0}$ represents the action of a discrete space-time point source. It is 1 at the space-time vertex $ \newcommand{\nv}[1]{\vec{#1}} (\nv{0}, 0)$ , and 0 otherwise. We have adjusted the time-step $ \newcommand{\GD}{\Delta} \newcommand{\G}{G} \GD{t}$ to the unit grid size h  =  1, so that for a constant wavespeed c, the Courant number $ \newcommand{\GD}{\Delta} \newcommand{\G}{G} \alpha=\sqrt{\nu}\, c\GD{t}$ is at its maximum value, $\alpha=1$ , for the explicit scheme to (just) satisfy the Courant–Friedrichs–Lewy (CFL) condition for stability [27].

Owing to the simple hypercubic lattice symmetry, permutations of, and parity inversions in any of the lattice-point spatial coordinates leave the scalar LGF invariant. Hence, we may restrict our analysis to that part of the lattice for which the lattice points $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK$ are non-negative, i.e. $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK$ has non-negative coordinates4. The LGF vanishes prior to the lattice arrival time

Equation (2)

in the Manhattan metric. For our choice of the Courant parameter, $\alpha=1$ , every other term in the LGF sequence associated with an arbitrary lattice point $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK$ vanishes.

Starting from an integral representation for the LGF in the $ \newcommand{\Z}{Z} \Z$ -domain, one may readily derive a closed form expression for the $ \newcommand{\Gn}{\nu} \newcommand{\G}{G} \Gn$ -dimensional space-time LGF in terms of $ \newcommand{\Gn}{\nu} \newcommand{\G}{G} \Gn$ nested finite sums [21], i.e.

Equation (3)

where n is assumed non-negative, and $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} G_{\nvK}^{\K+2n}=0$ . We have also shown that upon applying the Chu–Vandermonde identity [28] for $ \newcommand{\Gn}{\nu} \newcommand{\G}{G} \Gn\geqslant3$ , the ν nested finite sums, can be reduced to a representation in terms of $(\nu-1)$ nested finite sums, given by [21, equations (13) or (14)]. Unfortunately, two typos appear in [21, equation (14)], and in the definition of the multinomial in [21, equation (11)]. The correct expressions are

Equation (4)

in which $ \newcommand{\GS}{\Sigma} \newcommand{\G}{G} \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\KM}{\K} \newcommand{\GSl}{\lambda} \GSl_{i}=\sum_{j=1}^{i}\KM_{j}$ and $ \newcommand{\GS}{\Sigma} \newcommand{\G}{G} \newcommand{\GSm}{\mu} \GSm_{i}=\sum_{j=1}^{i}m_{j}$ with $ \newcommand{\GS}{\Sigma} \newcommand{\G}{G} \newcommand{\GSl}{\lambda} \GSl_{0}=0$ and $ \newcommand{\GS}{\Sigma} \newcommand{\G}{G} \newcommand{\GSm}{\mu} \GSm_{0}=0$ , and

Equation (5)

respectively5.

Note that (4) is much more efficient than (3), in part due to the O(n2) and O(n3) number of terms in the respective double and triple nested sums, but also due to multinomials being more efficient in memory and number of operations than its factorial counterparts. However, neither of these finite nested sum representations are very practical except for quite modest grid sizes and short LGF sequences computations, because in addition to the growing number of terms in the nested sums, the terms themselves at every new time step grow very fast in magnitude, whereas the corresponding LGF actually decays owing to severe cancellations.

Nevertheless, both (3) and (4) are relevant for the work reported below, in that (3) is instrumental in obtaining recurrence schemes for LGFs, while (4) is most efficient for the determination of the initial conditions that start off an LGF recurrence scheme in case more than one initial condition is required. Below, we briefly review the case for $ \newcommand{\Gn}{\nu} \newcommand{\G}{G} \Gn=2$ , before proceeding with the recurrence schemes for non-negative lattice points on diagonal symmetry planes in $\mathbb{Z}^{3}$ , and finally, for arbitrary points in $\mathbb{Z}^{3}_{\geqslant0}$ .

3. Recurrence relation for the 2D LGF

For $\nu=2$ , the original 2D nested finite sum reduced to a single sum, to which in [21] we applied the procedure of creative telescoping [22, 23] to arrive at a recurrence operator (or telescoper) that acts on the LGF $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} G(n)=G_{\nvK}^{1+\K+2n}$ , of the form

Equation (6)

in which $ \newcommand{\oL}{\Lambda} \oL$ denotes the order of the recurrence, while N is the shift operator, i.e. $NG(n)=G(n+1)$ . The recurrence operator annihilates the Green's function through the recurrence relation

Equation (7)

where $ \newcommand{\ol}{u} p_{\ol}(n)$ are polynomial coefficients of degree d in n. For $\nu=2$ , the Mathematica package Zeil by Petkovsěk [24] applied to the single sum

Equation (8)

with generic non-negative values of $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \Ko$ , $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kt}{\K_{2}} \Kt$ (and $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\KM}{\K} \newcommand{\Ko}{\K_{1}} \newcommand{\Kt}{\K_{2}} \KM=\Ko+\Kt$ ) leads to a generic recurrence relation of order $ \newcommand{\oL}{\Lambda} \oL=3$ with polynomial coefficients of degree d  =  6 [21].

Interestingly, for $ \newcommand{\ol}{u} \ol=1, 2$ , the polynomial coefficients $ \newcommand{\ol}{u} p_{\ol}(n)$ of degree 6 display a certain structure, in that they may be factorised in term of polynomials that are linear in n, $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \Ko$ and $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kt}{\K_{2}} \Kt$ , and polynomials of degree 4 in n, $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \Ko$ and $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kt}{\K_{2}} \Kt$ that are irreducible over the field $\mathbb{Q}$ . For $ \newcommand{\ol}{u} \ol=0, 3$ , the polynomial coefficients $ \newcommand{\ol}{u} p_{\ol}(n)$ of degree 6 factorise into six linear polynomials.

For lattice points on the diagonal ($ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \newcommand{\Kt}{\K_{2}} \Kt=\Ko$ ), Zeil produces a recurrence of order $ \newcommand{\oL}{\Lambda} \oL=2$ and degree d  =  2, which is clearly less complex than the generic case. From a range of numerical experiments for lattice points for which $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \newcommand{\Kt}{\K_{2}} \newcommand{\cfc}{s} \vert \Kt-\Ko\vert =\cfc$ with $ \newcommand{\cfc}{s} \cfc$ a numeric rather than a symbolic value, we found that the order remained $ \newcommand{\oL}{\Lambda} \oL=2$ , while the degree grows as $ \newcommand{\cfc}{s} 2\lfloor\cfc/2\rfloor+2+2\min(\cfc, 1)$ , with $\lfloor\ldots\rfloor$ denoting the greatest lower bound integer. Hence, although the order may be reduced by considering lattice points at a fixed numeric distance to the main diagonal, the degree grows rapidly away from that diagonal and soon the computational complexity exceeds that of the generic third-order case. Moreover, the lattice-point dependent degree precludes any straightforward construction of the generic recurrence operator from the specific off-diagonal cases. Assigning both $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \Ko$ and $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kt}{\K_{2}} \Kt$ (and hence $ \newcommand{\cfc}{s} \cfc$ ) a numeric rather than a symbolic value does not reduce the order or degree either.

Now, let us address the elephant in the room, viz., we must investigate whether it is possible that $ \newcommand{\oL}{\Lambda} p_{\oL}(n)=0$ for some $n\geqslant0$ , which would lead to breakdown of the recurrence scheme in (7). For the generic recurrence relation ($ \newcommand{\oL}{\Lambda} \oL=3$ ) for the 2D case with $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\KM}{\K} \newcommand{\Ko}{\K_{1}} \newcommand{\Kt}{\K_{2}} \KM=\Ko+\Kt$ , we have (see, [21])

Equation (9)

which is negative for non-negative n (given that $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \Ko$ and $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kt}{\K_{2}} \Kt$ should actually read $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \vert \Ko\vert $ and $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kt}{\K_{2}} \vert \Kt\vert $ , respectively). Hence, p3 never vanishes, and the recurrence scheme never breaks down.

So, we have established that the generic third-order sixth-degree recurrence scheme in terms of the symbolic 2D spatial coordinates $ \newcommand{\e}{{\rm e}} \ell_{1}$ , $ \newcommand{\e}{{\rm e}} \ell_{2}$ is computationally less complex than that of some of its lower order, higher degree counterparts, which is an example of trading order for degree [25, 29, 30]. Moreover, our generic 2D square lattice scheme is guaranteed to never break down. In [21], we have also shown that the recurrence may be evaluated in double precision arithmetic, provided that we augment the dynamic range on the fly. Further, we demonstrated that grid dispersion can be kept at bay for large grids by doubling the number of samples per wavelength for every factor of ten increase in grid distance.

Now, the question is whether we can generalise the recurrence scheme to three spatial dimensions. Below, we demonstrate that we can. However, we do not retain all of the nice properties germane to the 2D case. Nevertheless, every problem that we shall encounter can be overcome [31], and unexpected lattice artefacts can be explained [32] by drawing an analogy with singularity theory developed in the latter half of the twentieth century for continuous wave physics [33, 34].

4. Recurrence relation for the 3D LGF on diagonal symmetry planes

Although Zeil only works for single sums, multivariate creative telescoping algorithms have also been developed [25, 35, 36]. For three spatial dimensions ($\nu=3$ ), it might seem prudent to first reduce the initial triple nested sums in (3) to the double nested sums in (4). For non-negative lattice points on the diagonal symmetry plane $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \newcommand{\Kt}{\K_{2}} \newcommand{\Kd}{\K_{3}} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK=(\Ko, \Kt=\Ko, \Kd)$ , we have used the Maple package MultiZeilberger6 by Apagodu and Zeilberger [25] on the double nested sum in (4) (actually, to its factorial equivalent [21, equation 13]), which, after predicting a recurrence relation of order 9 produced a behemoth of a result. Fortunately, when we applied MultiZeilberger to the more symmetric triple nested sums in (3), we obtained a recurrence relation of the form (7) of order $ \newcommand{\oL}{\Lambda} \oL=5$ , and degree d  =  12, which amounts to a considerable reduction in complexity.

The pertaining polynomial coefficients $ \newcommand{\ol}{u} p_{\ol}(n)$ , with $ \newcommand{\ol}{u} \ol=0, \ldots, 5$ , may be factorised into linear polynomials in n, $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \Ko$ , and $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kd}{\K_{3}} \Kd$ , and six irreducible polynomials $ \newcommand{\ol}{u} q_{\ol}(n)$ in n, $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \Ko$ , and $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kd}{\K_{3}} \Kd$ . They are given by

Equation (10a)

Equation (10b)

Equation (10c)

Equation (10d)

Equation (10e)

Equation (10f)

Here, $ \newcommand{\e}{{\rm e}} \ell=2\ell_{1}+\ell_{3}$ , and the irreducible polynomials take the following form

Equation (11)

where the coefficients $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\ol}{u} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} q_{\ol, i}=q_{\ol, i}(\nvK)$ are polynomials of the form

Equation (12)

In particular, $ \newcommand{\ol}{u} q_{\ol, i}$ are polynomials in $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \Ko$ and $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kd}{\K_{3}} \Kd$ of degree 2  −  i, and 8  −  i for $ \newcommand{\ol}{u} \ol\in\{0, 5\}$ , and $ \newcommand{\ol}{u} \ol\in\{1, \ldots\, 4\}$ , respectively.

The construction of the second degree polynomials q0(n) and q5(n) is straightforward. For example, the polynomial coefficient q0,0 in (11) can be assembled from (12) and the column below i  =  0 in the left-hand table in table 1, and reads

Equation (13)

Table 1. The polynomial coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \newcommand{\qCoefS}[1]{q_{#1,i;j_{1},j_{3}}} \qCoefS{0}$ , and $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \newcommand{\qCoefS}[1]{q_{#1,i;j_{1},j_{3}}} \qCoefS{5}$ of the fifth-order recurrence scheme for lattice points on the symmetry planes in a simple cubic 3D lattice.

Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \newcommand{\qCoefS}[1]{q_{#1,i;j_{1},j_{3}}} \qCoefS{0}$
$ \newcommand{\jod}{j_{1},j_{3}} \jod$ i  =  0 i  =  1 i  =  2
0, 2 2    
1, 1 2    
2, 0 −4    
0, 1 7 2  
1, 0 14 4  
0, 0 20 14 2
Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \newcommand{\qCoefS}[1]{q_{#1,i;j_{1},j_{3}}} \qCoefS{5}$
$ \newcommand{\jod}{j_{1},j_{3}} \jod$ i  =  0 i  =  1 i  =  2
0, 2 2    
1, 1 2    
2, 0 −4    
0, 1 5 2  
1, 0 10 4  
0, 0 8 10 2

The polynomial coefficients $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\ol}{u} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} q_{\ol, i}(\nvK)$ for $ \newcommand{\ol}{u} \ol\in\{1, \ldots, 4\}$ take up too much room if written out in full. Instead, the integer coefficients $ \newcommand{\ol}{u} q_{\ol, i;j_{1}, j_{3}}$ are given in appendix A in tabular form.

5. Recurrence relation for the 3D LGF at arbitrary lattice points

For generic 3D lattice points, we again invoke the simple cubic lattice symmetry. In particular, we restrict (without loss of generality) our description to non-negative lattice points $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK$ that are ordered according to $ \newcommand{\Gn}{\nu} \newcommand{\G}{G} \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} 0\leqslant\Ko\leqslant\ldots\leqslant\K_{\Gn}$ . Again, we tried to feed the double nested sums in (4) to MultiZeilberger. However, after predicting a recurrence relation of order 11, the package never produced a recurrence scheme. In an attempt to tackle the triple nested sums in (3) for generic symbolic lattice points, a test run of MultiZeilberger predicted a recurrence of order $ \newcommand{\oL}{\Lambda} \oL=7$ , but after consuming all of the available memory $32\, {\rm GB}$ within a couple of days, the process seemed to stall, and had to be terminated after a week.

Fortunately, it turned out that for an arbitrary selection of numeric off-diagonal-plane lattice points. MultiZeilberger did produce a recurrence relation of the form (7) of order $ \newcommand{\oL}{\Lambda} \oL=7$ , and fixed degree d  =  18.

Moreover, in contrast to the second-order, variable degree results returned by the single sum package Zeil in the 2D case, the numeric eighteenth-degree polynomial coefficients $ \newcommand{\ol}{u} p_{\ol}(n)$ for randomly picked numeric lattice points as returned by MultiZeilberger all had the same structure, in that they presented as products of polynomials with integer coefficients that are linear in n and polynomials

Equation (14)

that appear to be irreducible over $n\in\mathbb{Q}$ , and have (numeric) integer coefficients $ \newcommand{\ol}{u} q_{\ol, i}$ .

Since the structure of the recurrences turned out to be the same for all the numeric lattice points we tested, we formulated an ansatz that the factorisation of the ${18}^{\mathrm th}$ degree polynomials for generic symbolic lattice points involves linear polynomials polynomials in n, $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \Ko$ , $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kt}{\K_{2}} \Kt$ , and $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kd}{\K_{3}} \Kd$ , and polynomials $ \newcommand{\ol}{u} q_{\ol}(n)$ with integer coefficients $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\ol}{u} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} q_{\ol, i}=q_{\ol, i}(\nvK)$ that are polynomials in $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \Ko$ , $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kt}{\K_{2}} \Kt$ and $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kd}{\K_{3}} \Kd$ of degree $ \newcommand{\oL}{\Lambda} 4-d_{\oL}$ with $ \newcommand{\oL}{\Lambda} d_{\oL}=4$ for $ \newcommand{\ol}{u} \ol\in\{0, 7\}$ , and $ \newcommand{\oL}{\Lambda} d_{\oL}=12$ for $ \newcommand{\ol}{u} \ol\in\{1, \ldots\, 6\}$ , respectively. Further, we invoked the invariance of the scalar LGF upon interchanging any of the spatial coordinates $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \Ko$ , $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kt}{\K_{2}} \Kt$ and $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Kd}{\K_{3}} \Kd$ to restrict ourselves to a symmetric polynomial expansion

Equation (15)

in which j denotes a multi-index, i.e. $j=\{\,j_{1}, j_{2}, j_{3}\}$ , where $0\leqslant j_{1}\leqslant j_{2}\leqslant j_{3}$ and $ \newcommand{\oL}{\Lambda} j_{1}+j_{2}+j_{3}\leqslant d_{\oL}$ , while the elementary symmetric polynomials are given by

Equation (16a)

Equation (16b)

Equation (16c)

Equation (16d)

where we would like to recall that the spatial coordinates $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \K_{i}$ are assumed non-negative.

The ansatz that the structure of the recurrence operator remains the same regardless of the specific (off-diagonal-plane) lattice point prompted us to undertake a systematic search for the generic form of the coefficients. There are

Equation (17)

elementary symmetric polynomials. In order to extract the symbolic polynomial coefficients, we generated the recurrence relations pertaining to an off-diagonal cube of 125 numeric lattice points, $(s_{1}, 1600+s_{2}, 9900+s_{3})$ , $s_{1}, s_{2}, s_{3}=0, \ldots, 4$ . The resulting overdetermined linear system of equations was indeed consistent and resulted in the unique solution

Equation (18a)

Equation (18b)

Equation (18c)

Equation (18d)

Equation (18e)

Equation (18f)

Equation (18g)

Equation (18h)

in which $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\KM}{\K} \newcommand{\Ko}{\K_{1}} \newcommand{\Kt}{\K_{2}} \newcommand{\Kd}{\K_{3}} \KM=\Ko+\Kt+\Kd$ . For $ \newcommand{\ol}{u} \ol\in\{1, \ldots, 6\}$ , the polynomial coefficients $ \newcommand{\ol}{u} q_{\ol}(n)$ defined through (14)–(16) take up way too much room if written out in full. Instead, the integer coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \newcommand{\ol}{u} \qCoef{\ol}$ of the elementary symmetric polynomials rj are given in appendix B in tabular form. For $ \newcommand{\ol}{u} \ol\in\{0, 7\}$ , the polynomial coefficients do not take up quite as much room. For example, $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} q_{0, 1}=q_{0, 1}(\nvK)$ can be constructed from (16) and the column below i  =  1 in the left-hand table in table 2, and reads

Equation (19)

Table 2. The polynomial coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{0}$ , and $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{7}$ of the seventh order recurrence scheme for generic points on a simple cubic 3D lattice. Here, j is the multi-index of rj in (16).

Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{0}$
j i  =  0 i  =  1 i  =  2 i  =  3 i  =  4
0, 0, 4 −4        
0, 1, 3 −1        
0, 2, 2 6        
1, 1, 2          
0, 0, 3 −9 −2      
0, 1, 2          
1, 1, 1 27 6      
0, 0, 2 19        
0, 1, 1 122 54 6    
0, 0, 1 369 244 54 4  
0, 0, 0 756 738 244 36 2
Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{7}$
j i  =  0 i  =  1 i  =  2 i  =  3 i  =  4
0, 0, 4 −4        
0, 1, 3 −1        
0, 2, 2 6        
1, 1, 2          
0, 0, 3 −7 −2      
0, 1, 2          
1, 1, 1 21 6      
0, 0, 2 19        
0, 1, 1 74 42 6    
0, 0, 1 175 148 42 4  
0, 0, 0 228 350 148 28 2

Below, we comment on the LGF recurrence scheme through an elucidating example.

6. An LGF sequence example—observations and discussion

Let us illustrate our LGF recurrence scheme through a (not quite) numerical example. Not quite numerical in that we have used integer arithmetic in C++ using the GNU Multiple Precision Arithmetic Library GMP [37] to generate an LGF sequence of rational numbers that are exact within the context of the simple cubic lattice FDTD model with unit Courant number ($ \newcommand{\Ga}{\alpha} \newcommand{\G}{G} \Ga=1$ ). Traditionally, the absolute discrete time index in FDTD is denoted as n. Following this convention, we choose to relabel the sequence index in (7) as m, and rewrite $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} G(m)=G_{\nvK}^{n}$ with n  =  nO  +  2m, and nO defined in (2) is the travel time in the Manhattan metric associated with the first exponentially small wave motion.

The various features of the lattice Green's function are more easily distinguished at relatively large lattice distances than at shorter ones. In our example, we have chosen the lattice point $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK=(11\, 267, 40\, 622, 599\, 89)$ , and processed the recurrence scheme to generate the LGF sequence for three million time steps. In figure 1, we have depicted the most interesting part of the LGF sequence with three segments magnified by a factor 100. The LGF sequence starts at $n=n_{O}=111\, 879$ , with $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} G^{n}_{\nvK}\approx1.129\times10^{-8042}$ , followed by rapid growth until the 'arrival' of the dominant wave motion at about $ \newcommand{\Gn}{\nu} \newcommand{\G}{G} \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} n=n_{S}=\sqrt{\Gn}\vert \nvK\vert =\sqrt{3(l_{1}^{2}+l_{2}^{2}+l_{3}^{2})}\approx126\, 993$ . One might expect everything to fizzle out after that, but in addition to a very long tail, a distinct anomalous event seems to occur at about $n=n_{A}\approx179\, 284$ . Finally, we have zoomed in on a segment about $n=n_{B}=184\, 972$ , which hardly seems of any interest, but still merits discussion in the context of recurrence breakdown. Below, we briefly comment on our observations.

Figure 1.

Figure 1. The LGF sequence $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} G(m)=G_{\nvK}^{n}$ with n  =  nO  +  2m at the lattice point $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK=(11\, 267, 40\, 622, 59\, 989)$ with three segments of interest magnified by a factor 100.

Standard image High-resolution image
  • (i)  
    If we had wanted to compute exactly the same LGF sequence for three million time steps using the standard (albeit with integer arithmetic) FDTD scheme given by (1) on a simple cubic grid with imperfect boundary conditions, then we would have had to use a computational domain with more than $28\times10^{18}$ grid points, so as to prevent reflections at the boundaries from contaminating the exact results. Of course, FDTD computations on such huge grids are (currently) inconceivable, and irrelevant if sufficiently accurate absorbing boundary conditions are available, or better, if one applies discrete Green's function diakoptics on disjoint computational domains proposed in [14, 17, 18, 20, 38].Through a mixed multi-precision and floating point implementation Stefanski [19] optimised the triple combinatorial nested sums for 3D electromagnetic LGFs derived by Jeng [39], so as to demonstrate the feasibility of discrete Green's function diakoptics for moderately sized domains and short sequences. The computational overhead we envisaged in following such a brute-force approach for computing LGF sequences was what motivated us to embark on a slow route towards our current considerably faster alternative [17, 18] for the scalar LGF, and for its 3D electromagnetic counterpart [40].
  • (ii)  
    For lattice points near to the origin, where standard FDTD is feasible, our recurrence scheme and FDTD yield identical results in integer arithmetic as long as reflections from the boundaries have not returned to the lattice point yet. Here, we should point out that exact integer arithmetic computations are not essential. However, integer computations are useful for generating absolute benchmarks for the much faster finite precision arithmetic computations to be discussed in [31].
  • (iii)  
    Figure 1 clearly shows that the discrete counterpart of the continuous space-time 3D Green's function for the scalar wave equation $ \newcommand{\Gd}{\delta} \newcommand{\G}{G} \Gd(t-R/c)/(4\pi R)$ is not a localised distribution. A meaningful comparison and a quantitative assessment of the numerical grid dispersion at large distances, similar to that performed in [21] for 2D LGFs can be made in a weak sense through convolution with sufficiently smooth pulses.
  • (iv)  
    In contrast to the 2D case, a 3D LGF sequence appears to have an additional feature. We are alluding to the apparent distinct anomalous event at about $n=n_{A}\approx179\, 284$ . We have argued in [41, 42] that this is a high-frequency feature of 3D FDTD, rather than some artefact induced by the recurrence scheme, and that it can be fully suppressed provided the Green's function is convolved with a sufficiently smooth pulse. In [32], we shall take inspiration from singularity theory for continuous-wave physics [33, 34], and the discrete Gabor transform [43] to explore asymptotically, and explain comprehensively, the various features of the lattice Green's function for large lattice distances. In particular, we shall identify the late-time apparently anomalous event as a high-frequency interplay of several resonances.
  • (v)  
    The chosen lattice point $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK=\nvK_{B}$ is special in the sense that the generic seventh-order recurrence breaks down at $m=m_{B}=36\, 540$ , because $q_{7}(m_{B})=0$ , and hence $p_{7}(m_{B})=0$ . At m  =  mB the recurrence relation is said to be singular [4446]. The sequence index m  =  mB corresponds to the time index $n=n_{B}=184\, 972$ . In [31], we shall show that the chosen singular lattice point $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK_{B}$ is atypical in that it does not belong to a larger class of singular lattice points for which $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\Ko}{\K_{1}} \newcommand{\Kt}{\K_{2}} \newcommand{\Kd}{\K_{3}} \Kd=\Ko+\Kt$ .We have circumvented the recurrence breakdown by running our no-neighbours recurrence scheme for the six neighbours of $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK_{B}$ until n  =  nB, and by using the FDTD scheme (1) to determine the LGF at $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK=\nvK_{B}$ . Beyond n  =  nB, we proceeded using the recurrence scheme for $ \newcommand{\e}{{\rm e}} \newcommand{\K}{\ell} \newcommand{\nvk}{\nv{\K}} \newcommand{\nvK}{\nvk} \newcommand{\nv}[1]{\vec{#1}} \nvK_{B}$ . The FDTD scheme is a nonsingular second-order recurrence scheme in its own right, albeit a non-local one (involving neighbouring lattice points).As can be seen from the zoomed-in segment of the LGF sequence about n  =  nB, the recurrence breakdown seems to have no impact on the behaviour of the LGF. This observation is supported by the fact that for lattice points on the symmetry planes, we may choose to use either the generic seventh-order scheme, or the fifth-order one for symmetry planes, which can be shown to never break down simultaneously [31]. This implies that at the singular lattice points for the fifth-order symmetry-plane scheme, the generic seventh-order recurrence operator is a nonsingular left multiple of the singular fifth-order scheme, and hence that these integer singularities must be apparent, or removable [47]. Our circumvention of recurrence breakdown through the FDTD scheme suggests that all integer singularities of the generic seventh-order recurrence scheme are removable, provided that the singular lattice points are isolated.The use of the FDTD scheme up to n  =  nB to circumvent recurrence breakdown does add to the computational expense. However, in [31], we shall show how sparsely the singular lattice points for the generic recurrence scheme are distributed in $\mathbb{Z}^{3}$ , and we shall provide evidence for what we call the strong nearest-neighbour conjecture, which, if proven, would imply that the singular lattice points are always isolated and hence removable. Further, in [31] we shall discuss the details concerning the implementation of the recurrence scheme, e.g. the required initial conditions, and the number of digits needed in fixed-precision computations for retaining double precision accuracy.

7. Conclusions and outlook

In this paper we have discussed no-neighbours recurrence schemes for on-the-fly generation of discrete space-time lattice Green's function (LGF) sequences for 3D scalar wavefields on a simple cubic lattice at the maximum time step allowed for stability ($ \newcommand{\Ga}{\alpha} \newcommand{\G}{G} \Ga=1$ ). Thus, applications such as discrete Green's function diakoptics for distant disjoint computational domains have become feasible.

In addition to opening up a field of applications, the LGF sequences are rich in features, in particular a late-time high-frequency effect that will be fully explained in [32]. At certain lattice points the recurrence scheme breaks down at some discrete instant in time n  =  nB. However, we have described how to circumvent this through application of the FDTD stencil to the neighbours of the singular lattice point up to the instant nB. In [31], we shall discuss recurrence breakdown and finite-precision implementations aspects in detail. Finally, in [40], we shall elaborate on the evaluation of vectorial lattice Green's function sequences for electromagnetic wavefields.

Other extensions and applications, especially, the consideration of smaller time steps ($ \newcommand{\Ga}{\alpha} \newcommand{\G}{G} \Ga<1$ ), and a comprehensive implementation of discrete Green's function diakoptics remain to be investigated.

Acknowledgments

The research presented above has been made possible through the generous support of Maplesoft. In particular, we would like to thank Gosé Fischer of CANdiensten for making a 30-day evaluation of Maple 18 available in July 2014. The research of the second author (JMA) was partly supported by Engineering and Physical Sciences Research Council Science and Innovation Research Grant: EP/D501288/1 'Electronics Design Centre for Heterogeneous Systems'.

Appendix A. Coefficients for the special symmetry-plane recurrence scheme

In tables A1A4, we have tabulated the coefficients for the construction, through (11) and (12), of the eighth degree polynomials $ \newcommand{\ol}{u} q_{\ol}(n)$ with $ \newcommand{\ol}{u} \ol\in\{1, \ldots, 4\}$ . See the supplementary information (stacks.iop.org/JPhysA/51/085201/mmedia) for further details.

Table A1. The polynomial coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \newcommand{\qCoefS}[1]{q_{#1,i;j_{1},j_{3}}} \qCoefS{1}$ of the fifth-order recurrence scheme for lattice points on the symmetry planes in a simple cubic 3D lattice.

Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \newcommand{\qCoefS}[1]{q_{#1,i;j_{1},j_{3}}} \qCoefS{1}$
$ \newcommand{\jod}{j_{1},j_{3}} \jod$ i  =  0 i  =  1 i  =  2 i  =  3 i  =  4 i  =  5 i  =  6 i  =  7 i  =  8
0, 8                  
1, 7 −8                
2, 6 −32                
3, 5                  
4, 4 112                
5, 3 40                
6, 2 −144                
7, 1 −32                
8, 0 64                
0, 7 −12 −8              
1, 6 −76 −32              
2, 5 −32 44              
3, 4 580 384              
4, 3 1020 492              
5, 2 −184 −224              
6, 1 −1072 −592              
7, 0 −224 −64              
0, 6 −74 −76 −16            
1, 5 32 108 66            
2, 4 2392 2726 768            
3, 3 6802 7038 1742            
4, 2 5020 4440 888            
5, 1 −1984 −2696 −912            
6, 0 −2144 −2144 −592            
0, 5 14 32 54 22          
1, 4 3649 5898 3219 576          
2, 3 18 303 28 418 14 459 2354          
3, 2 29 962 43 828 20 748 3128          
4, 1 14 888 18 672 7200 792          
5, 0 −1584 −3968 −2696 −608          
0, 4 1735 3649 2949 1073 144        
1, 3 19 936 41 800 32 424 10 940 1330        
2, 2 60 862 124 742 93 270 29 936 3442        
3, 1 64 710 127 336 90 672 27 420 2950        
4, 0 16 980 29 776 18 672 4800 396        
0, 3 7509 19 936 20 900 10 808 2735 266      
1, 2 51 767 137 460 142 170 71 356 17 265 1596      
2, 1 99 007 259 886 264 408 129 704 30 445 2718      
3, 0 51 018 129 420 127 336 60 448 13 710 1180      
0, 2 15 827 51 767 68 730 47 390 17 839 3453 266    
1, 1 67 158 220 494 292 764 200 740 74 610 14 154 1064    
2, 0 61 028 198 014 259 886 176 272 64 852 12 178 906    
0, 1 17 029 67 158 110 247 97 588 50 185 14 922 2359 152  
1, 0 34 058 134 316 220 494 195 176 100 370 29 844 4718 304  
0, 0 7340 34 058 67 158 73 498 48 794 20 074 4974 674 38

Table A2. The polynomial coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \newcommand{\qCoefS}[1]{q_{#1,i;j_{1},j_{3}}} \qCoefS{2}$ of the fifth-order recurrence scheme for lattice points on the symmetry planes in a simple cubic 3D lattice.

Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \newcommand{\qCoefS}[1]{q_{#1,i;j_{1},j_{3}}} \qCoefS{2}$
$ \newcommand{\jod}{j_{1},j_{3}} \jod$ i  =  0 i  =  1 i  =  2 i  =  3 i  =  4 i  =  5 i  =  6 i  =  7 i  =  8
0, 8 −32                
1, 7 −116                
2, 6 16                
3, 5 352                
4, 4 88                
5, 3 −284                
6, 2 −104                
7, 1 −80                
8, 0 160                
0, 7 −370 −116              
1, 6 −1322 −400              
2, 5 402 228              
3, 4 5606 2008              
4, 3 3712 1424              
5, 2 −4668 −1416              
6, 1 −4048 −1568              
7, 0 688 −160              
0, 6 −1813 −1322 −200            
1, 5 −2751 −1728 −186            
2, 4 16 677 12 792 2364            
3, 3 41 369 30 730 5530            
4, 2 12 462 11 052 2436            
5, 1 $-27\, 324$ $-17\, 184$ −2544            
6, 0 $-12\, 376$ −8096 −1568            
0, 5 −1924 −2751 −864 −62          
1, 4 27 968 29 076 10 779 1360          
2, 3 143 771 158 913 57 585 6790          
3, 2 176 281 200 922 74 880 9080          
4, 1 3496 15 492 10 884 2024          
5, 0 $-57\, 020$ $-54\, 648$ $-17\, 184$ −1696          
0, 4 21 170 27 968 14 538 3593 340        
1, 3 219 673 322 834 176 316 42 220 3710        
2, 2 552 144 831 297 459 945 110 460 9690        
3, 1 406 594 623 770 354 552 88 300 8090        
4, 0 −2644 6992 15 492 7256 1012        
0, 3 117 752 219 673 161 417 58 772 10 555 742      
1, 2 680 934 1310 742 982 524 359 484 64 125 4452      
2, 1 1099 518 2149 386 1631 265 602 064 108 105 7554      
3, 0 417 316 813 188 623 770 236 368 44 150 3236      
0, 2 285 343 680 934 655 371 327 508 89 871 12 825 742    
1, 1 1097 902 2672 580 2614 188 1319 380 362 910 51 618 2968    
2, 0 905 392 2199 036 2149 386 1087 510 301 032 43 242 2518    
0, 1 371 082 1097 902 1336 290 871 396 329 845 72 582 8603 424  
1, 0 742 164 2195 804 2672 580 1742 792 659 690 145 164 17 206 848  
0, 0 209 520 742 164 1097 902 890 860 435 698 131 938 24 194 2458 106

Table A3. The polynomial coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \newcommand{\qCoefS}[1]{q_{#1,i;j_{1},j_{3}}} \qCoefS{3}$ of the fifth-order recurrence scheme for lattice points on the symmetry planes in a simple cubic 3D lattice.

Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \newcommand{\qCoefS}[1]{q_{#1,i;j_{1},j_{3}}} \qCoefS{3}$
$ \newcommand{\jod}{j_{1},j_{3}} \jod$ i  =  0 i  =  1 i  =  2 i  =  3 i  =  4 i  =  5 i  =  6 i  =  7 i  =  8
0, 8 −32                
1, 7 −116                
2, 6 16                
3, 5 352                
4, 4 88                
5, 3 −284                
6, 2 −104                
7, 1 −80                
8, 0 160                
0, 7 −326 −116              
1, 6 −1078 −400              
2, 5 966 228              
3, 4 6442 2008              
4, 3 4832 1424              
5, 2 −3828 −1416              
6, 1 −5360 −1568              
7, 0 −1648 −160              
0, 6 −1081 −1078 −200            
1, 5 921 −504 −186            
2, 4 25 029 15 576 2364            
3, 3 56 069 35 630 5530            
4, 2 33 846 18 180 2436            
5, 1 $-15\, 804$ $-13\, 344$ −2544            
6, 0 $-20\, 248$ $-10\, 720$ −1568            
0, 5 3130 921 −252 −62          
1, 4 52 204 46 608 13 701 1360          
2, 3 203 287 201 213 64 635 6790          
3, 2 294 851 283 002 88 560 9080          
4, 1 134 816 103 476 25 548 2024          
5, 0 $-18\, 580$ $-31\, 608$ $-13\, 344$ −1696          
0, 4 41 282 52 204 23 304 4567 340        
1, 3 318 685 438 638 217 716 46 820 3710        
2, 2 821 262 1130 523 564 705 122 100 9690        
3, 1 839 686 1084 214 512 592 105 860 8090        
4, 0 257 372 269 632 103 476 17 032 1012        
0, 3 174 538 318 685 219 319 72 572 11 705 742      
1, 2 973 950 1789 686 1253 508 423 204 69 435 4452      
2, 1 1752 906 3144 318 2171 847 726 984 118 515 7554      
3, 0 1006 316 1679 372 1084 214 341 728 52 930 3236      
0, 2 415 735 973 950 894 843 417 836 105 801 13 887 742    
1, 1 1611 910 3749 244 3456 948 1629 740 417 090 55 230 2968    
2, 0 1554 400 3505 812 3144 318 1447 898 363 492 47 406 2518    
0, 1 561 234 1611 910 1874 622 1152 316 407 435 83 418 9205 424  
1, 0 1122 468 3223 820 3749 244 2304 632 814 870 166 836 18 410 848  
0, 0 321 840 1122 468 1611 910 1249 748 576 158 162 974 27 806 2630 106

Table A4. The polynomial coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \newcommand{\qCoefS}[1]{q_{#1,i;j_{1},j_{3}}} \qCoefS{4}$ of the fifth-order recurrence scheme for lattice points on the symmetry planes in a simple cubic 3D lattice.

Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \newcommand{\qCoefS}[1]{q_{#1,i;j_{1},j_{3}}} \qCoefS{4}$
$ \newcommand{\jod}{j_{1},j_{3}} \jod$ i  =  0 i  =  1 i  =  2 i  =  3 i  =  4 i  =  5 i  =  6 i  =  7 i  =  8
0, 8                  
1, 7 −8                
2, 6 −32                
3, 5                  
4, 4 112                
5, 3 40                
6, 2 −144                
7, 1 −32                
8, 0 64                
0, 7 −36 −8              
1, 6 −116 −32              
2, 5 296 44              
3, 4 1724 384              
4, 3 1932 492              
5, 2 −1160 −224              
6, 1 −2480 −592              
7, 0 −160 −64              
0, 6 −194 −116 −16            
1, 5 1760 684 66            
2, 4 13 684 6490 768            
3, 3 27 286 13 866 1742            
4, 2 10 348 6216 888            
5, 1 $-18\, 640$ −8248 −912            
6, 0 $-10\, 592$ −4960 −592            
0, 5 2986 1760 342 22          
1, 4 40 271 29 478 7149 576          
2, 3 140 145 109 142 27 913 2354          
3, 2 161 726 132 676 35 556 3128          
4, 1 9016 17 808 7056 792          
5, 0 $-56\, 496$ $-37\, 280$ −8248 −608          
0, 4 40 861 40 271 14 739 2383 144        
1, 3 297 040 314 888 122 784 20 980 1330        
2, 2 664 786 735 298 297 894 52 672 3442        
3, 1 465 366 548 168 234 312 43 380 2950        
4, 0 $-13\, 068$ 18 032 17 808 4704 396        
0, 3 218 091 297 040 157 444 40 928 5245 266      
1, 2 1102 825 1562 988 860 358 231 556 30 615 1596      
2, 1 1636 133 2403 182 1365 024 377 504 51 095 2718      
3, 0 605 694 930 732 548 168 156 208 21 690 1180      
0, 2 622 577 1102 825 781 494 286 786 57 889 6123 266    
1, 1 2198 898 3999 858 2906 724 1090 940 224 550 24 150 1064    
2, 0 1776 488 3272 266 2403 182 910 016 188 752 20 438 906    
0, 1 978 515 2198 898 1999 929 968 908 272 735 44 910 4025 152  
1, 0 1957 030 4397 796 3999 858 1937 816 545 470 89 820 8050 304  
0, 0 702 200 1957 030 2198 898 1333 286 484 454 109 094 14 970 1150 38

Appendix B. Coefficients for the generic recurrence scheme

In tables B1B6, we have tabulated the coefficients for the construction, through (14)–(16), of the twelfth degree polynomials $ \newcommand{\ol}{u} q_{\ol}(n)$ with $ \newcommand{\ol}{u} \ol\in\{1, \ldots, 6\}$ . See the supplementary information for further details.

Table B1. The polynomial coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{1}$ of the seventh-order recurrence scheme for generic points on a simple cubic 3D lattice. Here, j is the multi-index of rj in (16).

Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{1}$
j i  =  0 i  =  1 i  =  2 i  =  3 i  =  4 i  =  5
0, 2, 10 4          
1, 1, 10 8          
0, 3, 9 17          
1, 2, 9 19          
0, 4, 8 22          
1, 3, 8 4          
2, 2, 8 −36          
0, 5, 7 −1          
1, 4, 7 −6          
2, 3, 7 −141          
0, 6, 6 −20          
1, 5, 6 23          
2, 4, 6 −36          
3, 3, 6 −158          
2, 5, 5 108          
3, 4, 5 106          
4, 4, 4 228          
0, 1, 10 20 16        
0, 2, 9 58 38        
1, 1, 9 20 12        
0, 3, 8 49 8        
1, 2, 8 −333 −204        
0, 4, 7 33 −12        
1, 3, 7 −711 −403        
2, 2, 7 −1872 −1038        
0, 5, 6 80 46        
1, 4, 6 −27 16        
2, 3, 6 −1797 −918        
1, 5, 5 702 438        
2, 4, 5 1116 666        
3, 3, 5 700 356        
3, 4, 4 3474 1726        
0, 0, 10 24 40 16      
0, 1, 9 −1 40 12      
0, 2, 8 −681 −666 −204      
1, 1, 8 −2262 −2292 −636      
0, 3, 7 −1492 −1422 −403      
1, 2, 7 −8833 −8857 −2268      
0, 4, 6 −455 −54 16      
1, 3, 6 −8429 −7760 −1806      
2, 2, 6 $-18\, 116$ $-18\, 044$ −4380      
0, 5, 5 762 1404 438      
1, 4, 5 3053 4601 1362      
2, 3, 5 106 −275 6      
2, 4, 4 20 140 19 156 4644      
3, 3, 4 32 916 28 522 6488      
0, 0, 9 −66 −2 40 8    
0, 1, 8 −3062 −4524 −2292 −424    
0, 2, 7 $-11\, 815$ $-17\, 666$ −8857 −1512    
1, 1, 7 $-28\, 797$ $-44\, 046$ $-22\, 305$ −3730    
0, 3, 6 $-12\, 613$ $-16\, 858$ −7760 −1204    
1, 2, 6 $-56\, 229$ $-86\, 505$ $-43\, 350$ −6924    
0, 4, 5 396 6106 4601 908    
1, 3, 5 −4799 −9150 −5025 −700    
2, 2, 5 $-14\, 874$ $-40\, 998$ $-26\, 310$ −4476    
1, 4, 4 51 390 75 666 36 624 5836    
2, 3, 4 159 965 192 307 77 387 10 812    
3, 3, 3 306 087 370 992 149 805 20 790    
0, 0, 8 −3084 −6124 −4524 −1528 −212  
0, 1, 7 $-27\, 738$ $-57\, 594$ $-44\, 046$ $-14\, 870$ −1865  
0, 2, 6 $-52\, 916$ $-112\, 458$ $-86\, 505$ $-28\, 900$ −3462  
1, 1, 6 $-117\, 043$ $-261\, 696$ $-208\, 941$ $-71\, 180$ −8580  
0, 3, 5 −1373 −9598 −9150 −3350 −350  
1, 2, 5 7556 $-90\, 485$ $-123\, 630$ $-52\, 070$ −6720  
0, 4, 4 53 778 102 780 75 666 24 416 2918  
1, 3, 4 428 438 660 039 379 425 97 730 9730  
2, 2, 4 766 349 1130 068 603 357 140 308 12 546  
2, 3, 3 1418 750 2228 484 1287 402 328 000 31 710  
0, 0, 7 $-20\, 767$ $-55\, 476$ $-57\, 594$ $-29\, 364$ −7435 −746
0, 1, 6 $-77\, 545$ $-234\, 086$ $-261\, 696$ $-139\, 294$ $-35\, 590$ −3432
0, 2, 5 62 523 15 112 $-90\, 485$ $-82\, 420$ $-26\, 035$ −2688
1, 1, 5 170 955 53 574 $-242\, 661$ $-228\, 960$ $-73\, 080$ −7644
0, 3, 4 441 436 856 876 660 039 252 950 48 865 3892
1, 2, 4 1817 208 3404 982 2430 414 822 100 133 075 8568
1, 3, 3 3148 927 6264 086 4848 930 1832 820 342 195 25 578
2, 2, 3 5531 535 11 067 562 8578 159 3228 658 595 690 43 680
0, 0, 6 $-37\, 279$ $-155\, 090$ $-234\, 086$ $-174\, 464$ $-69\, 647$ $-14\, 236$
0, 1, 5 232 450 341 910 53 574 $-161\, 774$ $-114\, 480$ $-29\, 232$
0, 2, 4 1548 076 3634 416 3404 982 1620 276 411 050 53 230
1, 1, 4 3522 117 8254 632 7644 318 3540 750 853 725 101 052
0, 3, 3 2563 498 6297 854 6264 086 3232 620 916 410 136 878
1, 2, 3 9948 301 24 710 184 24 690 186 12 699 350 3555 585 518 028
2, 2, 2 17 064 909 42 936 588 43 498 584 22 714 476 6464 199 956 112
0, 0, 5 208 763 464 900 341 910 35 716 $-80\, 887$ $-45\, 792$
0, 1, 4 2461 558 7044 234 8254 632 5096 212 1770 375 341 490
0, 2, 3 6636 482 19 896 602 24 710 184 16 460 124 6349 675 1422 234
1, 1, 3 14 699 257 44 308 818 55 236 990 36 852 200 14 200 095 3167 010
1, 2, 2 24 771 021 75 617 568 95 620 554 64 862 044 25 493 555 5819 844
0, 0, 4 1445 256 4923 116 7044 234 5503 088 2548 106 708 150
0, 1, 3 8250 003 29 398 514 44 308 818 36 824 660 18 426 100 5680 038
0, 2, 2 13 744 818 49 542 042 75 617 568 63 747 036 32 431 022 10 197 422
1, 1, 2 29 987 586 108 807 234 167 162 898 141 820 740 72 602 880 22 972 656
0, 0, 3 3985 461 16 500 006 29 398 514 29 539 212 18 412 330 7370 440
0, 1, 2 14 241 024 59 975 172 108 807 234 111 441 932 70 910 370 29 041 152
1, 1, 1 30 766 689 130 425 498 238 226 160 245 708 160 157 494 120 65 012 136
0, 0, 2 5907 591 28 482 048 59 975 172 72 538 156 55 720 966 28 364 148
0, 1, 1 12 682 314 61 533 378 130 425 498 158 817 440 122 854 080 62 997 648
0, 0, 1 4619 313 25 364 628 61 533 378 86 950 332 79 408 720 49 141 632
0, 0, 0 1500 660 9238 626 25 364 628 41 022 252 43 475 166 31 763 488
Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{1}$
j i  =  6 i  =  7 i  =  8 i  =  9 i  =  10 i  =  11 i  =  12
0, 0, 6 −1144            
0, 1, 5 −2548            
0, 2, 4 2856            
1, 1, 4 4676            
0, 3, 3 8526            
1, 2, 3 30 996            
2, 2, 2 57 792            
0, 0, 5 −9744 −728          
0, 1, 4 33 684 1336          
0, 2, 3 172 676 8856          
1, 1, 3 381 150 19 260          
1, 2, 2 717 836 37 056          
0, 0, 4 113 830 9624 334        
0, 1, 3 1055 670 108 900 4815        
0, 2, 2 1939 948 205 096 9264        
1, 1, 2 4397 610 467 280 21 150        
0, 0, 3 1893 346 301 620 27 225 1070      
0, 1, 2 7657 552 1256 460 116 820 4700      
1, 1, 1 17 292 618 2864 520 268 785 10 890      
0, 0, 2 9680 384 2187 872 314 115 25 960 940    
0, 1, 1 21 670 712 4940 748 716 130 59 730 2178    
0, 0, 1 20 999 216 6191 632 1235 187 159 140 11 946 396  
0, 0, 0 16 380 544 5999 776 1547 908 274 486 31 828 2172 66

Table B2. The polynomial coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{2}$ of the seventh-order recurrence scheme for generic points on a simple cubic 3D lattice. Here, j is the multi-index of rj in (16).

Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{2}$
j i  =  0 i  =  1 i  =  2 i  =  3 i  =  4 i  =  5
0, 1, 11 128          
0, 2, 10 364          
1, 1, 10 472          
0, 3, 9 67          
1, 2, 9 297          
0, 4, 8 −478          
1, 3, 8 −692          
2, 2, 8 −1452          
0, 5, 7 109          
1, 4, 7 −498          
2, 3, 7 −2167          
0, 6, 6 836          
1, 5, 6 1205          
2, 4, 6 52          
3, 3, 6 −1402          
2, 5, 5 1668          
3, 4, 5 1182          
4, 4, 4 2220          
0, 0,11 448 256        
0, 1, 10 2436 944        
0, 2, 9 2866 594        
1, 1, 9 4356 1380        
0, 3, 8 −2187 −1384        
1, 2, 8 $-10\, 761$ −4460        
0, 4, 7 −2619 −996        
1, 3, 7 $-25\, 845$ −9419        
2, 2, 7 $-51\, 252$ $-17\, 102$        
0, 5, 6 6144 2410        
1, 4, 6 2265 944        
2, 3, 6 $-41\, 001$ $-12\, 738$        
1, 5, 5 30 858 10 934        
2, 4, 5 32 136 10 730        
3, 3, 5 18 012 7292        
3, 4, 4 70 710 23 990        
0, 0, 10 5256 4872 944      
0, 1, 9 8845 8712 1380      
0, 2, 8 $-31\, 043$ $-21\, 522$ −4460      
1, 1, 8 $-79\, 578$ $-51\, 444$ −9228      
0, 3, 7 $-71\, 354$ $-51\, 690$ −9419      
1, 2, 7 $-326\, 409$ $-224\, 523$ $-38\, 304$      
0, 4, 6 4091 4530 944      
1, 3, 6 $-264\, 675$ $-179\, 100$ $-29\, 802$      
2, 2, 6 $-589\, 124$ $-401\, 412$ $-65\, 012$      
0, 5, 5 81 626 61 716 10 934      
1, 4, 5 201 369 146 799 25 098      
2, 3, 5 21 272 13 251 3662      
2, 4, 4 630 060 423 324 69 660      
3, 3, 4 867 568 570 030 94 504      
0, 0, 9 7238 17 690 8712 920    
0, 1, 8 $-175\, 166$ $-159\, 156$ $-51\, 444$ −6152    
0, 2, 7 $-647\, 081$ $-652\, 818$ $-224\, 523$ $-25\, 536$    
1, 1, 7 $-1499\, 799$ $-1530\, 330$ $-518\, 499$ $-57\, 770$    
0, 3, 6 $-533\, 757$ $-529\, 350$ $-179\, 100$ $-19\, 868$    
1, 2, 6 $-2705\, 027$ $-2822\, 469$ $-958\, 230$ $-104\, 548$    
0, 4, 5 342 830 402 738 146 799 16 732    
1, 3, 5 $-149\, 413$ $-184\, 542$ $-68\, 319$ −7260    
2, 2, 5 $-1267\, 686$ $-1523\, 970$ $-548\, 802$ $-59\, 292$    
1, 4, 4 2461 962 2533 506 845 712 91 340    
2, 3, 4 5093 177 4833 423 1528 965 161 756    
3, 3, 3 9375 357 8936 940 2832 975 298 590    
0, 0, 8 $-281\, 388$ $-350\, 332$ $-159\, 156$ $-34\, 296$ −3076  
0, 1, 7 $-2159\, 672$ $-2999\, 598$ $-1530\, 330$ $-345\, 666$ $-28\, 885$  
0, 2, 6 $-3778\, 498$ $-5410\, 054$ $-2822\, 469$ $-638\, 820$ $-52\, 274$  
1, 1, 6 $-8900\, 551$ $-13\, 027\, 620$ $-6879\, 357$ $-1558\, 260$ $-127\, 020$  
0, 3, 5 $-135\, 055$ $-298\, 826$ $-184\, 542$ $-45\, 546$ −3630  
1, 2, 5 $-4393\, 310$ $-7942\, 023$ $-4699\, 542$ $-1124\, 106$ $-92\, 600$  
0, 4, 4 3530 318 4923 924 2533 506 563 808 45 670  
1, 3, 4 16 104 342 19 972 701 9294 861 1917 870 148 130  
2, 2, 4 24 563 089 28 940 436 12 769 305 2525 340 190 618  
2, 3, 3 50 272 162 62 746 144 29 155 470 5991 840 459 710  
0, 0, 7 $-2394\, 781$ $-4319\, 344$ $-2999\, 598$ $-1020\, 220$ $-172\, 833$ $-11\, 554$
0, 1, 6 $-9247\, 065$ $-17\, 801\, 102$ $-13\, 027\, 620$ $-4586\, 238$ $-779\, 130$ $-50\, 808$
0, 2, 5 $-2838\, 505$ $-8786\, 620$ $-7942\, 023$ $-3133\, 028$ $-562\, 053$ $-37\, 040$
1, 1, 5 $-8787\, 919$ $-25\, 549\, 530$ $-22\, 929\, 591$ $-9030\, 000$ $-1617\, 840$ $-106\, 764$
0, 3, 4 20 948 072 32 208 684 19 972 701 6196 574 958 935 59 252
1, 2, 4 69 096 062 99 234 474 56 262 246 15 871 764 2259 045 131 688
1, 3, 3 137 265 561 213 764 246 131 986 290 40 437 060 6154 785 372 498
2, 2, 3 234 255 941 365 678 846 225 361 089 68 713 090 10 396 950 625 360
0, 0, 6 $-7492\, 671$ $-18\, 494\, 130$ $-17\, 801\, 102$ $-8685\, 080$ $-2293\, 119$ $-311\, 652$
0, 1, 5 $-1486\, 702$ $-17\, 575\, 838$ $-25\, 549\, 530$ $-15\, 286\, 394$ $-4515\, 000$ $-647\, 136$
0, 2, 4 78 611 240 138 192 124 99 234 474 37 508 164 7935 882 903 618
1, 1, 4 167 093 949 288 887 940 201 077 370 72 579 090 14 512 785 1560 132
0, 3, 3 145 249 098 274 531 122 213 764 246 87 990 860 20 218 530 2461 914
1, 2, 3 536 224 445 1021 468 612 795 403 566 325 229 890 73 914 165 8881 236
2, 2, 2 925 883 649 1792 103 436 1416 380 508 586 686 276 134 672 895 16 279 056
0, 0, 5 5045 749 $-2973\, 404$ $-17\, 575\, 838$ $-17\, 033\, 020$ $-7643\, 197$ $-1806\, 000$
0, 1, 4 159 446 888 334 187 898 288 887 940 134 051 580 36 289 545 5805 114
0, 2, 3 471 598 432 1072 448 890 1021 468 612 530 269 044 162 614 945 29 565 666
1, 1, 3 1025 989 187 2345 852 082 2240 812 470 1163 278 640 355 858 545 64 434 762
1, 2, 2 1751 571 111 4078 346 544 3970 774 662 2101 403 324 654 668 325 120 379 620
0, 0, 4 127 800 660 318 893 776 334 187 898 192 591 960 67 025 790 14 515 818
0, 1, 3 763 219 155 2051 978 374 2345 852 082 1493 874 980 581 639 320 142 343 418
0, 2, 2 1281 194 946 3503 142 222 4078 346 544 2647 183 108 1050 701 662 261 867 330
1, 1, 2 2783 564 118 7679 836 074 9017 692 962 5898 612 100 2356 701 420 590 464 056
0, 0, 3 489 341 403 1526 438 310 2051 978 374 1563 901 388 746 937 490 232 655 728
0, 1, 2 1741 663 944 5567 128 236 7679 836 074 6011 795 308 2949 306 050 942 680 568
1, 1, 1 3756 967 623 12 122 069 778 16 883 573 100 13 343 681 760 6607 105 680 2130 074 520
0, 0, 2 950 909 571 3483 327 888 5567 128 236 5119 890 716 3005 897 654 1179 722 420
0, 1, 1 2032 807 482 7513 935 246 12 122 069 778 11 255 715 400 6671 840 880 2642 842 272
0, 0, 1 968 405 463 4065 614 964 7513 935 246 8081 379 852 5627 857 700 2668 736 352
0, 0, 0 408 831 948 1936 810 926 4065 614 964 5009 290 164 4040 689 926 2251 143 080
Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{2}$
j i  =  6 i  =  7 i  =  8 i  =  9 i  =  10 i  =  11 i  =  12
0, 0, 6 $-16\, 936$            
0, 1, 5 $-35\, 588$            
0, 2, 4 43 896            
1, 1, 4 72 436            
0, 3, 3 124 166            
1, 2, 3 441 476            
2, 2, 2 810 192            
0, 0, 5 $-215\, 712$ $-10\, 168$          
0, 1, 4 520 044 20 696          
0, 2, 3 2960 412 126 136          
1, 1, 3 6419 322 271 980          
1, 2, 2 12 120 276 515 776          
0, 0, 4 1935 038 148 584 5174        
0, 1, 3 21 478 254 1834 092 67 995        
0, 2, 2 40 126 540 3462 936 128 944        
1, 1, 2 90 813 954 7851 312 292 230        
0, 0, 3 47 447 806 6136 644 458 523 15 110      
0, 1, 2 196 821 352 25 946 844 1962 828 64 940      
1, 1, 1 448 120 638 59 430 600 4512 915 149 490      
0, 0, 2 314 226 856 56 234 672 6486 711 436 184 12 988    
0, 1, 1 710 024 840 128 034 468 14 857 650 1002 870 29 898    
0, 0, 1 880 947 424 202 864 240 32 008 617 3301 700 200 574 5436  
0, 0, 0 889 578 784 251 699 264 50 716 060 7113 026 660 340 36 468 906

Table B3. The polynomial coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{3}$ of the seventh-order recurrence scheme for generic points on a simple cubic 3D lattice. Here, j is the multi-index of rj in (16).

Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{3}$
j i  =  0 i  =  1 i  =  2 i  =  3
0, 0, 12 1024      
0, 1, 11 1920      
0, 2, 10 −1464      
1, 1, 10 3984      
0, 3, 9 −2294      
1, 2, 9 −1122      
0, 4, 8 3996      
1, 3, 8 −5976      
2, 2, 8 −1512      
0, 5, 7 2070      
1, 4, 7 −252      
2, 3, 7 −8802      
0, 6, 6 −3720      
1, 5, 6 6534      
2, 4, 6 −2952      
3, 3, 6 −5676      
2, 5, 5 7992      
3, 4, 5 5796      
4, 4, 4 9000      
0, 0, 11 18 496 3840    
0, 1, 10 41 864 7968    
0, 2, 9 −908 −2244    
1, 1, 9 53 672 7032    
0, 3, 8 $-50\, 910$ $-11\, 952$    
1, 2, 8 $-111\, 726$ $-29\, 988$    
0, 4, 7 −3198 −504    
1, 3, 7 $-191\, 595$ $-43\, 425$    
2, 2, 7 $-348\, 570$ $-81\, 234$    
0, 5, 6 65 280 13 068    
1, 4, 6 51 306 9504    
2, 3, 6 $-254\, 202$ $-55\, 116$    
1, 5, 5 238 734 47 754    
2, 4, 5 206 334 51 102    
3, 3, 5 102 048 32 832    
3, 4, 4 431 130 112 950    
0, 0, 10 161 392 83 728 7968  
0, 1, 9 241 654 107 344 7032  
0, 2, 8 $-379\, 206$ $-223\, 452$ $-29\, 988$  
1, 1, 8 $-685\, 152$ $-364\, 896$ $-54\, 108$  
0, 3, 7 $-760\, 695$ $-383\, 190$ $-43\, 425$  
1, 2, 7 $-3341\, 493$ $-1634\, 841$ $-190\, 890$  
0, 4, 6 201 738 102 612 9504  
1, 3, 6 $-2432\, 364$ $-1170\, 582$ $-131\, 292$  
2, 2, 6 $-5827\, 212$ $-2709\, 828$ $-299\, 880$  
0, 5, 5 1005 930 477 468 47 754  
1, 4, 5 2439 423 1142 091 118 530  
2, 3, 5 59 661 92 475 24 102  
2, 4, 4 5849 172 2781 828 326 160  
3, 3, 4 7438 434 3666 786 444 960  
0, 0, 9 440 892 483 308 107 344 4688
0, 1, 8 $-2140\, 692$ $-1370\, 304$ $-364\, 896$ $-36\, 072$
0, 2, 7 $-8884\, 005$ $-6682\, 986$ $-1634\, 841$ $-127\, 260$
1, 1, 7 $-21\, 112\, 605$ $-15\, 484\, 788$ $-3754\, 953$ $-294\, 930$
0, 3, 6 $-6429\, 528$ $-4864\, 728$ $-1170\, 582$ $-87\, 528$
1, 2, 6 $-37\, 583\, 655$ $-27\, 920\, 673$ $-6604\, 272$ $-489\, 528$
0, 4, 5 6178 569 4878 846 1142 091 79 020
1, 3, 5 $-2461\, 971$ $-1632\, 150$ $-334\, 863$ $-17\, 460$
2, 2, 5 $-23\, 729\, 166$ $-17\, 479\, 908$ $-3900\, 366$ $-254\, 772$
1, 4, 4 32 299 542 24 348 078 5758 704 426 420
2, 3, 4 52 467 522 38 973 339 9546 381 766 260
3, 3, 3 97 608 483 72 326 514 17 640 105 1405 830
0, 0, 8 $-5443\, 524$ $-4281\, 384$ $-1370\, 304$ $-243\, 264$
0, 1, 7 $-42\, 915\, 585$ $-42\, 225\, 210$ $-15\, 484\, 788$ $-2503\, 302$
0, 2, 6 $-73\, 421\, 307$ $-75\, 167\, 310$ $-27\, 920\, 673$ $-4402\, 848$
1, 1, 6 $-182\, 021\, 079$ $-186\, 924\, 762$ $-69\, 167\, 835$ $-10\, 867\, 380$
0, 3, 5 $-5391\, 378$ $-4923\, 942$ $-1632\, 150$ $-223\, 242$
1, 2, 5 $-134\, 887\, 941$ $-142\, 928\, 073$ $-52\, 797\, 690$ $-7985\, 682$
0, 4, 4 61 115 736 64 599 084 24 348 078 3839 136
1, 3, 4 192 861 660 194 160 483 72 289 413 11 759 190
2, 2, 4 238 468 221 232 046 280 86 206 005 14 493 924
2, 3, 3 596 405 664 595 463 646 220 756 644 35 933 520
0, 0, 7 $-67\, 590\, 699$ $-85\, 831\, 170$ $-42\, 225\, 210$ $-10\, 323\, 192$
0, 1, 6 $-270\, 863\, 238$ $-364\, 042\, 158$ $-186\, 924\, 762$ $-46\, 111\, 890$
0, 2, 5 $-187\, 727\, 322$ $-269\, 775\, 882$ $-142\, 928\, 073$ $-35\, 198\, 460$
1, 1, 5 $-537\, 982\, 365$ $-776\, 979\, 378$ $-414\, 012\, 393$ $-102\, 331\, 080$
0, 3, 4 305 304 120 385 723 320 194 160 483 48 192 942
1, 2, 4 696 155 145 801 836 712 381 333 708 94 465 332
1, 3, 3 1913 853 333 2405 206 230 1200 740 040 296 860 260
2, 2, 3 3206 144 283 4020 693 408 2001 521 601 494 486 406
0, 0, 6 $-316\, 850\, 521$ $-541\, 726\, 476$ $-364\, 042\, 158$ $-124\, 616\, 508$
0, 1, 5 $-558\, 893\, 574$ $-1075\, 964\, 730$ $-776\, 979\, 378$ $-276\, 008\, 262$
0, 2, 4 1026 348 966 1392 310 290 801 836 712 254 222 472
1, 1, 4 1855 533 075 2345 106 150 1248 340 176 374 346 450
0, 3, 3 2527 042 978 3827 706 666 2405 206 230 800 493 360
1, 2, 3 8942 209 551 13 555 120 386 8483 646 240 2812 115 910
2, 2, 2 16 013 753 613 24 683 704 668 15 629 922 918 5211 040 284
0, 0, 5 $-425\, 028\, 007$ $-1117\, 787\, 148$ $-1075\, 964\, 730$ $-517\, 986\, 252$
0, 1, 4 2460 861 643 3711 066 150 2345 106 150 832 226 784
0, 2, 3 9977 530 949 17 884 419 102 13 555 120 386 5655 764 160
1, 1, 3 21 399 417 097 38 490 999 438 29 182 241 160 12 156 880 020
1, 2, 2 38 346 916 893 70 722 151 488 54 814 248 306 23 218 459 020
0, 0, 4 2732 264 750 4921 723 286 3711 066 150 1563 404 100
0, 1, 3 20 336 507 375 42 798 834 194 38 490 999 438 19 454 827 440
0, 2, 2 35 515 908 870 76 693 833 786 70 722 151 488 36 542 832 204
1, 1, 2 77 911 117 200 170 216 315 664 158 513 197 158 82 518 255 840
0, 0, 3 16 659 002 103 40 673 014 750 42 798 834 194 25 660 666 292
0, 1, 2 61 471 175 688 155 822 234 400 170 216 315 664 105 675 464 772
1, 1, 1 134 436 520 755 345 447 658 950 382 252 444 410 240 044 395 440
0, 0, 2 42 102 546 939 122 942 351 376 155 822 234 400 113 477 543 776
0, 1, 1 90 818 056 458 268 873 041 510 345 447 658 950 254 834 962 940
0, 0, 1 53 487 879 255 181 636 112 916 268 873 041 510 230 298 439 300
0, 0, 0 27 487 989 900 106 975 758 510 181 636 112 916 179 248 694 340
Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{3}$
j i  =  4 i  =  5 i  =  6 i  =  7
0, 0, 8 $-18\, 036$      
0, 1, 7 $-147\, 465$      
0, 2, 6 $-244\, 764$      
1, 1, 6 $-603\, 000$      
0, 3, 5 −8730      
1, 2, 5 $-406\, 260$      
0, 4, 4 213 210      
1, 3, 4 704 430      
2, 2, 4 923 490      
2, 3, 3 2156 850      
0, 0, 7 $-1251\, 651$ $-58\, 986$    
0, 1, 6 $-5433\, 690$ $-241\, 200$    
0, 2, 5 $-3992\, 841$ $-162\, 504$    
1, 1, 5 $-11\, 643\, 660$ $-477\, 036$    
0, 3, 4 5879 595 281 772    
1, 2, 4 12 194 505 648 432    
1, 3, 3 36 260 175 1744 722    
2, 2, 3 60 531 030 2925 864    
0, 0, 6 $-23\, 055\, 945$ $-2173\, 476$ $-80\, 400$  
0, 1, 5 $-51\, 165\, 540$ $-4657\, 464$ $-159\, 012$  
0, 2, 4 47 232 666 4877 802 216 144  
1, 1, 4 69 408 585 7577 892 366 660  
0, 3, 3 148 430 130 14 504 070 581 574  
1, 2, 3 520 972 965 51 077 124 2063 124  
2, 2, 2 965 029 653 93 991 968 3749 976  
0, 0, 5 $-138\, 004\, 131$ $-20\, 466\, 216$ $-1552\, 488$ $-45\, 432$
0, 1, 4 187 173 225 27 763 434 2525 964 104 760
0, 2, 3 1406 057 955 208 389 186 17 025 708 589 464
1, 1, 3 3017 433 825 447 051 402 36 573 054 1269 900
1, 2, 2 5815 038 825 861 343 740 69 779 556 2378 304
0, 0, 4 416 113 392 74 869 290 9254 478 721 704
0, 1, 3 6078 440 010 1206 973 530 149 017 134 10 449 444
0, 2, 2 11 609 229 510 2326 015 530 287 114 580 19 937 016
1, 1, 2 26 344 042 290 5290 777 044 652 954 554 45 217 584
0, 0, 3 9727 413 720 2431 376 004 402 324 510 42 576 324
0, 1, 2 41 259 127 920 10 537 616 916 1763 592 348 186 558 444
1, 1, 1 94 595 142 600 24 318 722 736 4083 803 514 431 946 360
0, 0, 2 52 837 732 386 16 503 651 168 3512 538 972 503 883 528
0, 1, 1 120 022 197 720 37 838 057 040 8106 240 912 1166 801 004
0, 0, 1 127 417 481 470 48 008 879 088 12 612 685 680 2316 068 832
0, 0, 0 115 149 219 650 50 966 992 588 16 002 959 696 3603 624 480
Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{3}$
j i  =  8 i  =  9 i  =  10 i  =  11 i  =  12
0, 0, 4 26 190        
0, 1, 3 317 475        
0, 2, 2 594 576        
1, 1, 2 1341 630        
0, 0, 3 2612 361 70 550      
0, 1, 2 11 304 396 298 140      
1, 1, 1 26 076 105 682 770      
0, 0, 2 46 639 611 2512 088 59 628    
0, 1, 1 107 986 590 5794 690 136 554    
0, 0, 1 291 700 251 23 997 020 1158 938 24 828  
0, 0, 0 579 017 208 64 822 278 4799 404 210 716 4138

Table B4. The polynomial coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{4}$ of the seventh-order recurrence scheme for generic points on a simple cubic 3D lattice. Here, j is the multi-index of rj in (16).

Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{4}$
j i  =  0 i  =  1 i  =  2 i  =  3
0, 0, 12 1024      
0, 1, 11 1920      
0, 2, 10 −1464      
1, 1, 10 3984      
0, 3, 9 −2294      
1, 2, 9 −1122      
0, 4, 8 3996      
1, 3, 8 −5976      
2, 2, 8 −1512      
0, 5, 7 2070      
1, 4, 7 −252      
2, 3, 7 −8802      
0, 6, 6 −3720      
1, 5, 6 6534      
2, 4, 6 −2952      
3, 3, 6 −5676      
2, 5, 5 7992      
3, 4, 5 5796      
4, 4, 4 9000      
0, 0, 11 12 224 3840    
0, 1, 10 21 880 7968    
0, 2, 9 $-17\, 044$ −2244    
1, 1, 9 2584 7032    
0, 3, 8 $-44\, 706$ $-11\, 952$    
1, 2, 8 $-128\, 178$ $-29\, 988$    
0, 4, 7 −834 −504    
1, 3, 7 $-155\, 805$ $-43\, 425$    
2, 2, 7 $-301\, 302$ $-81\, 234$    
0, 5, 6 39 264 13 068    
1, 4, 6 24 726 9504    
2, 3, 6 $-186\, 726$ $-55\, 116$    
1, 5, 5 143 298 47 754    
2, 4, 5 202 482 51 102    
3, 3, 5 160 608 32 832    
3, 4, 4 472 470 112 950    
0, 0, 10 1520 43 760 7968  
0, 1, 9 $-167\, 050$ 5168 7032  
0, 2, 8 $-510\, 822$ $-256\, 356$ $-29\, 988$  
1, 1, 8 $-1228\, 896$ $-500\, 832$ $-54\, 108$  
0, 3, 7 $-474\, 375$ $-311\, 610$ $-43\, 425$  
1, 2, 7 $-2479\, 725$ $-1419\, 399$ $-190\, 890$  
0, 4, 6 $-10\, 902$ 49 452 9504  
1, 3, 6 $-1470\, 396$ $-930\, 090$ $-131\, 292$  
2, 2, 6 $-3340\, 908$ $-2088\, 252$ $-299\, 880$  
0, 5, 5 242 442 286 596 47 754  
1, 4, 5 888 615 754 389 118 530  
2, 3, 5 862 389 293 157 24 102  
2, 4, 4 4468 788 2436 732 326 160  
3, 3, 4 6581 586 3452 574 444 960  
0, 0, 9 $-1044\, 188$ $-334\, 100$ 5168 4688
0, 1, 8 $-3937\, 260$ $-2457\, 792$ $-500\, 832$ $-36\, 072$
0, 2, 7 $-5107\, 179$ $-4959\, 450$ $-1419\, 399$ $-127\, 260$
1, 1, 7 $-13\, 452\, 867$ $-12\, 032\, 100$ $-3323\, 367$ $-294\, 930$
0, 3, 6 $-2385\, 384$ $-2940\, 792$ $-930\, 090$ $-87\, 528$
1, 2, 6 $-13\, 746\, 657$ $-16\, 241\, 697$ $-5144\, 400$ $-489\, 528$
0, 4, 5 216 615 1777 230 754 389 79 020
1, 3, 5 1896 483 373 338 $-84\, 177$ $-17\, 460$
2, 2, 5 3070 062 $-3990\, 276$ $-2214\, 162$ $-254\, 772$
1, 4, 4 12 255 066 14 081 454 4475 376 426 420
2, 3, 4 40 675 926 33 353 163 8843 859 766 260
3, 3, 3 71 821 869 60 004 194 16 099 815 1405 830
0, 0, 8 $-8216\, 196$ $-7874\, 520$ $-2457\, 792$ $-333\, 888$
0, 1, 7 $-18\, 466\, 353$ $-26\, 905\, 734$ $-12\, 032\, 100$ $-2215\, 578$
0, 2, 6 $-7301\, 067$ $-27\, 493\, 314$ $-16\, 241\, 697$ $-3429\, 600$
1, 1, 6 $-19\, 153\, 863$ $-68\, 167\, 638$ $-39\, 902\, 715$ $-8428\, 620$
0, 3, 5 8084 382 3792 966 373 338 $-56\, 118$
1, 2, 5 54 112 707 $-604\, 503$ $-17\, 145\, 162$ $-5014\, 638$
0, 4, 4 10 270 584 24 510 132 14 081 454 2983 584
1, 3, 4 130 740 228 147 378 285 60 569 973 10 782 570
2, 2, 4 261 008 253 255 723 912 92 971 989 15 057 756
2, 3, 3 397 617 072 454 635 618 186 582 564 33 085 680
0, 0, 7 $-8210\, 277$ $-36\, 932\, 706$ $-26\, 905\, 734$ $-8021\, 400$
0, 1, 6 65 175 702 $-38\, 307\, 726$ $-68\, 167\, 638$ $-26\, 601\, 810$
0, 2, 5 185 051 082 108 225 414 $-604\, 503$ $-11\, 430\, 108$
1, 1, 5 486 343 245 276 169 950 $-13\, 192\, 407$ $-35\, 037\, 000$
0, 3, 4 179 281 608 261 480 456 147 378 285 40 379 982
1, 2, 4 978 558 519 1143 382 248 523 116 180 119 237 652
1, 3, 3 1122 260 763 1661 603 670 932 975 640 253 156 740
2, 2, 3 1978 673 061 2891 883 024 1602 660 303 430 046 406
0, 0, 6 228 848 519 130 351 404 $-38\, 307\, 726$ $-45\, 445\, 092$
0, 1, 5 996 061 002 972 686 490 276 169 950 $-8794\, 938$
0, 2, 4 1333 547 286 1957 117 038 1143 382 248 348 744 120
1, 1, 4 3425 990 883 4795 661 466 2645 705 376 751 475 790
0, 3, 3 1142 569 426 2244 521 526 1661 603 670 621 983 760
1, 2, 3 4696 903 167 8776 780 926 6289 946 640 2296 049 370
2, 2, 2 6672 917 421 13 575 833 604 10 295 992 134 3914 803 332
0, 0, 5 1461 071 815 1992 122 004 972 686 490 184 113 300
0, 1, 4 3862 999 781 6851 981 766 4795 661 466 1763 803 584
0, 2, 3 3613 238 827 9393 806 334 8776 780 926 4193 297 760
1, 1, 3 8525 764 967 21 326 002 446 19 596 778 200 9256 685 940
1, 2, 2 8655 128 931 27 746 512 416 28 855 462 446 14 808 218 220
0, 0, 4 3365 552 638 7725 999 562 6851 981 766 3197 107 644
0, 1, 3 3901 639 903 17 051 529 934 21 326 002 446 13 064 518 800
0, 2, 2 521 492 790 17 310 257 862 27 746 512 416 19 236 974 964
1, 1, 2 $-2518\, 552\, 944$ 30 251 340 624 55 058 118 246 40 157 363 040
0, 0, 3 $-1314\, 205\, 831$ 7803 279 806 17 051 529 934 14 217 334 964
0, 1, 2 $-18\, 014\, 934\, 792$ $-5037\, 105\, 888$ 30 251 340 624 36 705 412 164
1, 1, 1 $-50\, 102\, 186\, 883$ $-38\, 521\, 157\, 082$ 39 599 432 070 67 464 231 600
0, 0, 2 $-25\, 776\, 043\, 653$ $-36\, 029\, 869\, 584$ $-5037\, 105\, 888$ 20 167 560 416
0, 1, 1 $-62\, 229\, 555\, 366$ $-100\, 204\, 373\, 766$ $-38\, 521\, 157\, 082$ 26 399 621 380
0, 0, 1 $-55\, 939\, 671\, 351$ $-124\, 459\, 110\, 732$ $-100\, 204\, 373\, 766$ $-25\, 680\, 771\, 388$
0, 0, 0 $-39\, 335\, 016\, 420$ $-111\, 879\, 342\, 702$ $-124\, 459\, 110\, 732$ $-66\, 802\, 915\, 844$
Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{4}$
j i  =  4 i  =  5 i  =  6 i  =  7
0, 0, 8 $-18\, 036$      
0, 1, 7 $-147\, 465$      
0, 2, 6 $-244\, 764$      
1, 1, 6 $-603\, 000$      
0, 3, 5 −8730      
1, 2, 5 $-406\, 260$      
0, 4, 4 213 210      
1, 3, 4 704 430      
2, 2, 4 923 490      
2, 3, 3 2156 850      
0, 0, 7 $-1107\, 789$ $-58\, 986$    
0, 1, 6 $-4214\, 310$ $-241\, 200$    
0, 2, 5 $-2507\, 319$ $-162\, 504$    
1, 1, 5 $-7437\, 780$ $-477\, 036$    
0, 3, 4 5391 285 281 772    
1, 2, 4 13 742 775 648 432    
1, 3, 3 33 528 705 1744 722    
2, 2, 3 56 503 530 2925 864    
0, 0, 6 $-13\, 300\, 905$ $-1685\, 724$ $-80\, 400$  
0, 1, 5 $-17\, 518\, 500$ $-2975\, 112$ $-159\, 012$  
0, 2, 4 59 618 826 5497 110 216 144  
1, 1, 4 118 286 505 10 021 788 366 660  
0, 3, 3 126 578 370 13 411 482 581 574  
1, 2, 3 458 487 045 47 952 828 2063 124  
2, 2, 2 805 327 893 86 006 880 3749 976  
0, 0, 5 $-4397\, 469$ $-7007\, 400$ $-991\, 704$ $-45\, 432$
0, 1, 4 375 737 895 47 314 602 3340 596 104 760
0, 2, 3 1148 024 685 183 394 818 15 984 276 589 464
1, 1, 3 2511 098 415 398 290 410 34 541 346 1269 900
1, 2, 2 4269 544 695 708 365 628 63 405 468 2378 304
0, 0, 4 881 901 792 150 295 158 15 771 534 954 456
0, 1, 3 4628 342 970 1004 439 366 132 763 470 9868 956
0, 2, 2 7404 109 110 1707 817 878 236 121 876 18 115 848
1, 1, 2 15 922 380 690 3745 824 012 524 970 810 40 646 736
0, 0, 3 6532 259 400 1851 337 188 334 813 122 37 932 420
0, 1, 2 20 078 681 520 6368 952 276 1248 608 004 149 991 660
1, 1, 1 40 639 266 360 13 552 845 264 2741 384 646 336 177 720
0, 0, 2 18 352 706 082 8031 472 608 2122 984 092 356 745 144
0, 1, 1 33 732 115 800 16 255 706 544 4517 615 088 783 252 756
0, 0, 1 13 199 810 690 13 492 846 320 5418 568 848 1290 747 168
0, 0, 0 $-12\, 840\, 385\, 694$ 5279 924 276 4497 615 440 1548 162 528
Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{4}$
j i  =  8 i  =  9 i  =  10 i  =  11 i  =  12
0, 0, 4 26 190        
0, 1, 3 317 475        
0, 2, 2 594 576        
1, 1, 2 1341 630        
0, 0, 3 2467 239 70 550      
0, 1, 2 10 161 684 298 140      
1, 1, 1 23 083 335 682 770      
0, 0, 2 37 497 915 2258 152 59 628    
0, 1, 1 84 044 430 5129 630 136 554    
0, 0, 1 195 813 189 18 676 540 1025 926 24 828  
0, 0, 0 322 686 792 43 514 042 3735 308 186 532 4138

Table B5. The polynomial coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{5}$ of the seventh-order recurrence scheme for generic points on a simple cubic 3D lattice. Here, j is the multi-index of rj in (16).

Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{5}$
j i  =  0 i  =  1 i  =  2 i  =  3 i  =  4 i  =  5
0, 1, 11 128          
0, 2, 10 364          
1, 1, 10 472          
0, 3, 9 67          
1, 2, 9 297          
0, 4, 8 −478          
1, 3, 8 −692          
2, 2, 8 −1452          
0, 5, 7 109          
1, 4, 7 −498          
2, 3, 7 −2167          
0, 6, 6 836          
1, 5, 6 1205          
2, 4, 6 52          
3, 3, 6 −1402          
2, 5, 5 1668          
3, 4, 5 1182          
4, 4, 4 2220          
0, 0, 11 1600 256        
0, 1, 10 5116 944        
0, 2, 9 1886 594        
1, 1, 9 6684 1380        
0, 3, 8 −8885 −1384        
1, 2, 8 $-24\, 919$ −4460        
0, 4, 7 −5349 −996        
1, 3, 7 $-49\, 507$ −9419        
2, 2, 7 $-85\, 564$ $-17\, 102$        
0, 5, 6 13 136 2410        
1, 4, 6 5287 944        
2, 3, 6 $-60\, 903$ $-12\, 738$        
1, 5, 5 56 614 10 934        
2, 4, 5 53 704 10 730        
3, 3, 5 40 324 7292        
3, 4, 4 121 210 23 990        
0, 0, 10 26 696 10 232 944      
0, 1, 9 27 469 13 368 1380      
0, 2, 8 $-144\, 307$ $-49\, 838$ −4460      
1, 1, 8 $-258\, 618$ $-96\, 204$ −9228      
0, 3, 7 $-260\, 650$ $-99\, 014$ −9419      
1, 2, 7 $-981\, 681$ $-388\, 341$ $-38\, 304$      
0, 4, 6 28 267 10 574 944      
1, 3, 6 $-739\, 203$ $-297\, 732$ $-29\, 802$      
2, 2, 6 $-1538\, 596$ $-638\, 780$ $-65\, 012$      
0, 5, 5 287 674 113 228 10 934      
1, 4, 5 633 249 254 769 25 098      
2, 3, 5 149 632 45 341 3662      
2, 4, 4 1701 708 691 236 69 660      
3, 3, 4 2355 584 942 034 94 504      
0, 0, 9 47 754 54 938 13 368 920    
0, 1, 8 $-955\, 490$ $-517\, 236$ $-96\, 204$ −6152    
0, 2, 7 $-3280\, 423$ $-1963\, 362$ $-388\, 341$ $-25\, 536$    
1, 1, 7 $-7137\, 145$ $-4326\, 186$ $-867\, 981$ $-57\, 770$    
0, 3, 6 $-2411\, 059$ $-1478\, 406$ $-297\, 732$ $-19\, 868$    
1, 2, 6 $-12\, 076\, 581$ $-7564\, 005$ $-1550\, 922$ $-104\, 548$    
0, 4, 5 2050 722 1266 498 254 769 16 732    
1, 3, 5 $-671\, 627$ $-485\, 358$ $-105\, 921$ −7260    
2, 2, 5 $-6158\, 250$ $-4127\, 202$ $-874\, 206$ $-59\, 292$    
1, 4, 4 10 446 598 6539 394 1346 448 91 340    
2, 3, 4 18 539 519 11 427 135 2353 179 161 756    
3, 3, 3 33 687 843 20 938 620 4333 185 298 590    
0, 0, 8 $-2704\, 460$ $-1910\, 980$ $-517\, 236$ $-64\, 136$ −3076  
0, 1,7 $-17\, 435\, 976$ $-14\, 274\, 290$ $-4326\, 186$ $-578\, 654$ $-28\, 885$  
0, 2, 6 $-28\, 174\, 546$ $-24\, 153\, 162$ $-7564\, 005$ $-1033\, 948$ $-52\, 274$  
1, 1, 6 $-67\, 403\, 239$ $-57\, 993\, 132$ $-18\, 256\, 797$ $-2506\, 380$ $-127\, 020$  
0, 3, 5 $-1104\, 063$ $-1343\, 254$ $-485\, 358$ $-70\, 614$ −3630  
1, 2, 5 $-45\, 375\, 142$ $-41\, 067\, 097$ $-13\, 279\, 398$ $-1839\, 094$ $-92\, 600$  
0, 4, 4 24 677 934 20 893 196 6539 394 897 632 45 670  
1, 3, 4 75 984 878 63 884 275 20 147 901 2822 290 148 130  
2, 2, 4 98 072 369 80 888 828 25 358 457 3574 436 190 618  
2, 3, 3 229 403 170 194 794 176 61 879 950 8718 880 459 710  
0, 0, 7 $-33\, 215\, 843$ $-34\, 871\, 952$ $-14\, 274\, 290$ $-2884\, 124$ $-289\, 327$ $-11\, 554$
0, 1, 6 $-121\, 107\, 991$ $-134\, 806\, 478$ $-57\, 993\, 132$ $-12\, 171\, 198$ $-1253\, 190$ $-50\, 808$
0, 2, 5 $-74\, 832\, 951$ $-90\, 750\, 284$ $-41\, 067\, 097$ $-8852\, 932$ $-919\, 547$ $-37\, 040$
1, 1, 5 $-223\, 244\, 609$ $-265\, 626\, 474$ $-119\, 171\, 529$ $-25\, 588\, 080$ $-2652\, 720$ $-106\, 764$
0, 3, 4 144 886 200 151 969 756 63 884 275 13 431 934 1411 145 59 252
1, 2, 4 312 443 218 316 863 306 131 429 370 27 862 644 3008 475 131 688
1, 3, 3 825 515 671 889 658 486 382 255 470 81 882 660 8745 135 372 498
2, 2, 3 1355 056 491 1467 233 902 633 167 471 136 241 090 14 617 450 625 360
0, 0, 6 $-172\, 122\, 671$ $-242\, 215\, 982$ $-134\, 806\, 478$ $-38\, 662\, 088$ $-6085\, 599$ $-501\, 276$
0, 1, 5 $-286\, 684\, 414$ $-446\, 489\, 218$ $-265\, 626\, 474$ $-79\, 447\, 686$ $-12\, 794\, 040$ $-1061\, 088$
0, 2, 4 522 591 688 624 886 436 316 863 306 87 619 580 13 931 322 1203 390
1, 1, 4 875 072 797 1005 342 108 494 680 650 135 090 190 21 646 065 1916 796
0, 3, 3 1271 064 378 1651 031 342 889 658 486 254 836 980 40 941 330 3498 054
1, 2, 3 4214 963 229 5547 059 612 3025 282 686 876 746 590 142 481 685 12 309 612
2, 2, 2 7429 077 921 9931 470 516 5479 731 324 1600 616 604 261 294 975 22 610 160
0, 0, 5 $-273\, 593\, 685$ $-573\, 368\, 828$ $-446\, 489\, 218$ $-177\, 084\, 316$ $-39\, 723\, 843$ $-5117\, 616$
0, 1, 4 1315 879 784 1750 145 594 1005 342 108 329 787 100 67 545 095 8658 426
0,2,3 5440 802 160 8429 926 458 5547 059 612 2016 855 124 438 373 295 56 992 674
1, 1, 3 11 325 828 557 17 663 393 106 11 688 084 810 4271 248 400 932 864 415 121 848 426
1, 2, 2 20 145 091 929 32 139 140 560 21 664 072 602 8024 994 844 1767 757 435 231 809 316
0, 0, 4 1701 588 308 2631 759 568 1750 145 594 670 228 072 164 893 550 27 018 038
0, 1, 3 12 495 981 859 22 651 657 114 17 663 393 106 7792 056 540 2135 624 200 373 145 766
0, 2, 2 21 667 706 194 40 290 183 858 32 139 140 560 14 442 715 068 4012 497 422 707 102 974
1, 1, 2 46 854 984 838 88 225 738 614 71 127 642 306 32 234 025 980 9012 209 580 1595 260 968
0, 0, 3 11 928 035 797 24 991 963 718 22 651 657 114 11 775 595 404 3896 028 270 854 249 680
0, 1, 2 42 973 541 400 93 709 969 676 88 225 738 614 47 418 428 204 16 117 012 990 3604 883 832
1, 1, 1 93 136 516 809 206 154 017 874 196 722 244 500 106 928 498 400 36 662 954 160 8251 902 456
0, 0, 2 34 123 981 059 85 947 082 800 93 709 969 676 58 817 159 076 23 709 214 102 6446 805 196
0, 1, 1 72 826 680 906 186 273 033 618 206 154 017 874 131 148 163 000 53 464 249 200 14 665 181 664
0, 0, 1 49 227 015 753 145 653 361 812 186 273 033 618 137 436 011 916 65 574 081 500 21 385 699 680
0, 0, 0 28 584 132 444 98 454 031 506 145 653 361 812 124 182 022 412 68 718 005 958 26 229 632 600
Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{5}$
j i  =  6 i  =  7 i  =  8 i  =  9 i  =  10 i  =  11 i  =  12
0, 0, 6 $-16\, 936$            
0, 1, 5 $-35\, 588$            
0, 2, 4 43 896            
1, 1, 4 72 436            
0, 3, 3 124 166            
1, 2, 3 441 476            
2, 2, 2 810 192            
0, 0, 5 $-353\, 696$ $-10\, 168$          
0, 1, 4 638 932 20 696          
0, 2, 3 4103 204 126 136          
1, 1, 3 8811 558 271 980          
1, 2, 2 16 763 180 515 776          
0, 0, 4 2886 142 182 552 5174        
0, 1, 3 40 616 142 2517 588 67 995        
0, 2, 2 77 269 772 4789 480 128 944        
1, 1, 2 174 816 642 10 851 408 292 230        
0, 0, 3 124 381 922 11 604 612 629 397 15 110      
0, 1, 2 531 753 656 49 947 612 2712 852 64 940      
1, 1, 1 1222 115 202 115 029 000 6250 365 149 490      
0, 0, 2 1201 627 944 151 929 616 12 486 903 602 856 12 988    
0, 1, 1 2750 634 152 349 175 772 28 757 250 1388 970 29 898    
0, 0, 1 4888 393 888 785 895 472 87 293 943 6390 500 277 794 5436  
0, 0, 0 7128 566 560 1396 683 968 196 473 868 19 398 654 1278 100 50 508 906

Table B6. The polynomial coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{6}$ of the seventh-order recurrence scheme for generic points on a simple cubic 3D lattice. Here, j is the multi-index of rj in (16).

Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{6}$
j i  =  0 i  =  1 i  =  2 i  =  3 i  =  4 i  =  5
0, 2, 10 4          
1, 1, 10 8          
0, 3, 9 17          
1, 2, 9 19          
0, 4, 8 22          
1, 3, 8 4          
2, 2, 8 −36          
0, 5, 7 −1          
1, 4, 7 −6          
2, 3, 7 −141          
0, 6, 6 −20          
1, 5, 6 23          
2, 4, 6 −36          
3, 3, 6 −158          
2, 5, 5 108          
3, 4, 5 106          
4, 4, 4 228          
0, 1, 10 108 16        
0, 2, 9 246 38        
1, 1, 9 76 12        
0, 3, 8 15 8        
1, 2, 8 −1299 −204        
0, 4, 7 −129 −12        
1, 3, 7 −2513 −403        
2, 2, 7 −6432 −1038        
0, 5, 6 288 46        
1, 4, 6 155 16        
2, 3, 6 −5547 −918        
1, 5, 5 2802 438        
2, 4, 5 4212 666        
3, 3, 5 2148 356        
3, 4, 4 10 334 1726        
0, 0, 10 728 216 16      
0, 1, 9 447 152 12      
0, 2, 8 −8409 −2598 −204      
1, 1, 8 $-24\, 630$ −7884 −636      
0, 3, 7 $-15\, 908$ −5026 −403      
1, 2, 7 $-83\, 129$ $-27\, 431$ −2268      
0, 4, 6 1001 310 16      
1, 3, 6 $-61\, 933$ $-21\, 136$ −1806      
2, 2, 6 $-154\, 084$ $-52\, 036$ −4380      
0, 5, 5 17 562 5604 438      
1, 4, 5 53 413 17 191 1362      
2, 3, 5 2690 371 6      
2, 4, 4 164 108 55 148 4644      
3, 3, 4 219 972 75 286 6488      
0, 0, 9 1586 894 152 8    
0, 1, 8 $-103\, 530$ $-49\, 260$ −7884 −424    
0, 2, 7 $-336\, 809$ $-166\, 258$ $-27\, 431$ −1512    
1, 1, 7 $-805\, 811$ $-403\, 326$ $-67\, 215$ −3730    
0, 3, 6 $-242\, 059$ $-123\, 866$ $-21\, 136$ −1204    
1, 2, 6 $-1406\, 499$ $-722\, 313$ $-122\, 826$ −6924    
0, 4, 5 218 884 106 826 17 191 908    
1, 3, 5 $-105\, 201$ $-63\, 150$ $-11\, 775$ −700    
2, 2, 5 $-920\, 982$ $-479\, 430$ $-81\, 114$ −4476    
1, 4, 4 1198 034 610 194 103 440 5836    
2, 3, 4 1961 467 1030 019 182 101 10 812    
3, 3, 3 3718 809 1965 792 349 155 20 790    
0, 0, 8 $-329\, 644$ $-207\, 060$ $-49\, 260$ −5256 −212  
0, 1, 7 $-2411\, 530$ $-1611\, 622$ $-403\, 326$ $-44\, 810$ −1865  
0, 2, 6 $-4073\, 124$ $-2812\, 998$ $-722\, 313$ $-81\, 884$ −3462  
1, 1, 6 $-10\, 095\, 219$ $-6986\, 640$ $-1795\, 341$ $-203\, 380$ −8580  
0, 3, 5 $-228\, 589$ $-210\, 402$ $-63\, 150$ −7850 −350  
1, 2, 5 $-8046\, 164$ $-5652\, 715$ $-1454\, 430$ $-162\, 970$ −6720  
0, 4, 4 3525 298 2396 068 610 194 68 960 2918  
1, 3, 4 9247 646 6573 641 1770 225 213 630 9730  
2, 2, 4 9891 373 7278 716 2053 629 261 164 12 546  
2, 3, 3 27 932 766 20 336 028 5592 042 686 720 31 710  
0, 0, 7 $-5762\, 561$ $-4823\, 060$ $-1611\, 622$ $-268\, 884$ $-22\, 405$ −746
0, 1, 6 $-23\, 048\, 263$ $-20\, 190\, 438$ $-6986\, 640$ $-1196\, 894$ $-101\, 690$ −3432
0, 2, 5 $-17\, 790\, 651$ $-16\, 092\, 328$ $-5652\, 715$ $-969\, 620$ $-81\, 485$ −2688
1, 1, 5 $-52\, 582\, 491$ $-46\, 905\, 450$ $-16\, 326\, 939$ $-2782\, 560$ $-232\, 680$ −7644
0, 3, 4 21 063 492 18 495 292 6573 641 1180 150 106 815 3892
1, 2, 4 26 472 376 25 296 598 10 067 346 2047 220 209 645 8568
1, 3, 3 111 545 265 103 604 726 38 695 230 7252 500 680 925 25 578
2, 2, 3 178 439 681 168 312 634 63 806 273 12 121 778 1151 510 43 680
0, 0, 6 $-43\, 134\, 095$ $-46\, 096\, 526$ $-20\, 190\, 438$ $-4657\, 760$ $-598\, 447$ $-40\, 676$
0, 1, 5 $-95\, 224\, 622$ $-105\, 164\, 982$ $-46\, 905\, 450$ $-10\, 884\, 626$ $-1391\, 280$ $-93\, 072$
0, 2, 4 48 913 708 52 944 752 25 296 598 6711 564 1023 610 83 858
1, 1, 4 25 228 421 32 453 304 20 403 918 6987 410 1300 605 123 396
0, 3, 3 201 417 530 223 090 530 103 604 726 25 796 820 3626 250 272 370
1, 2, 3 604 721 613 698 743 800 337 341 306 86 940 490 12 590 625 969 780
2, 2, 2 1124 977 005 1311 736 692 636 050 616 164 018 292 23 700 039 1817 904
0, 0, 5 $-141\, 679\, 835$ $-190\, 449\, 244$ $-105\, 164\, 982$ $-31\, 270\, 300$ $-5442\, 313$ $-556\, 512$
0, 1, 4 45 081 306 50 456 842 32 453 304 13 602 612 3493 705 520 242
0, 2, 3 900 563 726 1209 443 226 698 743 800 224 894 204 43 470 245 5036 250
1, 1, 3 1760 886 807 2419 824 498 1426 959 810 467 473 160 91 715 505 10 757 250
1, 2, 2 3488 531 635 4844 561 792 2864 571 990 935 475 964 182 221 165 21 166 980
0, 0, 4 88 144 040 90 162 612 50 456 842 21 635 536 6801 306 1397 482
0, 1, 3 2244 419 459 3521 773 614 2419 824 498 951 306 540 233 736 580 36 686 202
0, 2, 2 4359 163 362 6977 063 270 4844 561 792 1909 714 660 467 737 982 72 888 466
1, 1, 2 9547 148 658 15 527 807 454 10 905 355 698 4331 656 380 1065 872 640 166 501 104
0, 0, 3 2535 216 251 4488 838 918 3521 773 614 1613 216 332 475 653 270 93 494 632
0, 1, 2 10 246 998 688 19 094 297 316 15 527 807 454 7270 237 132 2165 828 190 426 349 056
1, 1, 1 23 135 347 311 43 816 375 194 36 018 101 520 16 971 062 400 5070 524 760 998 563 272
0, 0, 2 9628 343 687 20 493 997 376 19 094 297 316 10 351 871 636 3635 118 566 866 331 276
0, 1, 1 21 256 570 042 46 270 694 622 43 816 375 194 24 012 067 680 8485 531 200 2028 209 904
0, 0, 1 16 872 968 175 42 513 140 084 46 270 694 622 29 210 916 796 12 006 033 840 3394 212 480
0, 0, 0 11 316 809 700 33 745 936 350 42 513 140 084 30 847 129 748 14 605 458 398 4802 413 536
Coefficients $ \newcommand{\qCoef}[1]{q_{#1,i;j}} \qCoef{6}$
j i  =  6 i  =  7 i  =  8 i  =  9 i  =  10 i  =  11 i  =  12
0, 0, 6 −1144            
0, 1, 5 −2548            
0, 2, 4 2856            
1, 1, 4 4676            
0, 3, 3 8526            
1, 2, 3 30 996            
2, 2, 2 57 792            
0, 0, 5 $-31\, 024$ −728          
0, 1, 4 41 132 1336          
0, 2, 3 323 260 8856          
1, 1, 3 697 410 19 260          
1, 2, 2 1357 300 37 056          
0, 0, 4 173 414 11 752 334        
0, 1, 3 3585 750 199 260 4815        
0, 2, 2 7055 660 387 800 9264        
1, 1, 2 16 130 730 886 320 21 150        
0, 0, 3 12 228 734 1024 500 49 815 1070      
0, 1, 2 55 500 368 4608 780 221 580 4700      
1, 1, 1 129 814 902 10 752 840 515 295 10 890      
0, 0, 2 142 116 352 15 857 248 1152 195 49 240 940    
0, 1, 1 332 854 424 37 089 972 2688 210 114 510 2178    
0, 0, 1 676 069 968 95 101 264 9272 493 597 380 22 902 396  
0, 0, 0 1131 404 160 193 162 848 23 775 316 2060 554 119 476 4164 66

Footnotes

  • Thus, we avoid having to enclose the lattice-point coordinates in modulus symbols everywhere.

  • Due to a LaTeX package error in [21, equations (18) and (20)], the square operators have erroneously migrated from operating on the entire binomials to operating on the lower elements within the binomials, but that is irrelevant here.

  • According to the classification in the paper by Chen and Kauers [46], the multivariate telescoping algorithm implemented in the package MultiZeilberger belongs to the third of the current four generations of creative telescoping algorithms. That overview paper outlines the history of the development of creative telescoping algorithms from their inception to the latest contributions, and identifies some open problems.

Please wait… references are loading.
10.1088/1751-8121/aaa558