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Abstract
A mixed quantum state is represented by a Hermitian positive semi-definite 
operator ρ with the unit trace. The positivity requirement is responsible for 
a highly nontrivial geometry of the set of quantum states. A known way 
to satisfy this requirement automatically is to use the map ρ = τ 2/tr τ 2, 
where τ can be an arbitrary nonzero Hermitian operator. We elaborate the 
parametrization of the set of quantum states induced by the parametrization 
of the linear space of Hermitian operators by virtue of this map. In particular, 
we derive an equation for the boundary of the set. Further, we discuss how this 
parametrization can be applied to a set of quantum states constrained by some 
symmetry. We consider several examples of the squaring parametrisation of 
sets of qubits and qutrits constrained by various symmetries.

Keywords: parametrization of quantum states, generalized Bloch vector, 
mixed states, density matrix, Werner states, qubit, qutrit
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1.  Introduction

A quantum state of a system with a Hilbert space H = CD with a finite dimension D is rep-
resented by a density operator ρ ∈ CD×D, which should have unit trace and be Hermitian and 
positive semi-definite:

tr ρ = 1, ρ† = ρ, ρ � 0.� (1)

The latter non-linear condition is responsible for an extremely complicated structure of the 
set M of quantum states which shows up for D  >  2 [1, 2]. To describe the shape of this set 
is an important problem with numerous applications in quantum information and condensed 
matter theory. In particular, it is often desirable to introduce a parametrization of M, i.e. a 
map from some subset of RD2−1 to M. Should the system under consideration be a many-
body system, and H be a tensor product of one-body Hilbert spaces, one would further wish to 
have a parametrization with this tensor product structure built in. Unfortunately, widely used 
parametrizations [3] either fail to explicitly incorporate the tensor product structure or impose 
the positivity condition in a rather opaque and computationally demanding form.

The purpose of the present paper is to fill this gap by elaborating a parametrization of the 
set M of quantum states which can account for the positivity in a straightforward manner, and 
is well-suited for many-body systems. The starting point for our reasoning is an observation 
made in [4] that any density operator ρ can be expressed as

ρ = τ 2/tr τ 2,� (2)

where τ is some nonzero Hermitian operator. Obviously, the rhs of this equation satisfies all 
three conditions (1). Equation (2) establishes a map H → M between the real linear space H 
of Hermitian operators, and the set M of quantum states. This map has been used to introduce 
a measure in M induced by a measure in H [5]6. Here, we focus on the induced parametriza-
tion rather than the induced measure. Specifically, we employ the fact that H is easily param-
etrized in a manner preserving tensor structure [6]. This, in turn, induces a parametrization of 
M through the map (2). We will use the term ‘squaring parametrization’ for any parametriza-
tion obtained in this way.

We construct the squaring parametrization of M, and discuss its properties and its relation 
to the widely used Bloch vector parametrization [7, 8] in section 2. In particular, within this 
parametrization we derive an equation for the boundary ∂M of M.

In section 3, we study the squaring parametrization of the set of quantum states subject to 
linear constraints imposed by a symmetry. The usage and merits of the squaring parametriza-
tion are exemplified in the case of qubits and qutrits invariant under various symmetries. We 
conclude with the summary and outlook in section 4. Some technical results are relegated to 
the appendix.

2.  An unconstrained set of quantum states

2.1.  Preliminaries

2.1.1.  Linear space of Hermitian operators.  We start by recalling basic facts concerning M 
and H [1, 2, 6, 9]. The real linear space H is a space of Hermitian operators acting in the 

6 To be more exact, a slightly different map of the form ρ = AA†/tr
(
AA†) with A being an arbitrary nonzero linear 

operator has been used in [5]. We choose the map (2) instead in order to minimize the number of parameters in the 
parametrization. This is further discussed in the footnote 7 in section2.2.
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Hilbert space H = CD. These operators can be represented by D × D Hermitian matrices. 
The dimension of H equals D2.

One can introduce a scalar product in H according to

(λ,λ′) ≡ D−1 tr (λλ′), λ, λ′ ∈ H;� (3)

H is a real inner product space with respect to this scalar product.
One can always select in H an orthonormal basis consisting of a identity operator, 1, and 

D2  −  1 generators λi of the SU(D) group, satisfying

λ†
i = λi,� (4)

tr (λiλj) = δijD,� (5)

trλi = 0,� (6)

[λi,λj] = 2ifijkλk,� (7)

{λi,λj} = 2δij1+ 2dijkλk.� (8)

Here and in what follows, indices i, j, k run from 1 to (D2  −  1), a summation over repeated 
indices is implied, and fijk and dijk are totally antisymmetric and symmetric tensors, respec-
tively. Relations (7) and (8) can be combined:

λiλj = δij1+ ifijkλk + dijkλk.� (9)

In the simplest case of a single spin 1/2 there are three generators which can be chosen to 
be the Pauli matrices, σα. In the case of a many-body system, its Hilbert space H is a tensor 
product of Hilbert spaces of individual constituents, and one can choose the generators λi 
which inherit this tensor product structure. For example, a system consisting of N spins 1/2 
has a Hilbert space H =

(
C2

)⊗N , D  =  2N, and one can choose

λi = σµ1 i
1 ⊗ σµ2 i

2 ⊗ · · · ⊗ σµN i
N ,� (10)

where σµ
n  acts in the space of the nth spin, and is equal to the μth Pauli matrix in the case of 

µ = 1, 2, 3 or an identity operator in the case of µ = 0. Index i enumerates all possible com-
binations {µ1 i,µ2 i, . . . ,µN i} except one which consists of N zeros.

2.1.2.  Set of quantum states.  The set

M ≡ {ρ| tr ρ = 1, ρ† = ρ, ρ � 0} ⊂ H� (11)

of all density operators ρ is a convex set of dimension D2  −  1 embedded in H. The positivity 
condition implies that inner points of M have D strictly positive eigenvalues, while points on 
its boundary, M, have at least one zero eigenvalue. In other words, the boundary is given by

∂M ≡ {ρ ∈ M| rank ρ < D}.� (12)

The extreme points of M are pure states, i.e rank-one projectors, ρ2 = ρ.

2.2.  Squaring parametrization

As is obvious from the above discussion, any quantum state ρ can be expanded as

N Il’in et alJ. Phys. A: Math. Theor. 51 (2018) 085301



4

ρ =
1
D
(1+ aiλi),� (13)

where ai, i = 1, 2, . . .D2 − 1 are real parameters. Such parametrization, known as the Bloch 
or the coherence vector parametrization [7, 8], does not ensure the positivity automatically. The 
positivity condition, ρ � 0, is fulfilled if and only if the Bloch vector a = (a1, a2, . . . , aD2−1) 
satisfies a set of D  −  1 inequalities [7, 8]. The first inequality of this set reads

a2 � D − 1, where a2 ≡ ai ai;� (14)

this ensures that tr ρ2 � 1. Other inequalities are defined recursively—the jth inequality con-
taining a polynomial in ai of degree j  +  1. The Bloch vector a corresponds to the state on 
the boundary of M if and only if at least one of these inequalities saturates (i.e. turns into an 
equality). The set of Bloch vectors subject to the aforementioned inequalities is isomorphic to 
the set M of quantum states; thus we will identify these sets.

An alternative way to describe M is to employ the squaring parametrization, which has the 
advantage of imposing positivity automatically. It is defined as follows. One introduces an 

auxiliary Hermitian operator τ parametrized by a real vector b = (b1, b2, . . . bD2−1) ∈ RD2−1,

τ =
1
D
(1+ biλi).� (15)

The density operator ρ is then given by equation (2) [4, 5].

Obviously, for any b ∈ RD2−1 the conditions (1) are satisfied. Conversely, for any den-
sity operator ρ one can choose τ =

√
ρ/tr

√
ρ (where √. . . denotes a non-negative operator 

square root), and find a corresponding vector b. Thus we have established a surjective map 
RD2−1 → M, which constitutes the squaring parametrization. The explicit mapping between 
the auxiliary vector b and the Bloch vector a reads

ai =
2bi + dijkbjbk

1 + b2 , where b2 ≡ bi bi.� (16)

Clearly, the established map, which we denote as a(b), is not a one-to-one correspondence. 
As is discussed in appendix A, an inner point of M generically has 2D−1 preimage points in 
RD2−1. The number of preimage points is smaller if the eigenvalues of ρ accidentally satisfy 
a certain sum rule; it is also smaller for boundary points of M. In the case of a pure state, b is 
unique and equal to a, which follows from ρ2 = ρ. The set of D2 equations which determine 
the Bloch vector for pure states read [8]

a2 = D − 1,� (17)

(D − 2)ai = dijkajak.� (18)

We note that by defining τ according to equation (15) we have excluded those τ which are 
traceless, despite that they also produce a valid density operator ρ through the equation (2), 
unless τ = 0. The advantage of the squaring parametrization defined by equations (15) and 
(2) is that the number of real parameters, D2  −  1, coincides with the dimension of the space of 
quantum states M. If we considered all nonzero τ, one redundant parameter would emerge7. 
We also note that provided we agree to consider only τ with a nonzero trace, the particular 

7 If we employed the formula ρ = AA†/tr
(
AA†) with A being an arbitrary D × D matrix, as in [5], the number of 

real parameters would be 2D2, which is more than twice larger than in the squaring parametrization considered in 
the present article.

N Il’in et alJ. Phys. A: Math. Theor. 51 (2018) 085301
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value of tr τ  is unimportant, and we can fix any overall normalization of τ. In particular, we 
will find it convenient to use a normalization different from that defined in equation (15) in 
section 3.

Describing a convex set of a complex structure like the set of quantum states M to a large 
extent reduces to describing its boundary, ∂M. As an immediate corollary of the squaring 
parametrization, we obtain an equation satisfied by the boundary points. Indeed, a point of the 
boundary is a critical point of the map a(b); hence, the Jacobian of this map should be zero 
on the boundary:

det
∣∣∣∣
∣∣∣∣
∂ai

∂bj

∣∣∣∣
∣∣∣∣ = 0.� (19)

Of course, some of the solutions of this equation can be inner points of M. This equation is 
one of the main results of the paper. Its usefulness will be exemplified below.

3.  Constrained sets of quantum states

3.1.  General remarks

Often, one is interested in a set M′ of quantum states which are invariant under a certain 
symmetry,

M′ = {ρ ∈ M| ∀ϕ UϕρU†
ϕ = ρ, },� (20)

where unitary operators Uϕ parameterised by a discrete or continuous parameter ϕ constitute 
a symmetry group. One can straightforwardly generalize the squaring parametrization to the 
present case. Specifically, for any ρ ∈ M′ there exists at least one τ ∈ H with a unit trace and 
symmetric with respect to the group Uϕ,

UϕτU†
ϕ = τ ∀ϕ,� (21)

such that ρ can be obtained from τ according to equation (2). This follows from the fact that 
any ρ which is invariant under a symmetry group can be expanded as

ρ =
∑

l

ωl

rankΠl
Πl,� (22)

where Πl are projectors invariant under the same symmetry group,

UϕΠlU†
ϕ = Πl ∀ϕ, l,� (23)

and ωl � 0 are the eigenvalues of the density matrix (probabilities) and satisfy 
∑

l ωl = 1. As 
a consequence, τ chosen as a normalized positive square root of ρ (in full analogy with the 
reasoning below equation (15) for the unconstrained case) will satisfy equation (2) and, in 
addition, equation (21).

It appears practical to expand τ and ρ upon Hermitian operators which are explicitly 
invariant under the symmetry group. The maximal number of linearly independent symmetric 
Hermitian operators determines the dimension of M′. We do not attempt to give a general pre-
scription how to chose this basis of symmetric operators, and do not provide a general form
ula for dimM′. Neither do we provide a general analysis of the multiplicity of the squaring 
parametrization in the constrained case. Instead, we exemplify the technique by considering 
below a number of illustrative examples, addressing the above issues in each particular case.

N Il’in et alJ. Phys. A: Math. Theor. 51 (2018) 085301
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It should be noted that while M′ is a convex set, its extreme points (defined as points which 
cannot be represented as a convex combination of other points of M′) are not necessarily pure 
states. In fact, they are, in general, normalized projectors of rank not necessarily equal to one, 
as is clear from equation (22).

3.2.  Sets of Werner states of qubits

A Werner or rotationally invariant state of N spins 1/2 (or qubits8) is a quantum state invariant 
under any unitary transformation of the form U⊗N, where U is a unitary rotation in the space 
of a single spin [10, 11]. The space of Werner states is rather well studied for a moderate num-
ber of spins [10–13] or under the additional permutation symmetry [14]. We employ Werner 
states as a convenient playground to visualize the squaring parametrization and demonstrate 
its merits.

We find it convenient to expand Werner states in a basis which makes explicit their symme-
try but is not normalized. The basic building blocks of this basis are scalar and triple products 
of 2 × 2 sigma matrices of different spins:

(σnσm) ≡ δαβ σ
α
n ⊗ σβ

m = σα
n ⊗ σα

m ,

(σnσmσl) ≡ εαβγ σ
α
n ⊗ σβ

m ⊗ σγ
l ,

� (24)

where εαβγ is an absolutely antisymmetric Levi-Civita tensor with ε123 = 1. Here and in what 
follows, subscript indices of the σ-matrices label qubits. The superscript indices α,β  and γ 
denote the x,y,z components of the σ-matrices; they are always repeated which implies sum-
mation. In the remainder of the paper, including the appendix, we will omit the tensor product 
notation, and substitute the identity operator 1 of any dimension by 1. In the case of two or 
three spins considered below in detail the basis in H′ consists of operators of the form (24) and 
the identity operator. For larger number of spins, the basis operators involve products of opera-
tors of the form (24), such as (σ1σ2)(σ3σ4σ5). Some remarks regarding the case of arbitrary 
number of spins, as well as some explicit expressions for the pairwise products of the basis 
operators analogue to equation (9), can be found in appendix B.

3.2.1. Two qubits.  We start from a very simple example of a rotationally invariant state of two 
qubits. This state is given by

ρ =
1
4
(1 + a σ1σ2) .� (25)

The range of the only free parameter a must ensure the positivity of ρ. To find this range, we 
introduce the auxiliary operator τ,

τ = 1 + b σ1σ2� (26)

with b ∈ R, and plug it into equation (2). Observe that here, and in the reminder of the paper, 
we use an overall normalization of τ different from the normalization of equation (15), which 
makes the formulae somewhat less bulky. The map a(b) is found from equation (2) with the 
use of equation (B.1), and reads

a =
2b(1 − b)
1 + 3b2 .� (27)

8 We use terms ‘spin 1/2’ and ‘qubit’ interchangeably throughout the paper. The same is true for the terms ‘spin 1’ 
and ‘qutrit’.

N Il’in et alJ. Phys. A: Math. Theor. 51 (2018) 085301
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The latter rational function has a maximum of 1
3 and a minimum of (−1)—see figure 1. Thus 

equation (25) defines a legitimate density matrix if and only if a ∈ [−1, 1
3 ].

Several observations related to the previous discussion are in order:

	 •	The boundary ∂M′ = {−1, 1
3} of M′ = [−1, 1

3 ] satisfies equation (19), which in the pre-
sent case reduces to da/db  =  0.

	 •	Each a ∈ M′, except extreme points and the point a  =  −2/3, has two preimage points b.
	 •	While one of the extreme points of M′, a  =  −1, corresponds to the pure state, another 

one, a  =  1/3, corresponds to the mixed state. This is in contrast to the unconstrained 
case, where all extreme points correspond to pure states. In fact, in the present case, two 
extreme points correspond to the states with a definite total spin (0 and 1, respectively).

The latter point deserves a special remark. One can see that for a constrained space of 
states, M′, the condition ρ2 = ρ, which have led, in particular, to equation (17) [8], does not 
necessarily determine all extreme points. Instead, some of the extreme points can be described 
by density matrices which are equal, up to a numerical factor, to a projector with the rank 
r � 2. This is equivalent to a condition

ρ2 = r−1 ρ� (28)

with an unknown integer r, 1 � r < D. This equation is sufficient to determine all extreme 
points in all specific cases considered in the present paper, as will be explicitly demonstrated. 
However, this is not the case for a general linear constraint. Furthermore, equation (28) can 
produce additional solutions which do not correspond to extreme points, as will be seen in the 
examples with three qubits, below. In the present case of two qubits, one obtains from equa-
tion (28) two extreme points,

ρ0 =
1
4
(1 − σ1σ2) , r = 1,� (29)

ρ1 =
1
4

(
1 +

1
3
σ1σ2

)
, r = 3,� (30)

in agreement with the analysis based on the squaring parametrization.

Figure 1.  Squaring parametrization for the set of Werner states of two qubits, 
equation  (25). Plotted is the map a(b) given by equation  (27). While the auxiliary 
parameter b runs from −∞ to +∞, the generalized Bloch parameter a automatically 
admits values only in the allowed range [−1, 1

3 ].

N Il’in et alJ. Phys. A: Math. Theor. 51 (2018) 085301
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3.2.2. Translation-invariant Werner states of three qubits.  A Werner (rotationally invariant) 
state of three qubits is given by

ρ =
1
8
(1 + a12 σ1σ2 + a23 σ2σ3 + a31 σ3σ1 + a123 σ1σ2σ3) .� (31)

We would like to reduce the number of parameters from four to three or two for the purpose 
of visualization. To this end, we impose additional symmetries. In the present subsection, 
we require states to be translation invariant, which leads to a two-dimensionally constrained 
set of quantum states M′. In the next subsection, we impose T-invariance and get a three-
dimensional M′.

A translational symmetry is a symmetry under cyclic permutations of qubits, 
(1, 2, 3) → (3, 1, 2) → (2, 3, 1). Imposing this symmetry, we get a two-dimensional set of 
states of the form

ρ =
1
8
(1 + as(σ1σ2 + σ2σ3 + σ3σ1) + at σ1σ2σ3) .� (32)

Introducing

τ = 1 + bs(σ1σ2 + σ2σ3 + σ3σ1) + bt σ1σ2σ3,� (33)

we obtain from equation (2) with the use of equations (B.1)–(B.4), (B.7)

as = 2
bs − b2

t

1 + 9b2
s + 6b2

t
,

at = 2
bt(1 − 3bs)

1 + 9b2
s + 6b2

t
.

�

(34)

These equations determine the shape of M′, which is a triangle, as shown in figure 2. A direct 
way to see this is to find the boundary ∂M′ from equation (19), which in the present case reads

det

∣∣∣∣
∣∣∣∣
∂(as, at)

∂(bs, bt)

∣∣∣∣
∣∣∣∣ = 4

(1 + 3bs)((1 − 3bs)
2 − 12b2

t )

(1 + 9b2
s + 6b2

t )3
= 0.� (35)

The solutions of this equation determine three lines in the space of b variables:

bs = −1
3

,

bt =
1

2
√

3
(1 − 3bs),

bt = − 1
2
√

3
(1 − 3bs).

�

(36)

The map (34) converts these lines to three line segments,

as = −1
3

, at ∈ [− 1√
3

,
1√
3
],

at =
1

2
√

3
(1 − 3as), as ∈ [−1

3
,

1
3
],

at = − 1
2
√

3
(1 − 3as), as ∈ [−1

3
,

1
3
],

� (37)
which form a triangle, as shown in figure 2.

N Il’in et alJ. Phys. A: Math. Theor. 51 (2018) 085301
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Figure 2 illustrates the map (34). A generic inner point of M′ in the (as, at) plane has four 
preimage points in the (bs, bt). The exception are the points of the ellipsoid inscribed in the 
triangle—each of these points has a single preimage point. The ellipsoid itself represents the 
limiting values of a(b) for b growing to infinity (along fixed directions in the (bs, bt) plane). 
The extreme points of M′ are the vertexes of the triangle. An alternative way to determine 
them is to use equation (28) as shown in appendix C. Remarkably, equations (37) replicate 
(36), up to the allowed range of variables.

3.2.3. T-invariant Werner states of three qubits.  Now we turn to the case of Werner states 
of three qubits invariant under time reversal9. This transformation acts on products of sigma 
matrices as follow: T(σiσk) = σiσk and T(σ1σ2σ3) = −σ1σ2σ3. Hence, the condition 
T(ρ) = ρ with ρ given by equation (31) implies a123  =  0, and we obtain a three-dimensional 
set of states of the form

ρ =
1
8
(1 + a12 σ1σ2 + a23 σ2σ3 + a13 σ1σ3) .� (38)

Figure 2.  Squaring parametrization for the set M′ of translation-invariant Werner states 
of three qubits, equation (32). The map a(b) given by (34) is shown schematically: An 
area of a given hatching style in the (bs, bt) plane is mapped to the area of the same 
hatching style in the (as, at) plane. The set M′ is represented by the triangle in the 
(as, at) plane. Points in this triangle have up to four preimage points in the (bs, bt) plane; 
thus, four sheets are required to visualize the map. The interior of the triangle is mapped 
onto itself. The ellipsoid inscribed in the triangle in the (as, at) plane is the limit of the 
image of a circle in the (bs, bt) plane with radius growing to infinity.

9 Time reversal is an antiunitary operation. A generalization of the definition (20) to the antiunitary case is straight-
forward.

N Il’in et alJ. Phys. A: Math. Theor. 51 (2018) 085301
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Introducing

τ = 1 + b12 σ1σ2 + b23 σ2σ3 + b13 σ1σ3� (39)

we get

a12 = 2
b12 − b2

12 + b23b13

1 + 3(b2
12 + b2

23 + b2
13)

,� (40)

and analogous formulae for a23 and a13.
The set M′ determined by the map (40) is a truncated cone shown in figure 3. To see this let 

us determine the boundary ∂M′ of the set. Equation (19) in the present case reads

det

∣∣∣∣
∣∣∣∣
∂(a12, a23, a13)

∂(b12, b23, b13)

∣∣∣∣
∣∣∣∣ = 24

(A − 1)(A + 1)(B + 2
3 A − C − 1

3 )

(3B + 1)4 = 0,� (41)

where

A = b12 + b23 + b13,� (42)

B = b2
12 + b2

23 + b2
13,� (43)

C = 2(b12b23 + b23b13 + b13b12).� (44)

Solutions of equation (41) have the following form:

b2
12 + b2

23 + b2
13 − 2(b12b23 + b23b13 + b13b12) +

2
3
(b12 + b23 + b13) =

1
3

,
�

(45)

b12 + b13 + b23 = −1,� (46)

Figure 3.  Squaring parametrization for the set of T-invariant Werner states of three 
qubits, equation  (38). In the left panel, the solutions of the equation  (19) for the 
boundary ∂M′ are shown in the space of auxiliary parameters (b12, b23, b31). The same 
solutions in the space of generalized Bloch vectors (a12, a23, a31) are shown in the right 
panel. The set M′ is a truncated cone. Arrows illustrate the mapping (40) applied to 
solutions of equation (19).
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b12 + b13 + b23 = 1.� (47)

Equation (45) describes a double cone with a vertex with co-ordinates b12 = b13 = b23 = 1
3, 

while equations (46) and (47)—two parallel planes. The map (40) converts the double cone 
to a truncated cone, the first plane to the base of this truncated cone, and the second plane to 
the altitude of this cone, as shown in figure 3. In contrast to the previously considered cases, 
some of the solutions of equation (19) (specifically, those given by equation (47)) correspond 
to inner points of M′.

M′ has extreme points of two types, the tip of the cone and the directrix (the circle in the 
base of the cone). It is worth noting that in contrast to the previously considered cases, extreme 
points of the second type form a continuous set. Finding extreme points of M′ with the help 
of equation (28) is described in appendix D.

3.3.  Rotationally invariant states of two qutrits

In this section we consider a set of states of two spins one, or qutrits, which are invariant under 
global rotations of the basis. A unitary operator of rotations of a single spin one is given by

Uϕ = eiϕS,� (48)

where S is the operator of spin, and the direction and the magnitude of the vector ϕ corre-
spond to the axis and angle of rotation, respectively. The rotational invariance of two qutrits is 
the invariance with respect to Uϕ ⊗ Uϕ for any ϕ. Note that, in contrast to the qubit case, the 

Figure 4.  Squaring parametrization for the set M′ of rotationally-invariant states of two 
qutrits, equation (50). The map a(b) given by (51) is shown schematically by hatching 
in a way analogous to that in figure 2. The set M′ is represented by the triangle in the 
(as, at) plane. Points in this triangle have up to four preimage points in the (bs, bt) plane; 
thus, four sheets are required to visualize the map. The interior of the triangle is mapped 
onto itself. The ellipsoid inscribed in the triangle in the (as, at) plane is the limit of the 
image of a circle in the (bs, bt) plane with radius growing to infinity.
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rotational invariance is not equivalent to the Werner invariance, since Uϕ does not exhaust all 
possible unitary transformations in the space of a qutrit.

A rotationally invariant density matrix of two qutrits is a linear combination of the identity 
operator and traceless operators (S1S2) and (S1S2)

2 − 4/3. These three operators are linearly 
independent, and constitute a basis for (S1S2)

3 and higher powers of the scalar product (S1S2). 
Thus, we expand

τ = 1 + bs(S1S2) + bt

(
(S1S2)

2 − 4
3

)
,� (49)

ρ =
1
9

(
1 + as(S1S2) + at

(
(S1S2)

2 − 4
3

))
,� (50)

and the map (2) reads

as = 6
3bs − bsbt

12b2
s + 8b2

t − 12bsbt + 9
, at = 3

3b2
s + 7b2

t − 12bsbt + 6bt

12b2
s + 8b2

t − 12bsbt + 9
.� (51)

The set M′ determined by the map (51) is a triangle shown in figure 4. This can be revealed 
by an analysis completely analogous to that in the previous cases. Equation (16) leads to the 
equation for the boundary,

||∂(as, at)

∂(bs, bt)
|| = 108

(6bs − 3 − 8bt)(3bs + 3 − bt)(3bs − 3 + bt)

(12b2
s − 12bsbt + 8b2

t + 9)3
= 0,� (52)

with the solutions

bt =
3
4

bs −
3
8

,� (53)

bt = 3 + 3bs,� (54)

bt = 3 − 3bs,� (55)

at =
3
4

as −
3
8

, as ∈ [−1.5, 0.9],� (56)

at = 3 + 3as, as ∈ [−1.5, 0],� (57)

at = 3 − 3as, as ∈ [0, 0.9].� (58)

The latter three equations describe the sides of the triangle. The analysis of multiplicities of 
the map and its limiting values for b growing to infinity leads to results analogous to the case 
considered in section 3.2.2—see figure 4. Finding extreme points of M′ with the help of equa-
tion (28) is described in appendix E.

4.  Summary and outlook

To summarize, the squaring parametrization is a surjective nonlinear map from RD2−1 to a 
set M of (in general, mixed) quantum states. This map is explicitly given by equation (16) 
which maps each point of RD2−1 to a legitimate Bloch vector. The squaring parametrization 
has several attractive features. First, it automatically accounts for the positivity of a density 
operator and, at the same time, is able to explicitly preserve a tensor product structure of a 
many-body system. Second, it produces as a byproduct an equation for the boundary of M
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—see equation (19). Finally, the squaring parametrization can be adapted to describe sets of 
quantum states invariant under a symmetry group.

We believe that the squaring parametrization can be useful in a wide range of problems 
where a quantum density matrix of a sufficiently large dimension plays a role. In particular, 
we plan to incorporate it in a variational technique which is based on variation of a reduced 
density matrix (instead of a many-body wave function) and bounds the ground state energy 
from below (not from above) [15].
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Appendix A.  Multiplicities of the squaring map in the unconstrained case

A density matrix ρ can be expanded as

ρ =

D∑
l=1

ωlΠl.� (A.1)

Here Πl are projectors of rank 1 and ωl � 0 are the eigenvalues of ρ (i.e. probabilities),

D∑
l=1

ωl = 1.� (A.2)

If one considers the squaring map (2) as an equation with τ being unknown, all its solutions 
are given by

τ = C
D∑

l=1

ηl
√
ωlΠl,� (A.3)

where C is an nonzero arbitrary constant and the set of ηl ∈ {−1, 1} is such that

D∑
l=1

ηl
√
ωl �= 0.� (A.4)

Clearly, the latter inequality is true for a generic point of M. If we exclude from our consid-
eration those rare points of M which do not satisfy equation (A.4) for some set of ηl, we can 
compute the multiplicity (i.e. the number of preimage points) of the squaring parametrization 
as defined by equations (2) and (15) in the following way. The number of nonzero ωl  is rank ρ. 
There are 2rank ρ different combinations of ηl

√
ωl . These combinations can be partitioned in 

pairs, two members of each pair being different by an overall sign. This difference, as well as 
the freedom in choosing C, will disappear when τ is normalized according to equation (15). 
Thus the multiplicity of the map in a generic point is 2rank ρ−1.

Appendix B.  Rotationally invariant operators in the space of qubits

In order to use the squaring parametrization for Werner states of qubits one needs to be able to 
convolute products of scalar and triple products of sigma matrices. Here we give for reference 
a list of such convolutions involving at most five qubits:
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(σ1σ2)
2 = 3 − 2(σ1σ2)� (B.1)

(σ1σ2)(σ2σ3) = −i(σ1σ2σ3) + (σ1σ3)� (B.2)

(σ1σ2)(σ1σ2σ3) = −(σ1σ2σ3) − 2i(σ1σ3) + 2i(σ2σ3)� (B.3)

(σ1σ2σ3)(σ1σ2) = −(σ1σ2σ3) + 2i(σ1σ3) − 2i(σ2σ3)� (B.4)

(σ1σ2)(σ2σ3σ4) = (σ1σ3σ4) − i(σ1σ3)(σ2σ4) + i(σ1σ4)(σ2σ3)� (B.5)

(σ2σ3σ4)(σ1σ2) = (σ1σ3σ4) + i(σ1σ3)(σ2σ4) − i(σ1σ4)(σ2σ3)� (B.6)

(σ1σ2σ3)
2 = 6 − 2(σ1σ2) − 2(σ1σ3) − 2(σ2σ3)� (B.7)

(σ1σ2σ3)(σ1σ2σ4) = + i(σ1σ3σ4) + i(σ2σ3σ4)

− (σ1σ3)(σ2σ4) − (σ1σ4)(σ2σ3) + 2(σ3σ4)
� (B.8)

(σ1σ2σ3)(σ1σ4σ5) = − i(σ1σ2)(σ3σ4σ5) + i(σ1σ3)(σ2σ4σ5)

+ (σ2σ4)(σ3σ5) − (σ2σ5)(σ3σ4)
� (B.9)

(σ1σ2)(σ2σ3)(σ3σ4) = − i(σ1σ2σ4) − i(σ1σ3σ4) + (σ1σ4)

+ (σ1σ4)(σ2σ3) − (σ1σ3)(σ2σ4)
� (B.10)

(σ1σ2)(σ3σ4)(σ1σ3)(σ2σ4) = 3 + i(σ1σ2σ3) − i(σ1σ2σ4) + i(σ1σ3σ4) − i(σ2σ3σ4)

− 2(σ1σ2) − 2(σ1σ3) + 2(σ1σ4)

+ 2(σ2σ3) − 2(σ2σ4) − 2(σ3σ4)

+ (σ1σ2)(σ3σ4) + (σ1σ3)(σ2σ4).
�

(B.11)

It should be noted that the first nine of these equalities suffice to evaluate all other combi-
nations of scalar and triple products—in particular, equations (B.10) and (B.11)—iteratively 
without exploiting the properties of σ-matrices. This can be used when implementing the 
manipulations with scalar and mixed products of a large number of qubits in computer algebra 
systems.

Also observe that equation (B.11) implies that operators (σ1σ2)(σ3σ4) and (σ1σ3)(σ2σ4) 
are not orthogonal with respect to the scalar product (3). This implies that in the case of the 
number of qubits being higher than three one has either to employ an additional orthogonali-
zation procedure or cope with a nonorthogonal basis.

Appendix C. Translation invariant Werner states of three qubits

Here we solve equation (28) and this way find the extreme points of the set M′ of the states 
of the form (32). We choose to work with projectors Π which are related to the solutions of 
equation (28) as Π = rρ and, obviously, satisfy the equation

Π2 = Π.� (C.1)

We further introduce c ≡ r/D. Substituting
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Π = c(1 + as(σ1σ2 + σ2σ3 + σ3σ1) + at σ1σ2σ3),� (C.2)

into equation (C.1) and using equations (B.1)–(B.3) one obtains

c = (1 + 9a2
s + 6a2

t )
−1,� (C.3)

as = 2 c (as − a2
t ),� (C.4)

at = 2 c at (1 − 3as).� (C.5)

The solutions of this system of equations correspond to seven projectors:

Π0 = 1� (C.6)

Π1 =
1
2

(
1 +

1
3
(σ1σ2 + σ2σ3 + σ3σ1)

)
,� (C.7)

Π2 =
1
4

(
1 − 1

3
(σ1σ2 + σ2σ3 + σ3σ1) +

1√
3
σ1σ2σ3

)
,� (C.8)

Π3 =
1
4

(
1 − 1

3
(σ1σ2 + σ2σ3 + σ3σ1)−

1√
3
σ1σ2σ3

)
,� (C.9)

Π12 =
3
4

(
1 +

1
9
(σ1σ2 + σ2σ3 + σ3σ1) +

1
3
√

3
σ1σ2σ3

)
,� (C.10)

Figure C1.  Set M′ of the translation-invariant Werner states of three qubits, 
equation (32), with projectors determined from equation (28). A projector is turned into 
a density matrix by normalizing it by the numerical factor 1/r, where r is the rank of 
the projector. Three of the solutions correspond to the extreme points of M′ (vertices 
of the triangle), others can be obtained as equally weighted linear combinations of two 
or three ‘extreme’ solutions.
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Π23 =
1
2

(
1 − 1

3
(σ1σ2 + σ2σ3 + σ3σ1)

)
,� (C.11)

Π13 =
3
4

(
1 +

1
9
(σ1σ2 + σ2σ3 + σ3σ1)−

1
3
√

3
σ1σ2σ3

)
.� (C.12)

The extreme points of M′ are given by Π1/4, Π2/2 and Π3/2. All other projectors can 
be represented as equally weighted linear combinations of two or three of these ‘extreme’ 
projectors, e.g. Π23 = Π1 +Π2. Density matrices obtained from projectors (C.6)–(C.12) are 
shown in figure C1.

Appendix D.  T-invariant Werner states of three qubits

Here we repeat the procedure described in appendix C for the states of the form (38). We 
consider a projector of the form

Π = c (1 + a12 σ1σ2 + a23 σ2σ3 + a31 σ3σ1)� (D.1)

and plug it to equation (C.1). Using equations (B.1) and (B.2) we obtain equations

c =
1

1 + 3(a2
12 + a2

23 + a2
31)

,� (D.2)

a12 = 2
a12 − a2

12 + a23a31

1 + 3(a2
12 + a2

23 + a2
31)

� (D.3)

and two more equations which can be obtained from equation (D.3) by cyclic permutation of 
indices in aij. The solutions of these equations correspond to the following projectors:

Π0 = 1,� (D.4)

Π1 =
1
2

(
1 +

1
3
σ1σ2 +

1
3
σ2σ3 +

1
3
σ3σ1

)
,� (D.5)

Π2 =
1
2

(
1 − 1

3
σ1σ2 −

1
3
σ2σ3 −

1
3
σ3σ1

)
,� (D.6)

Π3± =
1
4

(
1 + a12σ1σ2 −

a12 ∓ k12 + 1
2

σ1σ3 −
a12 ± k12 + 1

2
σ2σ3

)
,

k12 ≡
√
−3a2

12 − 2a12 + 1, a12 ∈ [−1,
1
3
],

�

(D.7)

Π4± =
3
4

(
1 + a12σ1σ2 +

−3a12 ∓ l12 + 1
6

σ1σ3 +
−3a12 ± l12 + 1

6
σ2σ3

)
,

l12 ≡
√
−27a2

12 + 6a12 + 1, a12 ∈ [−1
9

,
1
3
].

�

(D.8)

Note that Π3± and Π4± are one-parametric families of projectors parametrized by a12.
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Extreme points of M′ are given by Π1/4 (vertex) and Π3±/2 (directrix). Density matrices 
obtained from projectors (D.4)–(D.8) are shown in figure D1.

Appendix E.  States of two qutrits invariant under rotations

Here, we solve equation (28) and in this way find the extreme points of the set M′ of the states 
of the form (50). This is done in complete analogy with appendix C. The results are illustrated 
in figure E1. The projectors read

Π0 = 1� (E.1)

Π1 =
2
3

(
1 +

3
4
(S1S2) +

3
4

(
(S1S2)

2 − 4
3

))
� (E.2)

Π2 =
8
9

(
1 − 3

8

(
(S1S2)

2 − 4
3

))
� (E.3)

Π3 =
4
9

(
1 − 9

8
(S1S2)−

3
8

(
(S1S2)

2 − 4
3

))
� (E.4)

Π4 =
5
9

(
1 +

9
10

(S1S2) +
3
10

(
(S1S2)

2 − 4
3

))
� (E.5)

Figure D1.  Solutions of equation (28) in the case of T-invariant Werner states of three 
qubits, equation (38). A projectors is turned into a density matrix by normalizing it by 
the numerical factor 1/r, where r is the rank of the projector. 14Π1 and 12Π3± correspond 
to extreme points of M′ (vortex and directrix, respectively).
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Π5 =
1
3

(
1 − 3

2
(S1S2)−

3
2

(
(S1S2)

2 − 4
3

))
� (E.6)

Π6 =
1
9

(
1 + 3

(
(S1S2)

2 − 4
3

))
.� (E.7)

The extreme points of M′ are given by Π4/5, Π5/3 and Π6.
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