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Abstract
We study the Wigner–Smith time-delay matrix Q of a ballistic quantum dot
supporting N scattering channels. We compute the v-point correlators of the
power traces QTr k for arbitrary v 1 at leading order for large N using
techniques from the random matrix theory approach to quantum chromody-
namics. We conjecture that the cumulants of the QTr kʼs are integer-valued at
leading order in N and include a MATHEMATICA code that computes their
generating functions recursively.

Keywords: random matrix theory, quantum transport in mesoscopic systems,
chaotic dynamics

1. Introduction

The proper delay times , , N1t t¼ are the eigenvalues of the Wigner–Smith time-delay matrix
Q, which is defined in term of the scattering matrix S E( ) by [19, 40, 46]

Q S E
S E

E
i . 1( ) ( ) ( )†= -

¶
¶

The Wigner–Smith matrix provides an overall description of the dynamical aspects of a
scattering process in terms of the phase shift between a scattered wavefunction and a freely
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propagating one. Ballistic quantum dots provide a physical realization of systems whose
scattering matrix S E( ) is effectively modeled by a random unitary matrix [5], where N is the
total number of scattering channels.

The joint probability law of the rescaled inverse delay times Ni i
1( )l t= - was derived in

[11] when the scattering matrix S E( ) belongs to the Dysonʼs circular ensembles [18] and was
generalized in [29] for systems whose symmetries belong to the classification introduced by
Altland and Zirnbauer [2, 48]. It is known in random matrix theory (RMT) as the eigenvalue
distribution of a Wishart–Laguerre matrix ensemble (equations (31) and (32) below). This
ensemble belongs to the class of one-cut β-ensembles, where β is the Dyson index. Without
loss of generality, we will consider systems such that 1, 2b = or 4 according to the internal
symmetries of the problem (see the reviews [7, 25, 42] for an extensive discussion).

In this paper we study the power traces of the time-delay matrix Q,

N QTr , 0, 21 ( ) k=k
k k-

and we derive new formulae for their joint cumulants in the limit N  ¥. Few basic facts on
cumulants are collected in appendix A. Let C , ,v v1( ) ¼k k be the vth cumulant of

, , v1( ) ¼k k . Take the limit

N Clim , , , , , 3
N

v
v

v
v

2 1 1
1v1( ) [ ] ( )( )   b a k k¼ = ¼k k

¥

- -

with , , v1[ ]a k k¼ independent of β. Our main result is the derivation of the generating
functions F z z, ,v v,0 1( )¼ of the limiting cumulants(3) for all v 1 .

Traces of the Wigner–Smith matrix for chaotic cavities have been investigated inten-
sively in the past. Many results are available on the Wigner time-delay QTr1 = , both for
finite and large N [22, 30, 37, 41, 43]. A few results for higher-powers QTr =k

k are also
available. The covariances of 1 and 2 have been computed at leading order in N in [24].
Soon after one of the authors [14] considered the joint distribution of all the power traces k
( 0k ) and computed the averages and the full covariance structure at leading order in N.
Recently, exact finite-N formulae for averages of arbitrary products of power traces k
( 1k ) have been derived for 2b = [32]. The regime of non-ideal couplings with the
external leads, of obvious importance in physical applications, has also been investigated
[35], but is not considered in this paper.

In deriving our results we follow ideas similar to those discussed in [15]. Here, however,
we prefer to use the convenient language and formalism of the so-called ‘loop calculus’ [31]
developed in the RMT approach to quantum chromodynamics. The functional derivative
method discussed in [15] can be concretely realized in this framework by means of the ‘loop
insertion operator’. In addition, the derivation of our results is simplified by using a suitable
‘set of coordinates’ first introduced by Ambjørn et al [4]. We are not aware of any general
result on the leading order cumulants of random Wigner–Smith matrices(3) so far; this is
somewhat astonishing since the method of loop equations—well established in a different
area of physics—can be applied directly.

The aim of this paper is thus threefold. First, we present a number of new results on the
Wigner–Smith matrix of ballistic quantum dots. We believe that the ideas discussed in this
work may be useful in related problems; using techniques similar to those used here it is
possible, for instance, to obtain results for the moments of transmission matrices (see also
recent applications of loop equation formalism in Gaussian and circular β-ensembles [47]).
Hence, our second aim is to popularize the loop calculus in the random matrix approach of
quantum transport in chaotic cavities. Third, we provide strong evidences of an underlying
combinatorial problem whose interpretation might be found through careful considerations of
the semiclassical approaches to quantum chaos.
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The plan of this paper is as follows. We start in section 2 with some preliminaries on the
one-cut β-ensembles. In section 3 the iterative scheme for the v-point Green functions is
presented. Section 4 contains the main result (theorem 1) and its proof. In section 5 we
discuss further results (theorem 2) and a conjecture. The paper is complemented by three
appendices where we collect a few properties of cumulants (appendix A), we present the
derivation of some identities involved in the iterative scheme for the Greenʼs functions
(appendix B), and we include a MATHEMATICA code to implement in a systematic way the
generating functions (appendix C).

2. Generalities about the one-cut ensembles

Consider an ensemble of N×N random matrices

P
Z

1
e , 4N VTr( ) ( )( )f = b f-

where 1, 2b = or 4 if f belongs to the set of real symmetric, complex hermitian or
quaternion self-dual matrices, respectively. This ensemble is invariant under the adjoint action
of the group O N U N,( ) ( ) or Sp N( ) for 1, 2b = or 4, respectively, and hence it is usually
referred to as an invariant ensemble. We assume that the real potential V is independent of N
and β and such that its derivative V ¢ (the force field) is a rational function. For our purposes it
is convenient to consider the parametric family of potentials

V x t x
t

k
x tlog , , 5

k

k k
i0

1

( ) ( )å= + Î
=

¥

where it is understood that only finitely many tiʼs are non-zero. The non-zero couplings are
assumed to be such that the partition function Z d e N VTr ( )ò f= b f- is finite. Of course, there
are many admissible choices for the couplings (hence for V). One of the simplest is the
quadratic potential V x x 42( ) = (that is t 1 22 = and t 0i = for i 2¹ ), corresponding to the
celebrated Gaussian ensembles GOE, GUE and GSE. Here we anticipate that in our problem
we will set the couplings t t 1 20 1= - = - and t 0i = for i 2 . Note that necessarily t 00 
in(5) and, whenever t 00 ¹ it is implicitly assumed that the probability measure(4) is
supported on the set of positive definite matrices, 0f .

Averages of observables are defined in the usual way

F
Z

F P
1

d . 6⟨ ( )⟩ ( ) ( ) ( )òf f f f=

Observables that depend uniquely on the spectrum i{ }l (i N1, ,= ¼ ) of f are particularly
meaningful. In this case, (6) can be reduced to an integral over the joint probability
distribution of the eigenvalues of f, which is given by

d , ,
1

e d . 7N N
N

N V

k

N

k, 1
,

log

1

i i i j i j( ) ( )( ) ∣ ∣⎡⎣ ⎤⎦


 l l l¼ = å å
b

b

b l l l- - -

=

<

For all v 1 , let us define the v-point connected Green function of f

G z z C
N z N z

, ,
1

Tr
1

, ,
1

Tr
1

. 8v v v
v

1
1

( ) ( )
⎛
⎝⎜

⎞
⎠⎟f f

¼ =
-

¼
-

Note thatG z z, ,v v1( )¼ is a non-random complex function of v variables and is well-defined for
z 0iI > . Of course, G z z, ,v v1( )¼ is symmetric in its variables. We denote the leading order

term in N of(8) by
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G z z N G z z, , lim , , . 9v v
N

v
v v,0 1

2 1
1( ) ( ) ( )( )¼ = ¼

¥

-

The indices ‘v, 0’ denote that Gv,0 is the generating function of the leading order in N (the
g=0 term in the ‘genus expansion’ N1 g) of the vth order cumulants. The existence of a N1
expansion has been proved in [20] for polynomial potentials and 2b = , and later for a
general class of one-cut matrix models and every 0b > in [9]. Note that, in general,
G z z, ,v v,0 1( )¼ is not continuous. For large N the eigenvalues of f concentrate on a subset of 
that corresponds to the singularities of Gv,0. For instance, the discontinuity of the one-point

Green function G z lim
N N i

N
z1,0

1
1

1

i
( ) = å l¥

= -
on the real line is proportional to the limit

density of the eigenvalues of f.
We now assume that the potential V is such that the singularities of G z1,0 ( ) consist of a

finite single cut A B,[ ], i.e. the limit density of the eigenvalues is concentrated on a single
interval. Under this one-cut assumption we have [3]

G z
V

z

z A z B

A B

d

2 i
. 101,0 ∮( ) ( ) ( )( )

( )( )
( )



w
p

w
w w w

=
¢
-

- -
- -

Hereafter the integration contour  turns anticlockwise around the cut A B,[ ] without
enclosing the point zw = . The real edges of the cut A and B are determined by the
normalization condition G z z11,0 ( ) ~ as z  ¥:

V

A B

V

A B

d

2 i
0,

d

2 i
1. 11∮ ∮( )

( )( )
( )

( )( )
( )

 

w
p

w
w w

w
p

w w
w w

¢

- -
=

¢

- -
=

3. Iterative scheme for the correlators

The following ideas have been developed in the RMT approach to quantum chromodynamics
and 2D quantum gravity (see [1, 3, 4, 12, 13, 17, 26, 31, 45]). We include them to make the
paper self-contained. In the following, we compute the v-point correlators using the functional
derivative method outlined below. The precise asymptotic meaning of these formal compu-
tations can be found in the mathematical papers [9, 20].

3.1. Functional derivative method

The whole family of Greenʼs functions (at leading order in N) can be obtained from G z1,0 ( )
using an iterative procedure involving functional derivatives. Indeed, we can write the var-
iational formula

G z z
V z

G z z, ,
1

, , , 12v v
v

v v,0 1 1,0 1 1( )
( )

( ) ( )
b

d
d

¼ = - ¼- -

where the functional derivative operator is defined as

V x

k

x t

d

d
. 13

k
k

k1
1( )

( )å
d

d
= -

=

¥

+

Hence, for all v 1> :

G z z
V z V z

G z, ,
1

. 14v v

v

v
,0 1

1

2
1,0 1( )

( ) ( )
( ) ( )

⎛
⎝⎜

⎞
⎠⎟b

d
d

d
d

¼ = -
-



J. Phys. A: Math. Theor. 49 (2016) 18LT01

4



3.2. Total derivative formula

The functional derivative method can be implemented by using the ‘loop-insertion operator’
and a suitable set of variables. A natural choice would be to work with the couplings tiʼs that
parametrize the potentialV x( ) in(5). However, it was realized in [4] that explicit calculations
are easier by working in terms of the edges A and B and the coordinates Mℓ and Jℓ defined as

M
V

A A B
ℓ

d

2 i
, 0 15ℓ ℓ∮ ( )

( ) ( )( )
( )


w

p
w

w w w
=

¢

- - -

J
V

B A B
ℓ

d

2 i
, 0. 16ℓ ℓ∮ ( )

( ) ( )( )
( )


w

p
w

w w w
=

¢

- - -

Note that, from(11), M J 00 0= = .
The loop-insertion operator [3, 4, 20] is defined as

V x

k

x t
. 17

k
k

k1
1( )

( )å
¶

¶
= -

¶
¶=

¥

+

The action of this operator has an interesting interpretation in the theory of symmetric forms
on Riemann surfaces (see, for instance, [13]). Using V x t xk k

k
0

1( )¢ = å =
¥ - , we have the

formula [4, 21]

V y

V x y x

1
. 18

2

( )
( ) ( )

( )¶ ¢
¶

= -
-

The loop-insertion operator and the new set of variables provide a handy realization of the
functional derivative in terms of a total derivative formula:

V z V z

A

V z A

B

V z B

M

V z M

J

V z J
. 19

ℓ

ℓ

ℓ

ℓ

ℓ1

( ) ( ) ( ) ( )

( ) ( )
( )

⎧⎨⎩
⎫⎬⎭

å

d
d

d
d

d
d

d
d

d
d

=
¶

¶
+

¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

Therefore, in order to apply the functional derivative V z( )d d , we need to compute the
variation of A, B, Mℓ and Jℓ with respect to the external potential V z( ):

A

V z M z A z A z B

1 1
, 20

1( ) ( ) ( )( )
( )d

d
=

- - -

B

V z J z B z A z B

1 1
, 21

1( ) ( ) ( )( )
( )d

d
=

- - -

and

M

V z
ℓ

A

V z
M

M

z A

B

V z

J

B A

J

z A

M

B A

1

2

1

2
, 22

ℓ
ℓ ℓ

ℓ ℓ
p

ℓ
p

ℓ p

1
1

1 1

1
1

( ) ( ) ( )

( ) ( ) ( ) ( )
( )

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å

d
d

d
d

d
d

= + -
-

+
-

-
-

-
-

+

=
- +
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J

V z
ℓ

B

V z
J

J

z B

A

V z

M

A B

M

z B

J

A B

1

2

1

2
. 23

ℓ
ℓ ℓ

ℓ ℓ
p

ℓ
p

ℓ p

1
1

1 1

1
1

( ) ( ) ( )

( ) ( ) ( ) ( )
( )

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å

d
d

d
d

d
d

= + -
-

+
-

-
-

-
-

+

=
- +

For completeness we present the derivation of these formulae in appendix B.

3.3. Multi-point Green functions

The one-point Green function in the one-cut regime is given by(10) supplemented by(11). A
first functional differentiation provides the two-point correlator

G z z
z z

z z A B z z AB

z A z B z A z B
,

1 1 2
1 . 242,0 1 2

1 2
2

1 2 1 2

1 1 2 2

( )
( )

( )( )
( )( )( )( )

( )
⎡
⎣⎢

⎤
⎦⎥b

=
-

- + + +
- - - -

-

Note that this result depends on the potential V x( ) only through the edges A and B of the
cut (determined by(11)). This is called macroscopic universality of the two-point correlators
[6, 10]. G z z,2,0 1 2( ) has no explicit dependence on V x( ). As a consequence of the functional
derivative identity(12) the v-point Green functions (v 2 ) have no explicit dependence on
the potential. However, the universality of the correlators decreases as v increases. For
instance, the three-point correlator is given by

G z z z
V z

G z z

A

V z A

B

V z B
G z z

, ,
1

,

1
, . 25

3,0 1 2 3
3

2,0 1 2

3 3
2,0 1 2

( )
( )

( )

( ) ( )
( ) ( )

⎡
⎣⎢

⎤
⎦⎥

b
d

d

b
d

d
d

d

=-

=-
¶
¶

+
¶
¶

Note that A

V z( )
d

d
and B

V z( )
d

d
contain M1 and J1 (see(20) and (21)). Hence G3,0 depends on V

through A, B, M1 and J1 (it is ‘less universal’ than G2,0). A further application of the
functional derivative gives the four-point correlator

G z z z z
A

V z A

B

V z B

M

V z M

J

V z J
G z z z

, , ,
1

, , . 26

4,0 1 2 3 4
4 4

1

4 1

1

4 1
3,0 1 2 3

( )
( ) ( )

( ) ( )
( ) ( )

⎡
⎣⎢

⎤
⎦⎥

b
d

d
d

d

d
d

d
d

=-
¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

G4,0 depends on A, B, M1, J1, M2, J2. It is easy to see that in general, the v-point Green
function (v 2 ) depends on the edges A and B and only on the first v 2- elements of the
sequences Mℓ{ } and Jℓ{ }.

For general v 2> we can write

G z z D z G z z v, , 1 , , 3 , 27v v v v v v,0 1 1,0 1 1( ) ( ) ( ) ( ) ( ) ( )b¼ = - ¼- -

where D zv V z V z
( )

( ) ( )
= -d

d
¶

¶
 is the differential operator:

D z
A

V z A

B

V z B

M

V z M

J

V z J
. 28v

ℓ

v
ℓ

ℓ

ℓ

ℓ1

3

( )
( ) ( ) ( ) ( )

( )
⎧⎨⎩

⎫⎬⎭å
d

d
d

d
d
d

d
d

=
¶
¶

+
¶
¶

+
¶

¶
+

¶
¶=

-


The recurrence relation(27) supplemented by the initial datum G z z,2,0 1 2( ) in(45) provides
the full family of v-point connected correlators at leading order in N for the class of one-cut
matrix ensembles.

J. Phys. A: Math. Theor. 49 (2016) 18LT01

6



Remark 1. We emphasize that this route is independent of the specific model (the potential
V x( )) and is valid within the class of one-cut ensembles. The leading order of the v-point
Green function has the same structure determined by the one-cut property. Equations (10),
(11), (24) and (27) give the generic solution of the multi-point correlators Gv,0 as a function
depending parametrically on A, B, Mℓ and Jℓ. This general structure is applied to a specific
model by inserting the model-dependent parameters A, B, Mℓ and Jℓ determined by(11)–(15)
and (16). (Note that the values of the edges A and B as well as Mℓ{ } and Jℓ{ } are functions of
the couplings ti of the potential.)

For v 3 the multi-point Green functions can be written as

G z z
P z z

z A z B
, ,

1 , ,
, 29v v v

v v

i

v
i i

v,0 1 1
1

1
3 2

( ) · ( )
[( )( )]

( )
b

¼ =
¼

- --
=

-

where P z z, ,v v1( )¼ is a symmetric polynomial of degree at most v2 5- in each variable. Note
also that at leading order in N the Dyson index β plays no special role other than being a
multiplicative parameter of the multi-point Green functions Gv,0. (See [21] for additional
remarks.)

4. Main result

For all v 1 let us denote by F z z, ,v v,0 1( )¼ the generating function of the limiting cumulants
, ,v

v
1

1[ ]b a k k¼- defined in(3):

F z z z z, , , , . 30v v
v

v v,0 1
1

0 0
1 1

v

v

1

1( ) [ ] ( )å åb a k k¼ = ¼
k k

k k-

=

¥

=

¥

 

The indices v‘ , 0’ denote that Fv,0 is the generating function of the of the vth order cumulants
at leading order in N (the ‘genus’ g=0 term). Here we provide explicit expressions
for F z z, ,v v,0 1( )¼ .

The joint distribution of the inverse delay times N 0i i
1( ) l t= - is [11]

d , ,
1

e d . 31N
N i j

i j
k

k
N N

k1
,

2 2k( ) ∣ ∣ ( )


  l l l l l l¼ = -
b

b b b l

<

-

This distribution is of the form(7) with external potential

V x x x
1

2
log , 32( ) ( ) ( )= -

which belongs to the general class(5) with the choice

t t t i1 2, 1 2 and 0 for 2.i0 1 = - = =

Since V x( ) in(32) is strictly convex, for large N the density of inverse delay times
concentrates on a single interval (the one-cut assumption is then satisfied). Hence, the joint
law of the inverse delay times il ʼs fits in the iterative scheme described in section 3.

Before stating the result we need the following lemma that specifies the actual values of
the edges A B, and the variables M J,ℓ ℓ for the Wigner–Smith inverse matrix. In the following
we will use the lower-case symbols a, b, m1, j1, etc to denote these model-dependent values.
Similarly, we denote the v-point Green function of the inverse delay times and its leading
order in N by
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g z z
N

C
z z

, ,
1 1

, ,
1

, 33v v v v
i

N

i i

N

v i
1

1 1 1v v1 1

( ) ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å ål l

¼ =
- -= =



g z z N g z z, , lim , , . 34v v
N

v
v v,0 1

2 1
1( ) ( ) ( )( )¼ = ¼

¥

-

In(33) the connected average refers to the joint distribution of the inverse delay times(31).

Lemma 1. The leading order one-point Green function of the inverse delay times is

g z
z

z
z a z b

ab

1

2
1 , 351,0 ( ) ( )( ) ( )

⎡
⎣⎢

⎤
⎦⎥= - -

- -

where

a b3 8 , 3 8 . 36( )= - = +

Let us denote

m
V

a a b
ℓ

d

2 i
, 0 37ℓ ℓ∮ ( )

( ) ( )( )
( )


w

p
w

w w w
=

¢

- - -

j
V

b a b
ℓ

d

2 i
, 0, 38ℓ ℓ∮ ( )

( ) ( )( )
( )


w

p
w

w w w
=

¢

- - -

with V given in(32) and a b, in(36). Then

m j0, 0, 390 0 ( )= =

m j ℓ
1

2 3 8
,

1

2 3 8
, for 1. 40ℓ

ℓ

ℓ ℓ

ℓ

ℓ

( )
( )

( )
( )

( )=
-
-

=
-
+

Remark 2. Equations (35) and (36) mean that, as N  ¥, the density of inverse delay times
is the Marčenko–Pastur distribution [28] supported on the interval [a, b]:

a b

2
1 . 41a b( )

( )( )
( ) r l

l l
pl

=
- -

l

We can now state our central result.

Theorem 1. For all integers v 1 we have

F z z z z g z z z, , 1 , , 2 , 42v v
v

v v v v,0 1 1 ,0 1 1, 1( ) ( ) ( ) ( ) ( )d¼ = - ¼ + -

where g z z, ,v v,0 1( )¼ is the leading order in N of the v-point Green function of the inverse
delay times (34). For all v 1 :

g z z G z z, , , , . 43v v v v A a B b M m J j,0 1 ,0 1 , , ,ℓ ℓ ℓ ℓ
( ) ( )∣ ( ){ } { } { } { }¼ = ¼ = = = =

The parametric functions Gv,0 are given by the one-cut iterative scheme described in
section 3.3:
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G z
z z A z B

AB z

1

4
, 441,0 1

1 1 1

1

( )
( )( )

( )=
- - - -

G z z
z z

z z A B z z AB

z A z B
,

1 1 2
1 , 45

i i i

2,0 1 2
1 2

2
1 2 1 2

1

2
( )

( )
( )( )

( )( )
( )

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥b

=
-

- + + +

- -
-

=

G z z D z G z z v, , 1 , , 3 . 46v v v v v v,0 1 1,0 1 1( ) ( ) ( ) ( ) ( ) ( )b¼ = - ¼- -

Remark 3. The quantities a, b, mℓ, jℓ are given explicitly in(36) and(40); note that
a V z[ ( )]d d , b V z[ ( )]d d , m V zℓ[ ( )]d d , j V zℓ[ ( )]d d are also explicitly known from(20)–(23)

above.

For completeness we report the first four generating functions:

F z z z z
1

2
3 6 1 , 471,0 1 1 1

2
1( ) [ ] ( )= - - - +

F z z
z z

z z

z z z z

z z z z
,

1 3 1

6 1 6 1
1 , 482,0 1 2

1 2

1 2
2

1 2 1 2

1
2

1 2
2

2

( )
( )

( )

( )( )
( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥b

=
-

- + +

- + - +
-

F z z z z z z
z z z z z z

z z
, ,

16 6

6 1
, 49

i i i

3,0 1 2 3 2 1 2 3
1 2 3 1 2 3

1

3 2 3 2
( ) [ ( ) ]

( )
( )

b
=

- + + +

- +
=

F z z z z

e

z z

e e e e e e e e e e e e e e

e e e e e e e e e e e e e

e e e e e e e e e e e e e

e e e e e e e e e e e e

e e e

, , ,
32

6 1

3 9 5 333 3723 30 264

2142 71 738 4354 1788 20538

58863 2 18 156 3 20 126

48 297 15 85 58 654 1843

18 216 675 159 , 50

i i i

4,0 1 2 3 4

3
4

1

4 2 5 2

4
3

3 4
2

2 4
2

1 4
2

4
2

2 3 4 1 3 4

3 4 2
2

4 1 2 4 2 4 1
2

4 1 4

4 2 3
2

1 3
2

3
2

2
2

3 1 2 3 2 3

1 3 3 2
3

1 2
2

2
2

1
2

2 1 2 2

1
3

1
2

1

( )

( )

· [

] ( )

b
=

- +

- - + - + -

+ - + - - +

- - + - + - +

+ - + - + + - +

- + - +

=

where e z z zk i i i i i ik k1 2 1 2= å < < <  denote the elementary symmetric polynomials in the
variables z z, , v1 ¼ . The expressions of Fv,0ʼs for v 5 are too lengthy to be reported here. The
general form for v 3 can be written as

F z z
e C e e

z z
, ,

6 1
, 51v v

v
v

p p
p

v
p

i

v
i i

v,0 1 1

, , 1

1
2 3 2

v
v

1
1

( )
( )

( )
b

¼ =
å

- +-

¼

=
-



(the sum runs over non-negative integers p p, , v1 ¼ such that p p p v2 5v1 2 + + + - )
with real coefficients Cp p, , v1 ¼ that we were not able to determine in closed form. Standard
symbolic manipulation softwares can easily generate the Fv,0ʼs from(46) and compute the
coefficients , , v1[ ]a k k¼ . In appendix C we provide a MATHEMATICA code to implement
the generating function Fv,0 for arbitrary v.

The generating function F z1,0 1( ) in(47) of the leading order averages C1( ) ⟨ ⟩ =k k has
been computed in [8]. The generating function F z z,2,0 1 2( ) in(48) of the covariances
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Table 1. A few values of the limiting cumulants N Clim , , ,N
v

v
v

v
2 1 1

1v1( ) [ ]( )   b a k k¼ = ¼k k¥
- - . Here v1 5  and 1 3i k .

1( )k 1[ ]a k ,1 2( )k k ,1 2[ ]a k k , ,1 2 3( )k k k , ,1 2 3[ ]a k k k

(1) 1 (1, 1) 4 (1, 1, 1) 96
(2) 2 (1, 2) 24 (1, 1, 2) 848
(3) 6 (1, 3) 132 (1, 1, 3) 6192

(2, 2) 160 (1, 2, 2) 7488
(2, 3) 936 (1, 2, 3) 54672
(3, 3) 5700 (2, 2, 2) 66112

(1, 3, 3) 399168
(2, 3, 3) 3524112
(3, 3, 3) 25729488

, , ,1 2 3 4( )k k k k , , ,1 2 3 4[ ]a k k k k , , , ,1 2 3 4 5( )k k k k k , , , ,1 2 3 4 5[ ]a k k k k k

(1, 1, 1, 1) 5088 (1, 1, 1, 1, 1) 437760
(1, 1, 1, 2) 54720 (1, 1, 1, 1, 2) 5303808
(1, 1, 1, 3) 471552 (1, 1, 1, 1, 3) 50969088
(1, 1, 2, 2) 569600 (1, 1, 1, 2, 2) 61526016
(1, 1, 2, 3) 4794624 (1, 1, 1, 2, 3) 572001408
(1, 2, 2, 2) 5792256 (1, 1, 2, 2, 2) 690596352
(1, 1, 3, 3) 39648672 (1, 1, 1, 3, 3) 5180744448
(1, 2, 2, 3) 47903616 (1, 1, 2, 2, 3) 6255820800
(2, 2, 2, 2) 57876480 (1, 2, 2, 2, 2) 7553912832
(1, 2, 3, 3) 390733632 (1, 1, 2, 3, 3) 55488939264
(2, 2, 2, 3) 472119552 (1, 2, 2, 2, 3) 67011268608
(1, 3, 3, 3) 3152001600 (2, 2, 2, 2, 2) 80925462528
(2, 2, 3, 3) 3808797696 (1, 1, 3, 3, 3) 483746017536
(2, 3, 3, 3) 30449851776 (1, 2, 2, 3, 3) 584256789504
(3, 3, 3, 3) 241601800032 (1, 2, 3, 3, 3) 5020755622272

(2, 2, 2, 3, 3) 6064431920640
(1, 3, 3, 3, 3) 42618105345024
(2, 2, 3, 3, 3) 51481144857600
(2, 3, 3, 3, 3) 432425796811774
(3, 3, 3, 3, 3) 3599012231119850
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C , Cov ,2 1 2 1 2( ) ( )   =k k k k has been obtained recently in [14]. Results on the leading order
of the cumulantsC ,v 1 1( ) ¼ of the Wigner–Smith time-delay 1 have been recently obtained
in [30] for generic v 1 . Theorem 1 provides the generating functions F z z, ,v v,0 1( )¼ of the
leading order cumulants C ,v v1( ) ¼k k for all v 1 and generic 1i k . A few values of

N Clim ,
N

v
v

2 1
v1( )( )  ¼k k

- are reported in table 1. Some of them can be compared, with

agreement, with previous results [8, 14, 30, 32].

Proof of theorem 1. To prove the theorem we first establish the identity(42) relating the
generating functions F z z, ,v v,0 1( )¼ and the leading order multi-point Green functions
g z z, ,v v,0 1( )¼ . For a family of linear statistics X N fN

j
i
N

j i
1

1 ( )( ) l= å-
= on the inverse delay

times il (here f xj ( ) denotes a generic function) the identity

C X X
z z

f z f z g z z, ,
d

2 i

d

2 i
, , 52v N N

v v
v v v v

1 1
1 1 1∮ ∮( ) ( ) ( ) ( ) ( )( ) ( )

p p
¼ = ¼ 

follows by Cauchyʼs integral formula with gv defined in(33). In(52), the integration contours
enclose anticlockwise the inverse delay times il and no singularities of f f, , v1 ¼ . For large N
we have

N C X X
z z

g z z f zlim , ,
d

2 i

d

2 i
, , . 53

N

v
v N N

v v
v v

j

v

j j
2 1 1 1

,0 1
1

∮ ∮( ) ( ) ( ) ( )( ) ( ) ( )

 
p p

¼ = ¼
¥

-

=


Let us specialize(53) to the Wigner–Smith time-delay moments N fi
N

i
1

1 ( ) l= åk k
-

= , with
f x x( ) =k

k- :

N C
z z g z z

z z
lim , ,

d

2 i

d

2 i

, ,
. 54

N

v
v

v v v

v

2 1 1 ,0 1

1
v v1 1

∮ ∮( )
( )

( )( )  
 p p

¼ =
¼

k k k k¥

- 


The integral can be evaluated as the sum of residues. The possible singular sets are z 0i = and
zi = ¥. For v 2 , the integrand has no residue at zi = ¥ and hence the only contribution
comes from the residue at z 0i = :

N C
z z g z z

z z
lim , , 1

d

2 i

d

2 i

, ,
, 55

N

v
v

v

z z

v v v

v

2 1 1 ,0 1

1
v

v
v1

1
1

∮ ∮( ) ( )
( )

( )( )
∣ ∣ ∣ ∣

 
 p p

¼ = -
¼

k k k k¥

-

= =




where ò is sufficiently small and the factor 1 v( )- takes into account the fact that z 0i = is
‘outside’ the contour  . The right-hand side of(55) is a generic coefficients of the power
series expansion of z z g z z, ,v v v1 ,0 1( )¼ at z z 0v1 = = = , and this proves the
identity(42) for v 2 . A similar argument applies to v=1, where the additional v,1d term
in F1,0 is due to the fact that g1,0 is not analytic at z=0 and z = ¥.

As already discussed, the Green functions of the inverse delay times il ʼs are amenable to
the iterative scheme presented in section 3. Hence, assuming lemma 1, the proof is
complete. ,

The rest of this section is devoted to proving lemma 1.

Proof of lemma 1. The lemma can be easily proved by using residue calculus. We first
compute the edges a and b. For the potential(32) of the inverse delay times
V x x x1 2( ) ( ) ( )¢ = - ,(11) reads
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a b a b

a b

Res
1 d

2
Res

1 d

2
0,

Res
1 d

2
1.

0

( )
( )( )

( )
( )( )

( )
( )( )

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

w w
w w w

w w
w w w

w w w
w w w

-
- -

-
-
- -

=

-
- -

= -

w w

w

=¥ =

=¥

We find the condition for the edges

a b
ab

6,
1,

⎧⎨⎩
+ =
=

and hence(36). The one-point Green function is

G z
z a z b

z a b z a b

z

z

z a z b

ab z

2

Res
1 d

Res
1 d

1

2 4
,

z

1,0

0

( )
( )( )

( )
( ) ( )( )

( )
( ) ( )( )

( )( )

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

w w
w w w w

w w
w w w w

=-
- -

´
-

- - -
+

-
- - -

=
-

-
- -

w w= =

and hence(35).
We now compute mℓ{ } and jℓ{ }. For ℓ 1 we find

m
a a b ab a

j
b a b ab b

1

2
Res

d 1

2
1

1 1
,

1

2
Res

d 1

2
1

1 1
.

ℓ ℓ
ℓ

ℓ

ℓ ℓ
ℓ

ℓ

0

1

0

1

( ) ( )( )
( )

( ) ( )( )
( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

w
w w w w

w
w w w w

=-
- - -

= - -

=-
- - -

= - -

w

w

=

+

=

+

Inserting the values of a 3 8= - and b 3 8= + we eventually find(40). ,

5. Further results on the cumulants and a conjecture

In the previous section we have obtained the generating functions of all cumulants of power
traces of Q. One may be satisfied with the belief that this result tells us everything about the
time-delay matrix at leading order in the number of scattering channels N. However, we
notice that all the values of , , v1[ ]a k k¼ reported in table 1 are integer numbers.

In this section we address the questions: are the , , v1[ ]a k k¼ ’s integers? And if yes, what
do they count? We feel that finding an answer to these questions is both challenging and
intriguing. In this section we investigate these issues further.

Lemma 2. Let n be a non-negative integer. Then z z6 1 n2 2( )- + - is analytic around
z=0 and the coefficients of the series expansion are non-negative integers.

Proof. The thesis is a straightforward consequence of the classical identity

z tz
P t z

1

2 1
, 56

ℓ
ℓ

ℓ
2

0

( ) ( )å
- +

=
=

¥
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where P tℓ ( ) is the Legendre polynomial of order n:

P t
ℓ t

t
ℓ

p
t t

1

2

d

d
1

1

2
1 1 .ℓ ℓ

ℓ
ℓ

p

ℓ
ℓ p p2

0

2

( )
!

( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟å= - = - +

=

-

For t=3 we write explicitly

P
ℓ

p
3 2 . 57ℓ

p

ℓ
p

0

2

( ) ( )
⎛
⎝⎜

⎞
⎠⎟ å= Î

=

Hence, for all non-negative integers n:

z z
P P z

1

6 1
3 3 . 58

n

ℓ ℓ ℓ ℓ
ℓ ℓ

ℓ
2

0 n

n

1

1 ( ) ( ) ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å å

- +
=

=

¥

+ + =




,

Theorem 2. Let , , v1[ ]a k k¼ be defined as in(3). Then

(i) ;[ ] a k Î
(ii) , ;1 2[ ] a k k Î
(iii) , , ;1 2 3[ ] a k k k Î
(iv) , , v1[ ] a k k¼ Î for all v 1 if 1ik = for all i v1, ,= ¼ .

Proof. (i) The first assertion is well-known. (The numbers 1, 2, 6, 22,[ ]a k = ¼ ( 1k )
enumerate some combinatorial objects, see [23], and they are referred to as the sequence of
the ‘large Schröder numbers’ [36].)

(ii) The generating function of ,1 2[ ]a k k is given by (see(48))

F z z
z z

z z

z z z z

z z
,

3 1

6 1
1 59v

i i i

,0 1 2
1 2

1 2
2

1 2 1 2

1

2 2
( )

( )
( ) ( )

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

b =
-

- + +

- +
-

=

and is analytic at z z, 0, 01 2( ) ( )= . By lemma 2 the term in the square bracket is analytic about
z z, 0, 01 2( ) ( )= with integer series coefficients. Note that

z z

z z

z

z
n

1

1

1

1
.

z

z
z z n

n

z z

1 2

1 2
2

2

1
2

02

1

2 1 2 1( )( ) 
åx

x x
x

-
=

-
=

¶
¶ -

=
x x= =

The products of power series with integer coefficients is again a power series with integer
coefficients; therefore, the coefficients ,1 2[ ]a k k of the series expansion of(59) are integers.
(Since(59) is analytic, all the coefficients of negative powers of the Cauchy product vanish.)
It is possible to perform the Cauchy product in closed form and obtain the explicit expression

P Q Q P,
4

, 601 2
1 2

1 2
1 2 1 2[ ] [ ( ) ( ) ( ) ( )] ( )a k k

k k
k k

k k k k=
+

+

where

P
p

p

p
Q

q

q

q

1
,

1
. 61

p q0

1

0

1

( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟å åk

k k
k

k k
=

- +
=

+
+k k

=

-

=

-

This expression shows that ,1 2[ ]a k k is positive.
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(iii) The proof goes along the same line of reasoning of point (ii). Note that
, , 01 2 3[ ]a k k k = if at least one among , ,1 2 3k k k is zero. Let us consider the non-trivial case

, , 11 2 3 k k k . From (49) we write F z z z z z z f z z z, , 16 , ,3,0 1 2 3
2

1 2 3 1 2 3( ) ( ) ( )b= with

f z z z
z z z z z z

z z
, ,

6

6 1
.

i i i

1 2 3
1 2 3 1 2 3

1

3 2 3 2
( ) [ ( ) ]

( )
=

- + + +

- +
=

Let us introduce the notation ( 0k ):

a P P P3 3 3 .
ℓ ℓ ℓ

ℓ ℓ ℓ

1 2 3

1 2 3( ) ( ) ( ) å= Îk
k+ + =

Clearly, this sequence is monotone increasing a a1 k k+ . After standard manipulations one
finds f z z z b z z z, ,1 2 3 , , 0 , , 1 2 31 2 3 1 2 3

1 2 3( ) = åk k k k k k
k k k with

b a a a a a a

a a a a a a a a a

a a a a a a

a a a a a a a a a a a a

6

3

.

, , 1 1 1

1 1 1

1 1 1

1 1 1

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

2 3 1 1 1 3 2 2 1 2 3 3

( )

( ) ( ) ( ) 

= +
- + +

= +
+ - + - + - Î

k k k k k k k k k

k k k k k k k k k

k k k k k k

k k k k k k k k k k k k

- - -

- - -

- - -

- - -

Hence b, , 161 2 3 1, 1, 11 2 3[ ] a k k k = Îk k k- - - .
(iv) In [30] it has been proved that for 2b = , the cumulants of QTr are integers at

leading order in N. In formulae, for 2b =

N Clim , , ,
N

v
v

v

2 1
1 1

times

( )( )   ¼ Î
¥

-
  

for all v 1 . Therefore, from(3) the thesis (iv) follows. ,

Remark 4. It is worth remarking that given enough algebraic computation (e.g. by using the
algorithm of appendix C), it is possible to verify that , , , v1 2[ ]a k k k¼ are integers for a given
large v by the same method.

Remark 5. We found that P ( )k and Q ( )k in(60) and (61) are listed as A047781 and
A002002, respectively, in the OEIS [39]. Both sequences appear in a old paper concerning
certain integral functions [34].

Theorem 2 and the inspection of the first few values of , , v1[ ]a k k¼ for v 4> (see
table 1) suggest the following conjecture.

Conjecture. For all v 1 and 0i k

, , . 62v1[ ] ( )a k k¼ Î

The fact that these cumulants are integer-valued is quite unexpected. Available finite-N
formulae [30, 32] are cast in a form which is not suitable for a straightforward asymptotic
expansion in N1 , and seem to be of scarce help to solve this conjecture. In addition, it is not
clear what (if any) enumeration problem is solved by the family of numbers , , v1[ ]a k k¼ (so
far a combinatorial interpretation is available only for 1[ ]a k , see [33]). Some hints may come
from semiclassical approaches to quantum transport. In fact, RMT predictions in quantum
transport are usually confirmed by independent calculations for 1b = and 2b = based on
semiclassical considerations. Averages in RMT correspond to sums over pairs of classical
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trajectories with encounters connecting the leads with the interior of the cavity [8, 27, 37, 44].
In absence of time reversal symmetry ( 2b = ), the set of classical trajectories can be parti-
tioned according to topological properties. Each class of trajectories has a representative
diagram. When computing cumulants (connected averages) one only needs to consider
connected diagrams. The contribution c ( ) of a diagram  (i.e. the sum over all trajectories
in the class represented by ) can be evaluated by counting incoming channels I ( ) , links
L ( ) and encounters E ( ) inside the cavity containing at most one end point [37]

c
N

N
N . 63

I

L
e E

e1 end points in( ) ( ) ( )
( )

( )
( )







= -
#

#
Î

-#

Assuming the equivalence between RMT and semiclassical methods, the cumulants of the
Wigner–Smith matrix C , ,v v1( ) ¼k k for 2b = are given by sums over v sets of paired
trajectories whose representative diagrams are connected. These sums can be converted into
sums over diagrams whose contribution is given by(63). The leading order in N to
C , ,v v1( ) ¼k k comes from diagrams  without loops that can be represented as rooted
planar fat trees [8, 32, 37] (genus-0 maps). From(63) it is clear that this leading order term is
integer-valued. In view of the relation(3) between different Dyson indices, this argument
shows the plausibility of our conjecture. A more precise mapping between RMT averages and
semiclassical sum rules is likely to shed some light on the underlying combinatorics of

, , v1[ ]a k k¼ . This semiclassical argument, various finite-N moments [32] for 2b = , and other
evidences not reported here [16, 38], suggest that the conjecture could be extended to higher
order corrections in N1 .
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Appendix A. Cumulants

Let us consider a collection of random variables ix (i 1 ) with finite moments of all order.
The vth cumulant of , , v1x x¼ is defined according to

C , , 1 1 , 64v v
v A i A

i1
1, ,

1( ) (∣ ∣ )!( ) ⟨ ⟩ ( )
({ })

∣ ∣


å  x x p x¼ = - -

p

p

pÎ ¼

-

Î Î

where π denote a generic partition of v1, ,{ }¼ of size ∣ ∣p . For instance, the lowest order
cumulants are
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The variables , , v1x x¼ in the definition(64) do not need to be distinct.Cv (·), as a functional, is
symmetric and multilinear, and C , ,v v v1 1 ,1( )x x x d¼ = whenever ix is a constant for
some i v1, ,= ¼ .

Appendix B. Identities in the total derivative formula

We report here the derivation of a few identities used in the iterative scheme of section 3. The
variation of Mℓ is

M

V z

M

V z

A

V z

M

A

B

V z

M

B
. 65ℓ ℓ ℓ ℓ

( ) ( ) ( ) ( )
( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

d
d

d
d

d
d

=
¶
¶

+
¶
¶

+
¶
¶

Using(18), the first term reads
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The derivative with respect to A is
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The last derivative requires a bit more work. Starting from
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we observe that the following decomposition holds
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The computation of J V zℓ[ ( )]d d goes along identical lines. Eventually one finds (22) and (23).
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Appendix C. Mathematica code

Below follows a MATHEMATICA code implementing the generating function F z z, ,v v,0 1( )¼
of cumulants of the Wigner–Smith matrix. The code provided is tailored for the Wigner–
Smith problem but can be easily modified for other problems.

The parameter v determines the highest order in the recursion: the code produces the
generating functions F F F F, , , , v1,0 2,0 3,0 ,0¼ up to v v= . The code first implements the Green
functions G G, , v1,0 ,0¼ using the iterative scheme outlined in section 3. Then the set of the
model parameters is assigned and the generating functions are produced.

The parameters A B M J, , , ,1 1b , etc defined by (11), (15) and (16) correspond to
\[Beta],A,B,M[1],J[1], etc in the code. The derivatives A V z B V z,( ) ( )d d d d
involved in the total derivative formula(19) correspond to ,[ ] [ ]dAdV z dBdV z , while
M V z J V z,ℓ ℓ( ) ( )d d d d for ℓ v 3 - are collected in the arrays dMdV[z] and dJdV[z] of
length v 3- . (Recall that, in the computation of Fv,0 only the first v 2- terms of the Mℓʼs
and Jℓʼs are required, and M0 = J0 = 0.)

Note that in MATHEMATICA syntax any text in between the literals (∗ and ∗) is
simply a comment. The literal ⧹ at the end of a line of input indicates that the expression on
that line continues onto the next line. The first part code is given as follows.

(∗ Fix the order of the recursion ∗)
Clear["Global‘∗"]
v = 5;
(∗ Define the derivatives of A, B, M_l & J_lwith respect to V(z) ∗)

dAdV[z_] ≔Power[M[1] (z — A) Sqrt[z — A]Sqrt[z — B], -1];
dBdV[z_] ≔Power[J[1] (z — B) Sqrt[z — A]Sqrt[z — B], -1];
dMdV[z_] ≔Table[
(l + 1/2) dAdV[z] (M[l + 1] - M[1]/(z — A)^l) +\
(1/2) dBdV[z] (J[1]/(B — A)^l — J[1]/(z — A)^l -\
Sum[M[p]/(B — A)^(l — p + 1), p, 1, l]), l, 1, v — 3];

dJdV[z_] ≔Table[
(l + 1/2) dBdV[z] (J[l + 1] - J[1]/(z — B)^l) +\
(1/2) dAdV[z] (M[1]/(A — B)^l — M[1]/(z — B)^l -\
Sum[J[p]/(A — B)(^l — p + 1), p, 1, l]), l, 1, v — 3];

Once run, the next part of the code implements the Green functions G G, , v2,0 ,0¼ denoted
by G[1],K,G[v] in the code. (Note thatG1,0 is model-dependent and will be included later.)
The two-point Green function G2,0 is defined explicitly. The recursion based on the functional
derivative method (see section 3) is implemented by a For cycle starting from G3,0.

(∗ Define the two-point correlator ∗)
G[2] = (1/\[Beta]) (1)/(z[1] - z[2])^2\

((z[1] z[2] - (A + B) (z[1] + z[2])/2 + A B)/\
(Sqrt[z[1] - A] Sqrt[z[1] - B] Sqrt[z[2] - A] Sqrt[z[2] - B]));
(∗ Iterative scheme based on the functional derivatives:
compute recursively the higher order correlators ∗)

For[i = 3, i <= v, i++,
If[i > 3,
G[i] = -(1/\[Beta])\
(dAdV[z[i]] D[G[i — 1], A] + dBdV[z[i]] D[G[i — 1], B] +\
Sum[dMdV[z[i]][[q]] D[G[i — 1], M[q]] +\
dJdV[z[i]][[q]] D[G[i — 1], J[q]], q, 1, i — 3]),\
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(Continued.)

G[i] = -(1/\[Beta])\
(dAdV[z[i]] D[G[i — 1], A] + dBdV[z[i]] D[G[i — 1], B])

]]

The next part of the code specifies the model-dependent parameters a, b, mℓ{ } and jℓ{ }
denoted by a, b, m, j, respectively, and the one-point function G1,0 (G[1] in the code).
They are hard-coded in the following four lines. This is the only section of the code that
depends on the details of the potential V x( ).

(∗ Parameters and one-point correlator of the Wigner–Smith matrix;
NB: this is the only model-dependent part of the code ∗)

a = 3 — Sqrt[8]; b = 3 + Sqrt[8];
m = Table[(1/2) Power[-1/a, i], i, 1, v — 2];
j = Table[(1/2) Power[-1/b, i], i, 1, v — 2];
G[1] = (z[1] - 1 — Sqrt[z[1] - a]Sqrt[z[1] - b])/(2 z[1]);

In the last part of the code the numerical values of a,b,m,j are assigned to the symbols
A,B,M1,J1, etc, and the list of generating functions F F, , v1,0 ,0¼ is constructed according to
identity(42).

(∗ Set the parameters ∗)
A = a; B = b;
For[i = 1, i <= v — 3, i++, M[i] = m[[i]]; J[i] = j[[i]]]
(∗ Compute the generating functions of cumulants ∗)
For[i = 1, i <= v, i++,\
F[i] = Product[-z[k], k, 1, i] G[i] + KroneckerDelta[i,1](2-z) ]
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