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Abstract
We study a self-interacting scalar field theory in the presence of a
δ-function background potential. The role of surface interactions in obtaining
a renormalizable theory is stressed and demonstrated by a two-loop
calculation. The necessary counterterms are evaluated by adopting dimensional
regularization and the background field method. We also calculate the effective
potential for a complex scalar field in a non-simply connected spacetime in
the presence of a δ-function potential. The effective potential is evaluated as
a function of an arbitrary phase factor associated with the choice of boundary
conditions in the non-simply connected spacetime. We obtain asymptotic
expansions of the results for both large and small δ-function strengths, and
stress how the non-analytic nature of the small strength result vitiates any
analysis based on standard weak field perturbation theory.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications
of zeta functions and other spectral functions in mathematics and physics’.

PACS numbers: 11.10.Gh, 03.70.+k, 11.10.−z

1. Introduction

1.1. Dedication

It is a great pleasure to contribute this paper to honour Stuart Dowker’s many achievements
in theoretical physics. I first knew Stuart by reputation long before I ever had the chance to
meet him. When I was a postgraduate student my main interest was in quantum field theory
in curved spacetime. Long before the internet and the arXiv, preprints in high and theoretical
energy physics used to be sent by post to SLAC where they would appear on a list that
was sent out weekly to subscribers. At that time there were four main groups in the UK
working on quantum field theory in curved spacetime: the Cambridge group, based around
Stephen Hawking and Gary Gibbons; the King’s College group based around Paul Davies;
the Imperial College group, based around Chris Isham and Mike Duff; and the Manchester
group, consisting of Stuart Dowker and his students. The SLAC preprint list would be scanned
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avidly for anything coming from these groups, but as I was especially interested in quantum
field theory in topologically non-trivial spacetimes and vacuum energy calculations using
ζ -function methods, the work of Stuart Dowker was always eagerly awaited. An especially
treasured preprint, that I still use, was Selected Topics in Topology and Quantum Field Theory
that was based on lectures given by Stuart at Austin, and which were never published; these
notes pre-date all of the now standard books and reviews on topology and gauge fields.

Since coming to the UK, Stuart and I have met on many occasions, often at PhD vivas.
I am sure that many contributors to this volume will have had the ‘Dowker experience’: you
mention to Stuart that you are working on some calculation to be met with something like ‘Oh
yes. That is just a special case of a theorem by Schnekelgreuber1 published in 1878.’

1.2. Background

The problem of computing the vacuum, or Casimir, energies in the case of non-smooth
background potentials has a long history, and in addition has become the focus of much
recent interest. Of especial interest to the present paper is the case of δ-function background
potentials. One of the pioneering, and most important, papers on the calculation of vacuum
energies in δ-function potentials is [1] whose analysis is based on earlier Green function
calculations of [2]. Later work on vacuum energy and other related quantum field theory
calculations includes [3–14]. Some motivation for these investigations can be garnered from
the study of brane-world models stimulated by the Randall–Sundrum scenario [15] where
non-smooth backgrounds in the form of δ-function potentials arise in a natural manner that
is crucial to the features of these models. There are many studies of vacuum energies in
brane-world spacetimes. (See [16–21] for some of the early investigations.)

Almost all of the previous studies of vacuum energies in non-smooth backgrounds are
concerned with non-interacting (apart from interactions with the background) fields. This
renders the renormalization considerations somewhat simpler than is the case when interacting
fields are involved, particularly beyond one-loop order. The renormalization of λφ4 theory in
a δ-function background was considered by [11] but at one-loop order only where additional
divergences were dealt with by the addition of extra surface terms to the original action. A
different interpretation of this procedure was given by [13] (see also the later paper [14]) that
is more in keeping with standard renormalization theory, and is the method that we will adopt
in this paper, to be detailed in section 2 below.

One of the key features that we must deal with when proceeding beyond one-loop
order is the presence of overlapping divergences, and the necessity of showing that they
cancel (otherwise there will be non-local divergences present that cannot be removed by local
counterterms). We will adopt the background field method and dimensional regularization as
in [22]. A comprehensive review of the method for smooth backgrounds can be found in [23].
The general issue of interacting fields on manifolds with boundaries, smooth or not, beyond
one-loop order appears to have received little attention. (The case of smooth boundaries at one-
loop order is dealt with in [22]. Tsoupros [24–26] examines smooth spherical cap geometries
and Haba [27] considers δ-function backgrounds. The calculations presented below do not
overlap directly with these references.)

The outline of our paper is the following. In section 2 we discuss the renormalization
of an interacting scalar field theory with cubic and quartic self-interactions to two-loop order
in a δ-function potential. Dimensional regularization is used. The background spacetime
is flat and assumed to be four-dimensional with a possible periodic identification of one

1 So far as I am aware I made this name up, but I would not be at all surprised if Stuart was to say Schnekelgreuber
really existed but was only active between 1829 and 1837, not in 1878.
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spatial coordinate. The importance of including correct boundary terms, especially a boundary
interaction in the field (see (2.3) below), is stressed. Without the proper boundary terms the
theory will not be renormalizable. Complications in the evaluation of the complete two-loop
effective action are highlighted, and it is shown how to renormalize the effective potential
to two-loop order. Necessary two-loop counterterms are found. In section 3 we address the
calculation of the one-loop effective potential for a complex scalar field in a δ-function potential
with one spatial coordinate periodically identified to form a circle. This allows the complex
field to change by an arbitrary phase around the circle and we calculate the effective potential
as a function of this phase. A number of asymptotic limits are obtained. Section 4 summarizes
our results and presents a short discussion. Appendix A outlines a method for evaluating the
Green function in the case of any number of δ-function potentials. Appendix B describes some
technical details in the evaluation of certain types of integrals that arise in the renormalization
beyond one-loop order.

2. Renormalization

We consider an interacting scalar field in four spacetime dimensions with a general self-
interaction. The theory will be regularized using dimensional regularization as in [22]. The
bare action will be chosen to be

S = Sbulk + Sbdry, (2.1)

where

Sbulk =
∫

dD+1x

{
1

2
∂μφB∂μφB + 1

2
m2

Bφ2
B + �B + hBφB + 1

3!
gBφ3

B + 1

4!
λBφ4

B

}
, (2.2)

and

Sbdry =
∫

y=a
dDx

{
1

2
vBφ2

B + γBφB + σB

}
. (2.3)

The bulk action Sbulk extends over the complete (D+1)-dimensional spacetime. The boundary
term Sbdry only extends over the D-dimensional subspace specified by y = a that gives the
location of the δ-function. Sbdry could obviously be written in the equivalent form of an integral
over the (D + 1)-dimensional spacetime with the terms in braces in (2.3) multiplying the
δ-function δ(y − a). All of the coupling constants that occur in the action are bare
unrenormalized expressions. We might have expected, on dimensional grounds, that a φ3

B
term appeared in Sbdry since its coefficient would be dimensionless for the case of interest
D = 3. However, this means that the associated φ3

B counterterm could not depend on the
strength of the δ-function (that has units of mass, or inverse length), and because in the
absence of a δ-function potential there is no need for Sbdry, we rule out such a term. We expect
that Sbdry → 0 as v → 0, where v is the renormalized δ-function strength. (This conclusion is
substantiated in the explicit calculation presented below.)

In dimensional regularization we require [28] all renormalized couplings to have the same
dimensions for all D as they do when D = 3. We write

D = 3 + ε, (2.4)

and introduce an arbitrary unit of length �. (It is more customary [28] to use a unit of mass
μ, but obviously � = 1/μ, and we stick with �.) Bare quantities are expressed in terms of
renormalized ones by

φB = �−ε/2Z1/2φ, (2.5)

m2
B = m2 + δm2, (2.6)

3
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�B = �−ε (� + δ�), (2.7)

hB = �−ε/2(h + δh), (2.8)

gB = �ε/2(g + δg), (2.9)

λB = �ε(λ + δλ), (2.10)

vB = v + δv, (2.11)

γB = �−ε/2(γ + δγ ), (2.12)

σB = �−ε (σ + δσ ). (2.13)

We write the field renormalization constant Z as

Z = 1 + δZ, (2.14)

and all counterterms are expanded in powers of �, the loop counting parameter:

δC = �δC(1) + �
2δC(2) + · · · . (2.15)

HereC denotes a generic quantity that occurs in (2.6)–(2.14). The counterterms δC(1), δC(2), . . .

are chosen to contain pole terms in ε that cancel the various poles arising in the effective action
order by order in the loop expansion.

The effective action can be evaluated in the loop expansion in a suitable form for a
discussion of renormalization as described by Jackiw [29]. Here we follow the formalism used
to consider renormalization in curved spacetime [22, 30]. The only added feature here is the
presence of Sbdry. This affects the Green function, as well as the interaction vertices beyond
that occurring for the bulk theory. The basic step is to write

φ = ϕ̄ + �
1/2ψ, (2.16)

with ϕ̄ the background field. Results (2.5)–(2.14) are used in (2.2) and (2.3), all counterterms
are expressed as in (2.15) and the result expanded out to a consistent order in �. Standard
functional methods then generate the loop expansion of the effective action. The result can be
expressed as

�[ϕ̄] = S[ϕ̄] + �

2
tr ln(�2�̄) + �

〈
1 − exp

(
−1

�
Sint

)〉
, (2.17)

where �̄ is the operator that defines the Green function following from the second functional
derivative of the action functional with respect to the field evaluated at the background field.
(See (2.18) and (2.19) below.) The terms of cubic and higher orders in the field, as well as the
counterterms, are defined as the interaction part of the action Sint and treated perturbatively. The
angular brackets in (2.17) denote an evaluation using Wick’s theorem with only one-particle
irreducible graphs kept. We define

〈φ(x)φ(x′)〉 = Gv(x, x′), (2.18)

where [
−�

x
+m2 + gϕ̄ + λ

2
ϕ̄2 + vδ(y − a)

]
Gv(x, x′) = δ(x, x′). (2.19)

We can express Sint in terms of � by defining
1

�
Sint = �

1/2A1[ϕ̄, ψ] + �A2[ϕ̄, ψ] + O(�3/2). (2.20)

4
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In our case,

A1 = �−ε

∫
dD+1x

1

3!
{g + λϕ̄(x)} ψ3(x), (2.21)

A2 = �−ε

∫
dD+1x

{
λ

4!
ψ4 + 1

2
δm2(1)ψ2 + 1

2
δg(1)ϕ̄(x)ψ2 + 1

4!
δλ(1)ϕ̄2(x)ψ2

}
+ �−ε

∫
y=a

dDx
1

2
δv(1)ψ2. (2.22)

The only difference with what happens in the absence of a δ-function potential is the presence
of the last term in A2, and an alteration of the Green function. (Of course the alteration of the
Green function affects the evaluation of the effective action considerably.)

Expanding the effective action to two-loop order results in (see [31] for a review)

�[ϕ̄] = S[ϕ̄] + �

2
tr ln(�2�̄) + �

2

(
〈A2〉 − 1

2
〈A2

1〉
)

+ · · ·

= S[ϕ̄] + �

2
tr ln(�2�̄) + �

2�(2) + · · · , (2.23)

where

�(2) = �−ε

∫
dD+1x

{
λ

8
G2

v(x, x) + 1

2
δm2(1)Gv(x, x)

+1

2
δg(1)ϕ̄(x)Gv(x, x) + 1

4
δλ(1)ϕ̄2(x)Gv(x, x)

}
+ �−ε

∫
y=a

dDx
1

2
δv(1)Gv(x, x)

− 1

12
�−2ε

∫
dD+1x dD+1x′[g + λϕ̄(x)][g + λϕ̄(x′)]G3

v(x, x′) (2.24)

gives the two-loop contribution to the effective action. The next two subsections will examine
the one- and two-loop divergences of the effective action that we have obtained.

2.1. One-loop effective action

The one-loop part of the effective action (2.23) involves

�(1) = 1
2 tr ln(�2�̄). (2.25)

In order to deal with this expression using dimensional regularization, we can differentiate
with respect to m2 and use the fact that the inverse of �̄ is the Green function as defined by
(2.19). We find

∂

∂m2
�(1) = 1

2

∫
dD+1xGv(x, x). (2.26)

It is sufficient to compute Gv(x, x) with constant background fields, since using the derivative
expansion and power counting shows that there can be no pole terms that involve derivatives
of the background field at one-loop order. (This reflects the well-known result that field
renormalization is first required at two-loop order. See [31] for a proof of this using the
derivative expansion of the effective action.) We can then use the result in (A.3) with m2

replaced by

M2 = m2 + gϕ̄ + λ

2
ϕ̄2. (2.27)

5
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ϕ̄ is now regarded as constant. Use of (A.3) gives us

∂

∂m2
�(1) = 1

2
VD

∫ L/2

−L/2
dy

∫
dD p

(2π)D
Gv(p; y, y), (2.28)

where VD = ∫
dDx is the volume associated with x⊥. If we use the result in (A.16) the

integration over y may be performed with the result

∂

∂m2
�(1) = 1

2
VD

∫
dD p

(2π)D

{
L

2ωp
coth(Lωp/2)

− v[Lωp + sinh(Lωp)]

8ω3
p sinh2(Lωp/2)

[
1 + v

2ωp
coth(Lωp/2)

]}
. (2.29)

Note that because of the replacement of m2 with M2 in (2.27), we should use ωp = (p2+M2)1/2

here.
If we are only interested in the pole part of �(1) to discuss the renormalization, then

we may study the large p behaviour of the integrand. If we denote the pole part of �(1) by
PP(�(1)), then it follows that

∂

∂m2
PP(�(1)) = 1

2
VD PP

(∫
dD p

(2π)D

[
L

2ωp
− v

4ω3
p

(
1 + v

2ωp

)−1
])

. (2.30)

Terms that have been dropped here decay exponentially for large p. Although they contribute
to the finite part of �(1), they make no contribution to the poles. Using the definitions in (B.1)
and (B.5), and using the recursion relation (B.4) shows that

∂

∂m2
PP(�(1)) = 1

2
VD PP

(
L

2
I(1) − v

4
I(3) + v2

8
I(4) − v3

16
I(5) + · · ·

)
. (2.31)

Because of the simple dependence of M2 on m2, using (B.2) results in

PP(�(1)) = −1

2
VD(4π)−D/2 PP

{
L

2

�(−1/2 − D/2)

�(1/2)
(M2)D/2+1/2

− v

4

�(1/2 − D/2)

�(3/2)
(M2)D/2−1/2 + v2

8

�(1 − D/2)

�(2)
(M2)D/2−1

− v3

16

�(3/2 − D/2)

�(5/2)
(M2)D/2−3/2 + · · ·

}
. (2.32)

The next term to that indicated will be finite as D → 3 and therefore contains no pole. By
taking D = 3 + ε and expanding about ε = 0 we find

PP(�(1)) = V3

96π2ε
(3LM4 + 6vM2 − v3). (2.33)

Given the form of the counterterms in (2.5)–(2.15), with δZ(1) = 0 and ϕ̄ constant, we
have the one-loop counterterm part of the action as

Sct = �V3L

{
1

2
δm2(1)ϕ̄2 + δ�(1) + δh(1)ϕ̄ + 1

3!
δg(1)ϕ̄3 + 1

4!
δλ(1)ϕ̄4

}
+ �V3

{
1

2
δv(1)ϕ̄2 + δγ (1)ϕ̄ + δσ (1)

}
. (2.34)

Note that
∫

d4x = V3L identifies the bulk part of the action and the L-independent part
identifies the boundary part. Using the expression for M2 in (2.27) in the pole part of the
one-loop effective action in (2.33), it is easy to show that the resulting effective action is finite
as ε → 0 if we choose the counterterms to be

δ�(1) = − m4

32π2ε
, (2.35)

6
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δh(1) = − gm2

16π2ε
, (2.36)

δm2(1) = − 1

16π2ε
(λm2 + g2), (2.37)

δg(1) = − 3λg

16π2ε
, (2.38)

δλ(1) = − 3λ2

16π2ε
, (2.39)

δv(1) = − λv

16π2ε
, (2.40)

δγ (1) = − vg

16π2ε
, (2.41)

δσ (1) = − v

16π2ε

(
m2 − 1

6
v2

)
. (2.42)

The counterterms that enter the boundary part of the action all vanish as v → 0 as would be
expected. The counterterms that enter the bulk part of the action agree with the more general
case considered in [22].

2.2. Two-loop effective action

The complete two-loop effective action was given in (2.24). It has not been possible to
evaluate even the pole part of this expression for the general scalar field theory that we
have been considering. The difficulty with performing a complete renormalization calculation
concerns the extraction of the complete pole part of G3

v(x, x′), a problem that we were not able
to overcome due to the complicated nature of the Green function. Instead we will examine
the simpler, but still significant, task of renormalizing the vacuum energy for a λφ4 theory
obtained by setting h = g = 0 and taking the background scalar field to vanish (ϕ̄ = 0). With
this simplification, we find

�(2) = �−ε

∫
dD+1x

{
λ

8
G2

v(x, x) + 1

2
δm2(1)Gv(x, x)

}
+ �−ε

∫
y=a

dDx
1

2
δv(1)Gv(x, x). (2.43)

We have already described how to extract the pole part of Gv(x, x) in section 2.1. At two-
loop order we have the one-loop counterterms δm2(1) and δv(1) multiplying Gv(x, x), resulting
in poles that involve the finite part of Gv(x, x). Such poles, should they not cancel, will involve
complicated non-local expressions and would render the theory non-renormalizable with local
counterterms. A necessary part of the analysis will be to show that all such non-local poles
cancel between the three terms of �(2) given in (2.43).

We have given Gv(x, x) in (A.17) with Gv(p; y, y) given in (A.16) for the case of periodic
boundary conditions. Because our main focus is on how the presence of a δ-function potential
changes the renormalization calculation, in order not to complicate the analysis unnecessarily,
we will let L → ∞. (The presence of a finite L leads to more complicated non-local divergences
as known in the absence of δ-function potentials from [32, 33]. It is possible to show that in
this more complicated setting all non-local divergences still cancel as we describe below for
infinite L, although we omit the details of this here for simplicity.) With the limit L → ∞
taken in (A.16) we have

Gv(p; y, y) = 1

2ωp
− v

4ω2
p

(
1 + v

2ωp

)−1

e−2|y−a|ωp . (2.44)

7
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This is the result that we would have found had we simply chosen not to adopt periodic
boundary conditions over a finite interval and taken the whole real line instead.

The evaluation of the Green function expressions that enter the two-loop part of the
effective action in (2.43) is described in appendix B. The first two terms, that contain an
integral over y as well as over x⊥, give rise to bulk counterterms (ones that multiply LV3) as
well as surface counterterms (ones that multiply V3 but that are independent of L). Because
the one-loop counterterms δm2(1) and δv(1) multiply Gv(x, x), we must include the finite part
of Gv(x, x) in order to calculate the complete pole terms of the effective action. From (B.2),
with D = 3 + ε, we have

I(1) = m2

4π2ε
+ m2

8π2

[
ln

(
m2

4π

)
+ γ − 1

]
+ · · · , (2.45)

I(2) = − m

4π
+ · · · , (2.46)

I(3) = − 1

2π2ε
− 1

4π2

[
ln

(
m2

4π

)
+ γ

]
+ · · · , (2.47)

upon expansion about ε = 0. (The ellipsis indicates terms of order ε that cannot lead to poles
in the effective action, although they may contribute to the finite part.)

If we temporarily ignore the surface term in �(2), and use the expression found earlier for
δm2(1) given in (2.37), it is possible to show that

�(2)/V3 = − λm4

512π4ε2
L + λmv2

512π3ε
− λvm2

512π4ε

− λv3

1024π4ε2
+

(
λvm2

512π4ε
− λv3

1024π4ε

)
ln

(
m2�2

4π

)
− λv4

512π2ε
K4(v) + �−ε

∫
y=a

dDx
1

2
δv(1)Gv(x, x) (2.48)

contains the pole part of the two-loop effective action. The bulk term, the first term proportional
to L, involves only a local divergence that can be dealt with by a local counterterm. In this
bulk term, all of the dependence on γ and ln(m2�2) that occur at intermediate stages of the
calculation has cancelled, but there are observed to be divergences that involve ln(m2�2) in
the surface term. In addition, there is a non-local divergence proportional to the integral K4(v)

present.
The surface contribution (the last term on the right hand side of (2.48)) involves

1

2
�−εδv(1) Gv(x, x)|y=a = − λvm2

512π4ε2
− λvm2

512π3ε

+ λv3

512π4ε2
+

(
λv3

1024π4ε
− λvm2

512π4ε

)
ln

(
m2�2

4π

)
+ λv4

512π2ε
K4(v) + · · · , (2.49)

if we use (2.40) for δv(1) and (B.6). If we use the result found in (2.49) back in (2.48) it can
be seen that the non-local divergences that involve K4(v) cancel, and that the dependence on
ln(m2�2) also cancels. We are left with the simple expression

�(2)/V3 = − λm4

512π4ε2
L + λv3

1024π4ε2
− λvm2

256π4ε2
+ · · · (2.50)

as the pole part of �(2). The first term on the right hand side represents the bulk divergence,
present even when there is no δ-function potential, and the other two terms represent the

8
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poles on the surface. Note that the presence of the contribution from the one-loop surface
counterterm, that involved the renormalized strength of the δ-function, was crucial in obtaining
a cancellation of the non-local divergences.

The divergences present in (2.50) can be seen to be removed by the choice of two-loop
vacuum energy counterterm

δ�(2) = λm4

512π4ε2
, (2.51)

and the renormalized surface density

δσ (2) = λv

256π4ε2

(
v2

4
− m2

)
. (2.52)

This presents a complete proof that to two-loop order the vacuum energy density is
renormalizable, and we have computed the necessary counterterms to do this.

3. Vacuum energy

In this section we will compute the vacuum energy density to one-loop order for a complex
scalar field � in a δ-function potential. We will allow the boundary condition on the field to
depend on an arbitrary change of phase around the circle:

�(−L/2) = ei2πα�(L/2). (3.1)

Here 0 � α � 1 is the arbitrary phase factor. The case α = 0 corresponds to periodic boundary
conditions, while α = 1/2 corresponds to antiperiodic boundary conditions. We will look at
how α enters the expression for the vacuum energy density.

Similar calculations without a δ-function potential present were performed some time
ago. Of special interest is the paper of Ford [34], where it was remarked that the situation
is the same as coupling a scalar field to a constant gauge potential, with the case of α = 0
corresponding to a vanishing gauge field unstable for spinor fields. This was later generalized
to non-Abelian gauge theories [35], and Hosotani [36] showed that by computing an effective
potential as a function of α it was possible to break non-Abelian gauge symmetries. More
recent work [37] has studied this mechanism in the brane-world setting where δ-function
potentials arise naturally.

The generalization of (2.26) to the complex scalar field case is obtained simply by
multiplying by 2 (to account for the fact that a complex field can be represented by two real
fields) and changing the boundary conditions on the Green function to reflect (3.1):

∂

∂m2
�(1) = VD

∫ L/2

−L/2
dy

∫
dD p

(2π)D
Gv(p; y, y). (3.2)

From (A.12) we find

Gv(p; y, y) = G0(p; y, y) − vG0(p; y, a)G0(p; a, y)

1 + vG0(p; a, a)
, (3.3)

where G0(p; y, y′) is given by (A.13) with

σ j = 2π

L
( j + α) (3.4)

and ω2
p = p2 + m2 as before. From (A.13) it is easy to see that∫ L/2

−L/2
dy G0(p; y, a)G0(p; a, y) =

∞∑
j=−∞

1

L

(
σ 2

j + ω2
p

)−2

= − ∂

∂m2

∞∑
j=−∞

1

L

(
σ 2

j + ω2
p

)−1
. (3.5)

9
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This leads to

�(1) = �
(1)

v=0 + �
(1)

surf, (3.6)

where

�
(1)

v=0 = VD

∞∑
j=−∞

∫
dD p

(2π)D
ln

[
�2(σ 2

j + ω2
p

)]
(3.7)

is the term present in the case of v = 0, corresponding to the absence of a δ-function potential,
and

�
(1)

surf = VD

∫
dD p

(2π)D
ln

⎡⎣1 + v

L

∞∑
j=−∞

(
σ 2

j + ω2
p

)−1

⎤⎦ (3.8)

is the ‘surface’ contribution to the effective action coming from the δ-function potential.
The sum over j in (3.8) is easily evaluated by contour integral methods [38] to give

∞∑
j=−∞

1

L

(
σ 2

j + ω2
p

)−1 = 1

2ωp

sinh(Lωp)

cosh(Lωp) − cos(2πα)
. (3.9)

The pole part of �
(1)

surf as D → 3 can be analysed as described in section 2 above.
The �

(1)

v=0 term can be related to the function evaluated first by Ford [34]. (See [31] for a
textbook treatment.) If we define

F(λ;α, b) =
∞∑

n=−∞
[(n + α)2 + b2]−λ, (3.10)

then after suitable analytic continuation

F(λ;α, b) = π1/2 �(λ − 1/2)

�(λ)
(b2)1/2−λ + fλ(α, b), (3.11)

where

fλ(α, b) = 4 sin(πλ)

∫ ∞

b
dx (x2 − b2)−λ�[e2π(x+iα) − 1]−1. (3.12)

It is straightforward to show that

�
(1)

v=0 = −VD�D−3(4π)−D/2�

(
−D

2

) (
2π

L

)D

F

(
−D

2
;α,

mL

2π

)
, (3.13)

and that poles come only from the first term on the right hand side of (3.11) when used
in (3.13).

A full renormalization calculation can be performed as we have described in section 2.
However, our aim in this section is to study the role that α and v play in the expression for the
vacuum energy density. To do this we will simply compare the vacuum energy for general α

with that for α = 0. (A detailed analysis of the α = 0 case was given in [13] and will not be
repeated here.) Because �(1) = VDLρ with ρ the vacuum energy density, or effective potential,
we have

ρ̃ = ρ(α) − ρ(0) (3.14)

as the difference between the α 	= 0 and α = 0 cases. A bit of calculation shows that

2π2L4ρ̃ =
∫ ∞

mL
dy y(y2 − m2L2)1/2

× ln

{
y + vL/2 − 2y e−y cos(2πα) + (y − vL/2) e−2y

(1 − e−y)[y + vL/2 − (y − vL/2) e−y]

}
. (3.15)

10
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Figure 1. This shows plots of 2π2L4ρ̃ as a function of α, the parameter that determines the
boundary conditions, for three different values of mL. The top curve is the result for m = 0.
The middle and lower curves are the results for mL = 1 and mL = 3 respectively. In all cases the
maximum occurs at α = 1/2 as the analytic proof described in the text shows. The energy density
decays exponentially with mL.

This same result can be found by the more tedious and lengthy process of expanding about
the pole at D = 3, removing the poles with counterterms as described in section 2, or else by
adopting ζ -function regularization where no poles occur [13].

If we view ρ̃ as a function of α, it is easy to show from (3.15) that for 0 � α � 1, ρ̃ has
a global minimum at α = 0 (or α = 1) and a global maximum at α = 1/2. Thus, the case of
antiperiodic boundary conditions leads to the maximum energy density, a conclusion that is
the same as in the absence of a δ-function potential [39, 34] although the actual expressions
for the energy density differ of course. In figure 1 we show the result of evaluating (3.15)
numerically for different values of mL, but with vL kept fixed. The vacuum energy decays
exponentially with mL exactly as in the case with no δ-function potential present [35].

We can also study what happens if the strength of the δ-function potential v is varied. For
simplicity we will set m = 0 and α = 1/2. The result is plotted in figure 2 as the solid curve.
If we take vL 
 1, it is possible to obtain the following asymptotic expansion for ρ̃ in (3.15)
for m = 0 but α general:

ρ̃ = π2 sin2(πα)

4vL5

{
1 − 4

15vL
[29 − cos(2πα)]

+ 2

3v2L2
[86 + 3π2 + 2(8 − π2) cos(2πα) + (10 − π2) cos(4πα)] + · · ·

}
.

(3.16)

For the case of α = 1/2 this is plotted as the dotted line in figure 2.
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vL / 2

2
2

4
L

Figure 2. The solid line shows the result of 2π2L4ρ̃ as a function of vL/2 found from (3.15) in
the case m = 0 and α = 1/2. The dotted line shows the same result found using the asymptotic
expansion in (3.16). The agreement between the analytic and numerical results become very good
once vL is sufficiently large.

vL / 2

2
2
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L
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6.5

7.0
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Figure 3. The solid line shows the result of 2π2L4ρ̃ as a function of vL/2 found from (3.15) in
the case m = 0 and α = 1/2. The dotted line shows the same result found using the asymptotic
expansion in (3.17). Note that the range is shown over 6–8.5 rather than extending to 0 to exaggerate
the difference between the two curves. As vL decreases, the agreement becomes excellent.
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We can also analyse the case where vL is small and obtain a reliable asymptotic expansion.
The analysis is reasonably involved, so we will simply quote the result. If vL/2 � 1 we find
from (3.15) that (again taking m = 0 and α = 1/2 as an example)

ρ̃ � π4

12
− π2

4
vL + π

3
(vL)3/2 − β(vL)2 + · · · , (3.17)

where β � 0.028 8734 is the result of a numerical evaluation of a simple integral of the
exponential integral form. Contributions of the next order in (3.17) can also be found and
involve non-analytical terms of order (vL)5/2 and (vL)3 ln(vL). The fact that ρ̃ is not analytical
at v = 0 is what complicates attempts to calculate the asymptotic expansion. Similar non-
analyticity has been seen in the earlier calculations of [10] in similar settings and indicates the
futility of trying to use a naive perturbative approach about v = 0 (corresponding to treating
the δ-function potential as a perturbative interaction). To demonstrate the utility of (3.17) we
plot the approximation (shown as the dotted line) against a numerical evaluation of the exact
result (shown as the solid line) in figure 3.

4. Discussion and conclusions

We have considered the case of an interacting field theory in a non-simply connected
spacetime in the presence of a δ-function potential. The necessity for a proper inclusion
of boundary interaction terms for renormalizability was discussed. The required counterterms
were computed, using dimensional regularization, to one-loop order, and some consideration
was given to the two-loop counterterms. It was shown why the complete two-loop calculation
was difficult. We then showed how to obtain the effective potential for a complex scalar
field with general boundary conditions around a compact spatial dimension, generalizing
earlier such studies. A number of approximations were obtained using analytical methods and
compared with a numerical evaluation of the exact result for the effective potential in certain
cases. In particular, the case of a weakly coupled δ-function potential was shown to result in
a non-analytic expression for the vacuum energy that will not show up if a normal weak-field
perturbative approach is used.

There are a number of future directions that are worthy of attention. The first is to find a
method to obtain the complete set of boundary counterterms to two-loop order, and if possible
to proceed beyond two-loop order. In particular it would be of interest to see if the non-
analyticity seen in the δ-function vacuum energy could affect the renormalization procedure
at higher orders. It would also be of interest to examine how the analysis presented here is
modified if there is more than one δ-function present, or if the δ-functions are more than one-
dimensional. The case of spherical δ-functions relevant for spherical or cylindrical boundary
problems is also of some interest. Having a more complete analysis of the counterterms would
enable a renormalization group study to be performed and further illustrate the role of the
surface divergences. Finally we mention that it is of interest to examine the complete stress–
energy tensor for the interacting case, complementing the free field cases that have been done.
Some work has been done on this [43].
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Appendix A. Green functions

In this appendix we describe a method for calculating the Feynman Green function in the
presence of one-dimensional δ-function potentials that generalizes [3]. An earlier evaluation
of the one-dimensional Green function using an entirely different approach was given by [40],
and by [2] for scalars and spinors. Take a (D + 1)-dimensional spacetime with spacetime
coordinates xμ = (x⊥, y) and adopt a Euclidean metric. Here y is used to distinguish the
coordinate that enters the δ-functions. Take the potential to be

V (y) =
n∑

i=1

viδ(y, ai), (A.1)

where the vi are constants and ai give the locations of the δ-function singularities. In the case
where y runs over the finite range [−L/2, L/2] with y = −L/2 identified with y = L/2, we
assume that −L/2 < ai < L/2 for all i = 1, . . . , n.

We now wish to solve for the Green function Gv(x, x′) defined as the fundamental solution
to

(− �+m2 + V (y))Gv(x, x′) = δ(x, x′). (A.2)

Write

Gv(x, x′) =
∫

dD p

(2π)D
eip·(x⊥−x′

⊥)Gv(p; y, y′). (A.3)

It then follows from (A.2) that[
− ∂2

∂y2
+ ω2

p + V (y)

]
Gv(p; y, y′) = δ(y, y′), (A.4)

where

ωp = (p2 + m2)1/2. (A.5)

With V (y) given as in (A.1) we can use the δ-functions to set y = ai in Gv(p; y, y′), thereby
obtaining [

− ∂2

∂y2
+ ω2

p

]
Gv(p; y, y′) = δ(y, y′) −

n∑
i=1

vi δ(y, ai)Gv(p; ai, y′). (A.6)

Now define G0(p; y, y′) to be the solution to (A.6) with vi = 0; that is, for no δ-functions
present. This means that[

− ∂2

∂y2
+ ω2

p

]
G0(p; y, y′) = δ(y, y′). (A.7)

We can set y′ = ai in (A.7) and then use this to eliminate δ(y, ai) in (A.6). Rearranging the
result gives[

− ∂2

∂y2
+ ω2

p

] {
Gv(p; y, y′) +

n∑
i=1

vi G0(p; y, ai)Gv(p; ai, y′)

}
= δ(y, y′). (A.8)

Since the solution to (A.7) should be unique (given the boundary conditions) we may identify
the expression in braces in (A.8) with G0(p; y, y′). This gives us

Gv(p; y, y′) +
n∑

i=1

vi G0(p; y, ai)Gv(p; ai, y′) = G0(p; y, y′). (A.9)
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If we set y = a j in (A.9) we find

n∑
i=1

{δi j + viG0(p; a j, ai)}Gv(p; ai, y′) = G0(p; a j, y′). (A.10)

This gives us a set of equations that determines Gv(p; ai, y′) that occurs in (A.9) in terms
of G0(p; y, y′). Thus we obtain Gv(p; y, y′) from a knowledge of the Green function in the
absence of a δ-function potential.

In the simplest case of a single δ-function potential (n = 1 in (A.10)) it is easy to see that

Gv(p; a, y′) = G0(p; a, y′)
1 + vG0(p; a, a)

. (A.11)

This gives us

Gv(p; y, y′) = G0(p; y, y′) − vG0(p; y, a)G0(p; a, y′)
1 + vG0(p; a, a)

, (A.12)

if we use (A.9). The case of more than one δ-function potential can be dealt with in a similar
manner, although of course the details become more involved. For example, it is straightforward
to recover the Green function for two δ functions used by Milton [10].

For the present paper we are concerned with a single δ-function, and assume −L/2 �
y � L/2 with the endpoints identified. For the case of periodic boundary conditions we have

G0(p; y, y′) =
∞∑

j=−∞

1

L
eiσ j (y−y′)(σ 2

j + ω2
p

)−1
, (A.13)

where

σ j = 2π j

L
. (A.14)

Note that G0(p; y, y′) can only depend on |y− y′|, a result that is easily seen by relabelling j to
− j in the sum. The sum over j can be computed using contour integral methods to give [41]

G0(p; y, y′) = 1

2ωp

cosh
(

L
2 ωp − ωp|y − y′|)
sinh

(
L
2 ωp

) . (A.15)

This expression is sufficient to determine Gv(p; y, y′) and hence the full Green function in the
presence of a δ-function potential. Note that as L → ∞ we recover the flat spacetime result
of G0(p; y, y′) = e−ωp|y−y′|/(2ωp).

We are mainly concerned with the coincidence limit of the Green function. From (A.12)
and (A.15), we find

Gv(p; y, y) = G0(p; y, y) − vG2
0(p; y, a)

1 + vG0(p; a, a)

= 1

2ωp
coth

(
L

2
ωp

)
− v

4ω2
p

cosh2 [(
L
2 − |y − a|)ωp

]
sinh2 (

L
2 ωp

)[
1 + v

2ωp
coth

(
L
2 ωp

)] . (A.16)

The coincidence limit of the Green function is then obtained from (A.3),

Gv(x, x) =
∫

dD p

(2π)D
Gv(p; y, y), (A.17)

with (A.16) used on the right-hand side.
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Appendix B. Evaluation of some integrals

We define

I(α) =
∫

dD p

(2π)D
ω−α

p , (B.1)

where ωp = (p2+m2)1/2. Making use of the standard integral representation for the �-function
[41] it is easy to show that

I(α) = (4π)−D/2 �
(

α−D
2

)
�

(
α
2

) (m2)(D−α)/2. (B.2)

This is a standard result of dimensional regularization [42].
We also define

Kn(v) =
∫

dD p

(2π)D
ω−n

p

(
1 + v

2ωp

)−1

. (B.3)

It is simple to show that Kn(v) satisfies the recursion relation

Kn(v) = I(n) − v

2
Kn+1(v), (B.4)

where I(n) is defined as in (B.1). We are concerned with the case D → 3 in this paper, and
simple power counting shows that Kn(v) is finite as D → 3 for n � 4. The recursion relation
(B.4) enables us to isolate the divergent parts of Kn(v) in terms of the simpler integral given
in (B.1) and (B.2).

With these preliminaries over, we can now evaluate the divergent parts of the Green
function expressions that enter the two-loop vacuum energy. First of all, in the large L limit,
from (A.16) and (A.17) we have∫ L/2

−L/2
dy Gv(x, x) =

∫
dD p

(2π)D

{
L

2ωp
− v

4ω2
p

(
1 + v

2ωp

)−1 ∫ ∞

−∞
dy e−2|y−a|ωp

}

= L

2
I(1) − v

4

∫
dD p

(2π)D
ω−2

p

(
ωp + v

2

)−1

= L

2
I(1) − v

4
K3(v)

= L

2
I(1) − v

4
I(3) + v2

8
K4(v). (B.5)

In the last line we have used (B.4). The result in (B.5) is exact. The first two terms contain
poles as D → 3 and the last term is finite.

We also need

Gv(x, x)|y=a =
∫

dD p

(2π)D

{
1

2ωp
− v

4
ω−2

p

(
1 + v

2ωp

)−1
}

= 1

2
I(1) − v

4
K2(v)

= 1

2
I(1) − v

4
I(2) + v2

8
I(3) − v3

16
K4(v). (B.6)

Any poles can come only from the first three terms on the right-hand side as K4(v) is finite as
D → 3.
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Finally, we need
∫ L/2
−L/2 dy G2

v(x, x). We can use (A.16) and (A.17) to show in the limit of
L → ∞ that∫ L/2

−L/2
dy G2

v(x, x) =
∫ L/2

−L/2
dy

∫
dD p

(2π)D

dDq

(2π)D

{
1

4ωpωq
− v

4ωpω2
q

(
1 + v

2ωq

)−1

e−2|y−a|ωq

+ v2

16
ω−2

p ω−2
q

(
1 + v

2ωq

)−1 (
1 + v

2ωp

)−1

e−2|y−a|(ωp+ωq)

}
= L

4
I2(1) − v

4
I(1)K3(v) + J, (B.7)

with

J = v2

16

∫
dD p

(2π)D

dDq

(2π)D
ω−2

p ω−2
q

(
1 + v

2ωq

)−1 (
1 + v

2ωp

)−1

(ωp + ωq)
−1. (B.8)

The only complication is the evaluation of J, because the double integral does not factorize. If
we consider the integral over q first it is easily seen that∫

dDq

(2π)D
ω−2

q

(
1 + v

2ωq

)−1

(ωp + ωq)
−1 = 2

v
ω−1

p I(1) − 2

v

(
ωp − v

2

)−1
K1(v)

+ω−1
p

(
ωp − v

2

)−1
∫

dDq

(2π)D
(ωp + ωq)

−1. (B.9)

If we use (B.9) in (B.8), we find that

J = v

8
I(1)K3(v) − 1

4v
K1(v) [K1(v) + K1(−v) − 2I(1)] + J1, (B.10)

where

J1 = v2

16

∫
dD p

(2π)D
ω−2

p

(
ω2

p − v2

4

)−1

F1(p), (B.11)

with

F1(p) =
∫

dDq

(2π)D
(ωq + ωp)

−1. (B.12)

We only require the pole part of J for the divergent part of the effective action. It is easy to
show that

F1(p) = I(1) − ωpI(2) + ω2
pI(3) − ω3

pF2(p) (B.13)

with

F2(p) =
∫

dDq

(2π)D
ω−3

q (ωq + ωp)
−1. (B.14)

F2(p) is finite as D → 3, and in setting D = 3 we find

F2(p) = m

4π
ω−2

p − 1

2π2
ω−1

p + m

2π2
ω−2

p

(
ω2

p

m2
− 1

)1/2

ln

⎡⎣ωp

m
+

(
ω2

p

m2
− 1

)1/2
⎤⎦ . (B.15)

Using (B.13) and (B.15) in (B.11) results in

J1 = v2

32
I(1) [K4(v) + K4(−v)] + v3

64
I(2) [K4(v) − K4(−v)]

+ v4

128
I(3) [K4(v) + K4(−v)] − mv2

64π
I(3) + v2

32π2
I(2)

+ mv3

256π
[K4(v) − K4(−v)] + v4

256π2
[K4(v) + K4(−v)]
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− mv2

32π2

∫
dD p

(2π)D
ω−1

p

(
ω2

p − v2

4

)−1
(

ω2
p

m2
− 1

)1/2

× ln

⎡⎣ωp

m
+

(
ω2

p

m2
− 1

)1/2
⎤⎦ . (B.16)

This result is exact. We are only after the pole part of J, and hence J1, so we can drop all terms
that are finite as D → 3. Of the expressions I(1), I(2) and I(3), only I(1) and I(3) contain
poles as D → 3. K4(±v) is finite as D → 3. The only remaining question concerns the last
term in (B.16) as D → 3. To see the pole structure of this integral, expand the integrand in
powers of ωp. Terms that fall off with ωp faster than ω−4

p will converge as D → 3. We find

m
∫

dD p

(2π)D
ω−1

p

(
ω2

p − v2

4

)−1
(

ω2
p

m2
− 1

)1/2

ln

⎡⎣ωp

m
+

(
ω2

p

m2
− 1

)1/2
⎤⎦

�
∫

dD p

(2π)D

{
ω−2

p ln(2ωp/m) + · · · }, (B.17)

where terms that are finite as D → 3 have been dropped. From (B.1) it is easy to see that∫
dD p

(2π)D
ω−α

p ln ωp = −I′(α). (B.18)

Because I(2) is finite (after regularization) as D → 3, so is I′(2). This means that (B.17) is
finite after regularization as D → 3. We conclude that the last term of (B.16) does not contain
any pole terms.

Retaining only terms that can contain poles as D → 3, we find from (B.10) that

J = v2

16
I(2)I(3) − v3

32
I2(3) − mv2

64π
I(3) + v4

32
I(3)K4(v) + · · · . (B.19)

Liberal use of the recursion relation (B.4) has been made here. It is noteworthy that all of the
terms that involve K(−v) at intermediate stages of the calculation have cancelled. The result
for (B.7) becomes∫ L/2

−L/2
dy G2

v(x, x) = L

4
I2(1) − v

4
I(1)I(3) + v2

8
I(1)K4(v) + v2

16
I(2)I(3)

− v3

32
I2(3) − mv2

64π
I(3) + v4

32
I(3)K4(v) + · · · . (B.20)

Again terms that are finite as D → 3 have been dropped. The presence of non-local pole
terms coming from I(1) and I(3) multiplying K4(v) can be noted. Such terms must cancel for
renormalizability with local counterterms, and it is shown in section 2.2 that this is the case.
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