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Abstract

We study a twisted version of the Yang—Baxter equation, called the Hom—Yang—
Baxter equation (HYBE), which is motivated by Hom-Lie algebras. Three
classes of solutions of the HYBE are constructed, one from Hom-Lie algebras
and the others from Drinfeld’s (dual) quasi-triangular bialgebras. Each solution
of the HYBE can be extended to operators that satisfy the braid relations.
Assuming an invertibility condition, these operators give a representation of
the braid group.

PACS numbers: 02.20.Uw, 02.10.Kn
Mathematics Subject Classification: 16W30, 17A30, 17B37, 81R50

1. Introduction

The Yang—Baxter equation (YBE) originated in the work of McGuire, Yang [25], and Baxter
[4, 5] in statistical mechanics. Let V be a vector space, andlet B:VQ V — V® V be a
linear automorphism. Then B is said to be an R-matrix if it satisfies the YBE

(Idy @ B)o(B®Idy)o(Idy ® B)y=(B® Idy)o (Idy ® B) o (B® Idy). (1.0.1)

The YBE has far-reaching mathematical significance. Indeed, it is closely related to Lie
algebras, Drinfeld’s (dual) quasi-triangular bialgebras, which include many examples of
quantum groups, and the braid group, among other topics. It is known that every (co)module
M over a (dual) quasi-triangular bialgebra H gives a solution of the YBE [6, 7, 12]. Also,
every Lie algebra L gives a solution of the YBE [3]. Moreover, each solution of the YBE gives
a representation of the braid group on n strands.

We will study a twisted version of the YBE, which is motivated by Hom-Lie algebras. A
Hom-—Lie algebra L has a bilinear skew-symmetric bracket [—, —]: L ® L — L and a linear
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map « : L — L such that a[x, y] = [a(x), «(y)] for x, y € L (multiplicativity) and that the
following Hom—Jacobi identity holds

([x, ], a(@)] + [[z, x], ] + [[y, 2], e (x)]] = 0. (1.0.2)

A Lie algebra is a Hom-Lie algebra with « = Id. Hom-Lie algebras were introduced in [8]
(without multiplicativity) to describe the structures on certain g-deformations of the Witt and
the Virasoro algebras. Earlier precursors of Hom-Lie algebras can be found in [11, 14]. Other
classes of Hom-Lie algebras were constructed in [17, 27]. We will describe some of these
Hom-Lie algebras in section 3.

If one considers a Hom-Lie algebra as an «-twisted version of a Lie algebra, then there
should be a corresponding twisted YBE. To state precisely what we mean by a twisted YBE, let
M be a vector space with a given linear self-mapo: M — M,andlet B: M QM — M Q@M be
a bilinear map (not necessarily an automorphism) such that B o «®? = a®? o B. We consider
the following Hom—Yang—Baxter equation (HYBE) for (M, «),

(®@®B)o(BQu)o (@ ®B)=(BQa)o(@®B)o(BRa). (1.0.3)

Of course, an R-matrix is a solution of the HYBE in which & = Id and B is invertible. We
will construct three classes of solutions of the HYBE, generalizing the solutions of the YBE
from Lie algebras and (dual) quasi-triangular bialgebras.

Just as a Lie algebra gives a solution of the YBE (1.0.1), the following result, which will
be proved in section 3, shows that a Hom-Lie algebra gives a solution of the HYBE. In what
follows, k denotes the ground field.

Theorem 1.1. Let (L, [—, —], @) be a Hom-Lie algebra. Set L' = k & L and a(a,x) =
(a, a(x)) for (a, x) € L'. Define a bilinearmap B, :L' ® L' — L' ® L' by

By((a,x) ® (b, y)) = (b, a(y)) ® (@, x(x)) + (1,0) ® (0, [x, y]).  (1.1.1)
Then By, is a solution of the HYBE (1.0.3) for (L', «).

This theorem is a generalization of [3, proposition 4.2.2], which is precisely the case
when o = Id, i.e., when L is a Lie algebra.

Next we describe solutions of the HYBE from quasi-triangular bialgebras. A quasi-
triangular bialgebra [6, 7] consists of a bialgebra H and an invertible element R € H ® H,
called the quasi-triangular structure. The comultiplication A in H is almost cocommutative,
whose non-cocommutativity is controlled by the element R. Moreover, R satisfies two further
compatibility conditions with A. A cocommutative bialgebra is an example of a quasi-
triangular bialgebra in which R = 1 ® 1. However, most interesting examples of quasi-
triangular bialgebras are not cocommutative. The exact definition of a quasi-triangular
bialgebra will be recalled in section 4.

Let (H, R) be a quasi-triangular bialgebra, and let M be an H-module. Define the bilinear
map B - M @M — M @ M by

Br(u ®v) = 1(R(u ® v)), (1.1.2)
where 7: M @ M — M ® M is the twist isomorphism. Then it is well known that By is a
solution of the YBE (1.0.1) [6, 7, 12]. This gives an efficient and systematic way to produce
solutions of the YBE. Particular examples of solutions of the YBE arising this way include

the Woronowicz operators on a Hopf algebra [24], as shown in [10].
The following generalization will be proved in section 4.

Theorem 1.2. Let (H, R) be a quasi-triangular bialgebra, M be an H-module, ando. : M — M
be an H-module morphism. Then the map Bg (1.1.2) is a solution of the HYBE (1.0.3) for
(M, o).
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Dual to a quasi-triangular bialgebra is the notion of a dual quasi-triangular bialgebra
[9, 13, 15, 22]. It consists of a bialgebra H and a dual quasi-triangular structure
R € Hom(H ® H, k). The exact definition of a dual quasi-triangular bialgebra will be
recalled in section 5. Let (H, R) be a dual quasi-triangular bialgebra, and let M be an H-
comodule viathe map p: M — H ® M. For an element u € M, write p(u) = Z(u) ug Quy.
Define a bilinear map BX: M @ M — M ® M by

BRu®v) = Z R(vy ®@ up)vy @ uy. (1.2.1)
(u)(v)

Then it is well known that BX is a solution of the YBE (1.0.1); see, e.g. [12, proposition
VIIL.5.2]. This gives another systematic way to produce solutions of the YBE. Conversely,
by the FRT construction [21], every R-matrix for a finite dimensional vector space M has the
form B for some dual quasi-triangular bialgebra H and some H-comodule structure on M.
The following result, dual to theorem 1.2, will be proved in section 5.

Theorem 1.3. Let (H, R) be a dual quasi-triangular bialgebra, M be an H-comodule, and
oM — M be an H-comodule morphism. Then the map BX (1.2.1) is a solution of the HYBE
(1.0.3) for (M, a).

Solutions of the YBE (i.e., R-matrices) can be extended to operators that satisfy the braid
relations, which can then be used to construct representations of the braid group. We extend
this construction to solutions of the HYBE. Let n > 3 and ®83,, be the braid group on n strands
[1, 2]. The braid group B, has generators o; (1 < i < n — 1), which satisfy the determining
braid relations

0;0j = 0;0; if |l - ]| > 1 and 0i0i4+10; = 0;4+10;0j4]. (131)

The following result, which will be proved in section 6, shows that each solution of the HYBE
can be extended to operators that satisfy the braid relations. With an additional invertibility
condition, these operators give a representation of the braid group 8,,. It generalizes the usual
braid group representations from R-matrices, as discussed, for example, in [12, X.6.2].

Theorem 1.4. Let B be a solution of the HYBE (1.0.3) for (M, ) and n > 3. Define the
linear maps B; : M®" — M®" (1 <i <n—1)by

B ® o®02 if i=1,
B, = {a®i-D g B®q®n—i-D if 1<i<n-—1I, (1.4.1)
a®"2 @ B if i=n—1.

Then the maps B; satisfy the braid relations (1.3.1). Moreover, if both o and B are invertible,

then so are the B;, and there is a unique group morphism p?:98, — Aut(M®") with
B

Py (01) = B;.

Each Lie algebra gives an R-matrix (theorem 1.1 with @ = Id) Bon L’ = k @ L. This in
turn gives a corresponding representation of the braid group 9, on L'®", as in theorem 1.4.
Our a-twisted setting is more flexible and provides many more braid group representations on
L"®" for each Lie algebra L. For example, as we will discuss in example 3.2, each Lie algebra
L givesrise to a family {L, = (L, [—, —]4, &)} of Hom—Lie algebras, one for each Lie algebra
endomorphism « of L. Thus, starting with a Lie algebra L and using theorems 1.1 and 1.4 and
corollary 3.3 on the sub-family {L,, : « invertible} of Hom-Lie algebras, we obtain a family of
representations of 98, on L'®", As an illustration, in example 6.1, starting with the Lie algebra
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s1(2), we will construct an explicit infinite, 1-parameter family of representations of ‘B, on
s1(2)"®" = (k @ s1(2))®".

Likewise, in theorems 1.2 and 1.3 with fixed (H, R) and M, suppose weruno: M — M
through all the H-(co)module automorphisms of M. Then we obtain from theorem 1.4 a family,
indexed by these a, of braid group representations on M®" because By (1.1.2) and BR (1.2.1)
are always invertible.

This finishes the descriptions of our main results. The rest of this paper is organized as
follows. In section 2, we fix some notations and give a few basic examples of solutions of
the HYBE. In section 3, we give some examples of Hom-Lie algebras and prove theorem 1.1.
We also show that B, (1.1.1) is invertible, provided that « is invertible (corollary 3.3). In
sections 4 and 5, we recall the definitions of (dual) quasi-triangular bialgebras and prove
theorems 1.2 and 1.3. In section 6, we prove theorem 1.4 and illustrate it with some Hom—Lie
deformations of s/(2) (example 6.1).

2. The Hom-Yang-Baxter equation

Before we discuss some basic solutions of the HYBE, let us fix some notations.

2.1. Conventions and notations

Throughout the rest of this paper, k denotes a field of characteristic 0. Vector spaces, tensor
products, and linearity are all meant over k, unless otherwise specified.

Given two vector spaces V and W, denote by 7 = tyy : V@ W — W ® V the twist
isomorphism, i.e., (v ® w) = w ® v. Denote by Hom(V, W) the vector space of linear maps
from V to W.

For a coalgebra C with comultiplication A:C — C ® C, we use Sweedler’s notation
Alx) = Z(x) x" ® x” [23]. Suppose, in addition, that M is a C-comodule with structure map
p:M— C®M. Foru € M, we write p(u) =}, ic ® uy.

2.2. Hom-modules

By a Hom-module, we mean a pair (V, ) in which V is a vector spaceand «: V — V is a
linear map. A morphism (V, ay) — (W, ay) of Hom-modules is a linear map f:V — W
such that ay o f = f o ay. When there is no danger of confusion, we will denote a
Hom-module (V, o) simply by V.

The tensor product of the Hom-modules (V, ay) and (W, o) consists of the vector space
V ® W and the linear self-map oy ® ay.

2.3. The Hom—Yang—Baxter equation

Let (M, o) be a Hom-module, andlet B: M @ M — M ® M be a morphism of Hom-modules,
i.e., Boa®? = a®? o B. Then the Hom—Yang-Baxter equation (HYBE) for the Hom-module
(M, @) is defined in (1.0.3).

In the rest of this section, we give a few basic examples of solutions of the HYBE.

Example 24. If B:V® V — V ® V is an R-matrix (1.0.1), then B is also a solution of the
HYBE for the Hom-module (V, Idy).

Example 2.5. Let (M, «) be a Hom-module. Defineamap t,: M @ M — M ® M by
(U ®v) = a(v) @ a(u)
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for u, v € M. Then clearly 7, is a morphism of Hom-modules. Moreover, t, is a solution
of the HYBE for (M, «). Indeed, with B = t,, both sides of (1.0.3), when applied to
uvw e M®3, are equal to ®(w) ® & (v) ® o (u).

Proposition 2.6. Let B be a solution of the HYBE for the Hom-module (M, o).

(1) If A € Kk, then AB is also a solution of the HYBE for (M, «).
(2) If both a and B are invertible, then B~ is a solution of the HYBE for (M, o™ ).

Proof. The first assertion follows from AB oa®? = A(Boa®?), a®?oAB = A(a®?*0 B), A\B®
a=AB®a),anda ® AB = A(ex ® B).

The second assertion follows from B~! o (¢ 1)®? = (@®? 0o B)™!, («™)®? 0 B~! =
(Boa®) ' B '®@a'=B®a) L,ande ' ® B! = (¢ ® B)"". O

3. Solutions of the HYBE from Hom-Lie algebras

The purpose of this section is to prove theorem 1.1, which says that every Hom-Lie algebra
gives a solution of the HYBE (1.0.3). We will also observe that, in the setting of theorem 1.1,
if ¢ is invertible, then so is B, (corollary 3.3).

We already defined Hom-Lie algebras in the introduction. Before we prove theorem 1.1,
let us first discuss two classes of examples.

Example 3.1 (Hom-Lie algebras from Hom-associative algebras). The fact that associative
algebras give rise to Lie algebras via the commutator bracket has a Hom-algebra counterpart.
By a Hom-associative algebra, we mean a triple (A, i, o), in which (A, «) is a Hom-module
and u:A ® A — A is a bilinear map. This data is required to satisfy two conditions:
multiplicativity, a(u(x, y)) = u(a(x), ¢(y)), and Hom-associativity,

pla(x), u(y, 2)) = pn(u(x, y), a(z)),
for x, y,z € A. An associative algebra is an example of a Hom-associative algebra in which
o = Id. Hom-associative algebras (without multiplicativity) were introduced in [17], and
they play the roles of associative algebras in the Hom-algebra setting. Indeed, given a Hom-
associative algebra (A, 1, o), we obtain a Hom-Lie algebra (A, [—, —], @) [17] in which

[x, yI = p(x, y) — uly, x)
for x, y € A. It is clear that this bracket is skew-symmetric and multiplicative. The Hom—
Jacobi identity (1.0.2) can be proved by a direct computation using the Hom-associativity
of .

Although itis not needed in this paper, we point out that, similar to the universal enveloping
algebra of a Lie algebra, there is a universal enveloping Hom-associative algebra functor U
from Hom-Lie algebras to Hom-associative algebras [26, 28]. The ordinary enveloping algebra
of a Lie algebra is a bialgebra. Similarly, one can define a Hom-bialgebra by dualizing and
extending the definition of a Hom-associative algebra. It is shown in [28, section 3] that, for a
Hom-Lie algebra L, its universal enveloping Hom-associative algebra U (L) has the structure
of a Hom-bialgebra. Besides the sources cited above, other papers that discuss Hom-Lie
algebras and related Hom-algebras include [8, 18, 19, 20, 27].

Example 3.2 (Hom—Lie algebras as deformations of Lie algebras). Another systematic way to
obtain Hom-Lie algebras is by deforming Lie algebras along endomorphisms. Let (L, [—, —])
be a Lie algebra, and let o« : L — L be a Lie algebra endomorphism. Define a new bracket
[—, —]« on L by setting

[x, y]le = alx, y].



J. Phys. A: Math. Theor. 42 (2009) 165202 D Yau

Then a direct calculation shows that L, = (L, [—, —]u, @) is a Hom-Lie algebra [27, theorem
3.3]. Using this construction, one can easily obtain many examples of Hom-Lie algebras.
The reader is referred to [27, section 3] for examples of Hom—Lie deformations of sl(n), the
Heisenberg algebra, Lie algebras associated with Lie groups, and the Witt algebra.

We point out that the procedure described in the previous paragraph can be applied
to other types of algebras as well. Indeed, one can deform an associative algebra along
an endomorphism and obtain a Hom-associative algebra [27, theorem 2.5]. Dualizing and
extending this procedure [20, 28], one can obtain Hom-coalgebras and Hom-bialgebras by
deforming coalgebras and bialgebras, respectively, along endomorphisms.

After the above discussion of examples of Hom-Lie algebras, we now proceed to prove
theorem 1.1.
Proof of theorem 1.1. First, it is clear that B, o «®?> = «®? o B,. To prove that B, satisfies
the HYBE (1.0.3), consider a typical generator y = (a, x) ® (b, ¥) ® (c, z) in L'®3. A direct
computation gives
(@® By) o (By ®a) o (@® B)(y) = (¢, &’ (2) ® (b, &’ (1)) ® (a, &’ (x))
+(c, @’ (2) ® (1,0) @ (0, [a?(x), &* (M) + (1,0) ® (b, &’ ()
® (0, af(x), ()] + (1, 0) ® (1, 0) ® (0, [[e(x), ()], &> (»)])
+(1,0) ® (0, &’[y, 2]) ® (@, &’ (1) + (1,00 ® (1,0) ® (0, [@*(x), e[y, 2. (3.2.1)
Likewise, we have
(B ® @) 0 (¢ ® By) o (By ® ) (y) = (¢, &’ (2) ® (b, &’ () ® (a, &’ (x))
+(1,0) ® (0, [2*(»), &*(2)]) ® (a, &’ (x))
+(1,0) ® (b, &’ () ® (0, aler(x), 2(D)]) + (¢, &* (2)) @ (1, 0)
® (0, ’[x, y) + (1,0) ® (1, 0) ® (0, a[[x, y], (2)]). (3.2.2)

Using the multiplicativity of «, four terms in (3.2.1) (those not of the form (1, 0)® (1,0)®- - -)
are equal to four corresponding terms in (3.2.2). Therefore, B,, satisfies the HYBE, provided

o (x), a(2)], ()] + [ (x), aly, z]] = ellx, y], a(2)]. (3.2.3)

Using the multiplicativity of « and the skew symmetry of the bracket, the condition (3.2.3)
can be rewritten as

0=oa([x, yl, a(2)] + [lz, x], (M1 + [y, z], € (x)]) . (3.2.4)
The condition (3.2.4) is true because of the Hom—Jacobi identity (1.0.2) in L. O

Corollary 3.3. With the same hypotheses as in theorem 1.1, assume in addition thato : L — L
is invertible. Then B, is also invertible, whose inverse is given by

B,'((a,x) ® (b, y)) = (b,a™ () ® (a, &' (x)) + (0, *[x, y]) ® (1,0).
Moreover, Boj1 is a solution of the HYBE for (L', a™"), where «~'(a, x) = (a, ' (x)).

Proof. A direct computation shows that the stated B! is indeed the two-sided inverse of B,
(1.1.1). The last assertion follows from the second part of proposition 2.6. (|

4. Solutions of the HYBE from quasi-triangular bialgebras

The purpose of this section is to prove theorem 1.2. Let us first recall some relevant definitions.
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4.1. Quasi-triangular bialgebras

Let H = (H,u,n, A, ¢e) be a bialgebra, in which u: H ® H — H is the associative
multiplication, n:k — H is the unit, A: H — H ® H is the coassociative comultiplication,
and ¢ : H — Kk is the counit. A quasi-triangular structure on H [6, 7, 12, 16] is an invertible
element R € H ® H such that

l l

(t o A)(x) = RA(X)R™! 4.1.1)
forx € H,
(A® Idy)(R) = Ri3Ra3, and (Idy ® A)(R) = Ri3R1. 4.1.2)
Here,if R =) ;s; @ t;, then
Ro=) si®i®l,  R3=) s®1®4  ad  Ry=) 1®s5 8%

We call (H, R) a quasi-triangular bialgebra, which is also known as a braided bialgebra. The
quasi-triangular structure R is also known as a universal R-matrix.

The reader is referred to [6, 7, 12, 16] for detailed discussions and examples of quasi-
triangular bialgebras, many of which are quantum groups. In a quasi-triangular bialgebra
(H, R), the quasi-triangular structure R satisfies the Quantum Yang—Baxter equation (QYBE)

R12R13R23 = Ry3Ri3R12. (4.1.3)

See, e.g. [12, theorem VIIL.2.4] for the proof. Using the above notations, the QYBE (4.1.3)
can be rewritten as
Zsksj@)tksi@tjli:Zsjsi(g)skti@tktj. “4.1.4)
ijk ijk

Consider the permutation isomorphism o : H®?> — H®3 definedasc (x @ y®2) = 7@y ® x.
Applying o to both sides of (4.1.4) yields

thti®tksi®sksjzztktj®skti®sjsi~ “4.1.5)
i,j.k i,j.k
We will make use of (4.1.5) below.

Proof of theorem 1.2. Let u, v and w be generic elements in M. Using the notations above,
the map By (1.1.2) can be written as

Br(u ® v) = Ztiv ® s;u,
i
where R = Zi 5;®1t;. Since o : M — M is H-linear, it is easy to see that «®20 Bg = Bgroa®2.

To see that By, satisfies the HYBE (1.0.3), we write y = u ® v ® w. Using the H-linearity
of «, a direct computation shows that

(@ ® Br) o (BR @ @) o (@ ® Br))(y) = ijfia(w) ® fsia(v) & spsjo(u) (4.1.6)
ijk

and

(BR®a)o(x®@Br)o(BrRQa))(y) = Ztktjoz(w) ® setia(v) ® sj5;00 (). 4.1.7)
ik

It follows from (4.1.5) that (4.1.6) and (4.1.7) are equal. Thus, By satisfies the HYBE. U

7
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5. Solutions of the HYBE from dual quasi-triangular bialgebras

The purpose of this section is to prove theorem 1.3. Let us first recall some relevant definitions.

5.1. Dual quasi-triangular bialgebras

Let H = (H, u,n, A, €) be a bialgebra. A dual quasi-triangular structure on H [9, 12, 13, 15,
16, 22] is a bilinear form R € Hom(H ® H, k) such that the following three conditions are
satisfied for x, y,z € H:

(1) The bilinear form R is invertible under the convolution product. In other words, there
exists a bilinear form R~! € Hom(H ® H, k) such that

YRR ®y)=ee() =Y R'@Y)RE'®Y).  (5.11)
(€316)] @) ()
(2) The multiplication p is almost commutative in the sense that

Z y/x/R(x// ® y//) — Z R(x' ® y/)x//y//. (512)
(€316)] (€316)]
(3) We have
Rxy®z) =Y Rx®)R(y®2"), (5.1.30)
(2)
R(x®yz) =Y R @ )RE" ® ). (5.1.3b)

(€9

We call (H, R) adual quasi-triangular bialgebra, which is also known as a cobraided bialgebra.
The dual quasi-triangular structure R is also called a universal R-form.

Note that (5.1.1) is dual to the invertibility of the quasi-triangular structure. Likewise,
(5.1.2)is dual to (4.1.1), and (5.1.3) is dual to (4.1.2). The reader is referred to the references
above for more detailed discussions and examples of dual quasi-triangular bialgebras.

In the context of theorem 1.3, the coassociativity of the H-comodule structure map
p:M — H ® M can be expressed as the equality

DT un® ) @ )y = Y uy @uf Quy (5.1.4)
() (upm) () (up)

for u € M. The notations were specified in section 2.1. Likewise, the H-linearity of the
H-comodule morphism « : M — M is equivalent to the equality

Y un@auu) =Y an @a)y (5.1.5)
(u) (a(u))
foru e M.

Proof of theorem 1.3. Let«, v, and w be generic elements in M. First, the following calculation
shows that BR (1.2.1) is a morphism of Hom-modules:

BRaw @a@®)= Y R@®y®a@)ma®)y ®a)y
(a(u))(a(v))

= D R@n @ um)a(vy) ® aluy) by (5.1.5)
(u)(v)
=a®(B*(u ®v)).
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To see that BR satisfies the HYBE (1.0.3) for (M, ), we write y = ¥ ® v ® w. By
lemmas 5.2 and 5.3 below, both (BR®@a) o (¢ ® BR) o (BR®@a))(y) and ((« ® BR) o (BR ®
a) o (a ® BR))(y) are equal to

Y R@ya)y ® a)m)R@w)y @ vj) - a(w)y ® aluy) @ al)y.  (5.1.6)

@) (vp)(a(w))
(a(w) ) (ee(u))

Therefore, it suffices to prove the following two lemmas. U

Lemma 5.2. With the notations above, (B® ® a) o (¢ ® B®) o (BR ® a))(y) is equal to
(5.1.6).

Proof. A direct computation shows that (B ® @) o (a ® B¥) o (BR ® a))(y) is equal to
> Ry @ um)R(@w)y ® (up) ) R(@(w)m)n ® a(vu)n)

() (V) (upr)

(e (w)) (a(vm)) (@ (w)m)
(a(w)p)m @ a(vy)y @ a((um)m). (5.2.1)
Using (5.1.4) on both u and a(w), (5.2.1) becomes

Y R @up)R@w)y @ ui)R@w)y ® a(vm)n)

W) (up)(W)(e(vy))
(e(w)) (e (w) )

ca(w)y @ a(vy)u @ aluy). (5.2.2)
Next, using (5.1.3a) with z = uy, (5.2.2) becomes

Y. Rma)y @up)R@w)y @ au)n) - a(w)y ® a(vp)y @ aliy).

@) ()(a(vm))
(e (w))(a(w)y)

(5.2.3)
Now using (5.1.5) on both u and vy, (5.2.3) becomes

> Rwpew)y @ e m)R@w)} @ wu)n) - a(w)y @ a((vy)u) ® a()y.

(v) (var) (e (u))
(e (w))(a(w)n)

(5.2.4)
Finally, using (5.1.4) on v, one observes that (5.2.4) is equal to (5.1.6). O

Lemma 5.3. With the notations above, (¢ ® BF) o (BR ® a) o (@ ® B®))(y) is equal to
(5.1.6).

Proof. This is similar to the proof of lemma 5.2, so we will only give a sketch. A direct
computation shows that (¢ ® BX) o (BX ® a) o (@ @ BF))(y) is equal to

Z R(wy @ vy) R(wy)n @ () ) R(a(vy)m & (@ (u)pm) )

W) (w) (e (u)) (wpr)
(a(u)p)(a(vy))

~a((wy)m) @ a(vy)y & (a(u)y)m. (5.3.1)
One shows that (5.3.1) is equal to (5.1.6) by performing the following steps:
(1) use (5.1.4) on w;
(2) use (5.1.3b) with x = wy;
(3) use (5.1.5) on both w and vy;
(4) use (5.1.4) on v;
(5) use (5.1.2) withx = vy andy = a(u) y;
(6) use (5.1.3b) with x = a(w) g;
(7) use (5.1.3a) withz = a(u)y. 0
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6. Braid group representations from solutions of the HYBE

Proof of theorem 1.4. It suffices to prove the first assertion about the braid relations (1.3.1)
for the B;. The second assertion about the existence and uniqueness of p? follows from the
invertibility of the B; and the presentation of ®B,, in terms of the generators o; (1 <i <n—1)
and the braid relations.

Suppose, then, j —i > 1 forsomeiand j with 1 < i, j < n— 1. Using the commutativity
of B with «®2, we have

Bi o Bj — (a2)®(i71) ® (B o a®2) ® (a2)®(j7i72) ® (a®2 o B) ® (a2)®(n7j71)

=@)® @ @ 0B)® (@)® P ® (Boa®)® (@)®" "V = B o B..
Here ” = aoa. By the symmetry of i and j, we conclude that B;oB; = Bjo B; if |i — j| > 1.
This proves the first braid relation in (1.3.1) for the B;.

For the other braid relation, we use the assumption that B satisfies the HYBE (1.0.3) and
compute as follows:

BioBiyjoBi=@)® " VR(BRa)o(@®B)o(BRa)® (a)®" =2
=@V Re®B)o(BRa)o (@ ® B)]® (a?)®"—i=2
= Bj41 0 B; 0 Bjyy.

2

We have shown that the B; satisfy the second braid relation in (1.3.1) as well. O

Example 6.1 (Braid group representations from Hom-Lie s/(2)). In this example, we
illustrate how to construct a parametric family of braid group representations from a Lie
algebra, using theorems 1.1 and 1.4 and corollary 3.3.

Let s1(2) denote the Lie algebra of 2 x 2 matrices with trace 0. A standard linear basis of
s1(2) consists of the matrices

1 0 0 1 0 0
=2 el e = (0)
which satisfy the relations

[h, e] = 2e, [h, f1= -2, and le, f1= h.

Each nonzero scalar A € k, the ground field, gives a Lie algebra morphism «;, : s/(2) — sl(2)
defined by

w()y=h, e =i, and () =2r""f
on the basis elements. One can check directly that the new bracket [—, —],, on (the underlying
vector space of) s/(2) defined by

[h, elo, = 22, [, fla, = =207"1, and e, flo, =h

satisfies the Hom—Jacobi identity (1.0.2) and that ¢, is multiplicative with respect to [—, —]q, .
Therefore, s1(2), = (sI(2), [—, —la, , @2) is a Hom—Lie algebra, as defined in the introduction.
This is also an instance of example 3.2.

Applying theorem 1.1 to the Hom-Lie algebra s/(2),, we see that B,, (1.1.1) is a solution
of the HYBE for (s/(2) = k® sl(2), «;,). Moreover, «;, is invertible with inverse %—1 = a-1.
So corollary 3.3 tells us that By, is also invertible. Thus, the linear maps B; (1 <i <n—1)on
s1(2)"®" (1.4.1) defined by B,, and a;, are all invertible. It follows from theorem 1.4 that there
is a unique braid group representation p* = ,of “ 9B, — Aut(sl(2)'®") given by p*(0;) = B;.

Starting from the Lie algebra s/(2), we have constructed an infinite, 1-parameter family
{p*} = {p" : . € k\{0}} of representations of the braid group B, on s/(2)"®" = (k@ s1(2))%".

10
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Moreover, suppose p : B, — Aut(s/(2)"®") denotes the braid group representation associated
with the R-matrix B = By, (1.1.1) on sI(2) = k @ sl(2). Taking A = 1, we have
o = Id, By, = B;g = B and p' = p. We can, therefore, think of {p”} as a 1-parameter
family of deformations of the usual braid group representation p on s(2)"®".

The procedure above can be summarized as follows. Take a Lie algebra L, and deform
it into some family of Hom-Lie algebras {L, = (L, [—, —]4, «)} along some family of Lie
algebra automorphisms « (example 3.2). Apply theorem 1.1 to each Hom-Lie algebra L,
to obtain a solution B, of the HYBE on (L' = k @ L, «). Then apply corollary 3.3 and
theorem 1.4 to these B, to obtain a family of representations of the braid group ‘B, on
L/®n — (k ® L)®”,

This procedure can be applied to other Lie algebras to obtain parametric families of
representations of the braid group. One can use, for example, the (1-parameter or multi-
parameter) Hom-Lie deformations of the Lie algebra si(n), the Heisenberg algebra, the Witt
algebra, and matrix Lie algebras in [27, section 3].
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