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Abstract
Monitoring changes in greenhouse gas (GHG) emission is critical for assessing climate mitigation
efforts towards the Paris Agreement goal. A crucial aspect of science-based GHG monitoring is to
provide objective information for quality assurance and uncertainty assessment of the reported
emissions. Emission estimates from combustion events (gas flaring and biomass burning) are often
calculated based on activity data (AD) from satellite observations, such as those detected from the
visible infrared imaging radiometer suite (VIIRS) onboard the Suomi-NPP and NOAA-20
satellites. These estimates are often incorporated into carbon models for calculating emissions and
removals. Consequently, errors and uncertainties associated with AD propagate into these models
and impact emission estimates. Deriving uncertainty of AD is therefore crucial for transparency of
emission estimates but remains a challenge due to the lack of evaluation data or alternate estimates.
This work proposes a new approach using machine learning (ML) for combustion detection from
NASA’s Black Marble product suite and explores the assessment of potential uncertainties through
comparison with existing detections. We jointly characterize combustion using thermal and light
emission signals, with the latter improving detection of probable weaker combustion with less
distinct thermal signatures. Being methodologically independent, the differences in ML-derived
estimates with existing approaches can indicate the potential uncertainties in detection. The
approach was applied to detect gas flares over the Eagle Ford Shale, Texas. We analyzed the
spatio-temporal variations in detections and found that approximately 79.04% and 72.14% of the
light emission-based detections are missed by ML-derived detections from VIIRS thermal bands
and existing datasets, respectively. This improvement in combustion detection and scope for
uncertainty assessment is essential for comprehensive monitoring of resulting emissions and we
discuss the steps for extending this globally.

1. Introduction

Monitoring changes in greenhouse gas (GHG) emis-
sions and resulting levels of atmospheric carbon diox-
ide (CO2) is critical for assessing climate mitiga-
tion effort towards the 1.5 ◦C goal under the Paris

Climate Agreement (www.un.org/en/climatechange/
paris-agreement). The science research community
has developed novel approaches to detect atmo-
spheric CO2 changes for climate monitoring by util-
izing observations and modeling (Weir et al 2021,
Zeng et al 2021, Hurtt et al 2022). To support
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decision-makers and stakeholders, GHG emission
information also needs to be provided with evaluation
and transparency (NASEM 2022).

Fromamong a variety of carbon emission sources,
emissions from combustion, such as gas flares, waste
burning, and fires, are relatively uncertain com-
pared to emissions from the energy sector, although
these are calculated from the same activity-based
(often called ‘bottom-up’, NASEM 2022) approach
(Eggleston 2006) as

Emissions

= Activity data (AD)× Emission factor (EF).

AD encompasses a wide range of indicators or
drivers ofGHGemission including a growing number
of unconventional sources (Oda et al 2021a, NASEM
2022). For CO2 from fossil fuel combustion, AD and
EF for the energy sector are highly constrained for the
system boundary (Eggleston 2006, Oda et al 2021a).
AD for energy production is also reported with high
precision (5% 2 sigma reported uncertainty) for fuel
consumed, while AD for combustion events, such as
gas flares is often based on estimates and the total
fuel amount consumed within the system. Moreover,
EF for biomass burning is highly uncertain (Akagi
et al 2011), while EF for fossil fuels is uncertain for
unknown chemical composition. Combustion emis-
sions are incorporated in carbon modeling for estim-
ating emissions and removals (Crowell et al 2019)
causing errors and uncertainties from combustion
events to potentially alias final estimates. Reducing
these errors is crucial for maturing carbon monitor-
ing systems (CMS), especially ones based on atmo-
spheric inversions (Oda et al 2019, 2021b).

A challenge in evaluating emissions from com-
bustion is the lack of fiducial reference data, partic-
ularly with gridded emission reports (Andres et al
2016, Oda et al 2018, 2019). This has been tackled
by intercomparing emission estimates and using dif-
ferences as proxies for errors and uncertainties (Oda
et al 2015, Andres et al 2016, Oda et al 2018, 2019,
Pan et al 2020). As these differences are attributable
to underlying computation and datasets, intercom-
parison allows characterization of emission differ-
ences and its drivers (Oda et al 2019, Pan et al 2020).
This contributes to quality assurance (QA) anduncer-
tainty analysis recommended by the IPCC guidelines
and is essential for robust and transparent emission
reporting. However, when the methodologies and
underlying datasets are shared by different estimates,
the process of assigning uncertainties is challenging as
intercomparison is not adequately informative about
potential uncertainties in estimates.

Daily satellite observations are widely used for
detecting combustion from fires and flares globally.
The detectors commonly utilize the Visible Infrared
Imaging Radiometer Suite (VIIRS) (Justice et al
2013), thermal bands for detection (Elvidge et al

2013, Csiszar et al 2014, Schroeder et al 2014, Zhang
et al 2015, Liu et al 2018, Schroeder and Giglio
2018, Elvidge et al 2019, Lu et al 2020, Zhizhin et al
2021). These detections serve as a key AD in activity-
based emission calculations from combustion and are
used to derive fire emissions, and the experimental
algorithm, VIIRSNightfire (VNF), is used as the basis
for gas flare detection under NASA’s CMS. Flares
detected by VNF (Elvidge et al 2013, 2019) have been
used to assess its environmental impact (Deetz and
Vogel 2017, Franklin et al 2019, Zhang et al 2019, Sun
et al 2020, Cushing et al 2021) and to map emissions
in gridded inventories such as Emissions Database for
Global Atmospheric Research (EDGAR) (Janssens-
Maenhout et al 2019). However, evaluation of VNF
detections has not been thoroughly performed due to
the lack of evaluation data matching its daily detec-
tion rate globally and the uncertainties are aliased into
the subsequent analyses.

Improved combustion detection compared to the
VIIRS thermal bands have been observed by using the
VIIRS 375 m I-band imagery (Schroeder and Giglio
2018), Sentinel-2 imagery (Ramo et al 2021) that
allows smaller, cooler fire detection, while smaller
flare detections are obtained from the Sea and Land
Surface Temperature Radiometer (SLSTR) observa-
tions due to an additional short wave infrared band
(Caseiro et al 2018). Light emission from combus-
tion, observed by the VIIRS Day/Night Band (DNB),
have also been shown to capture a larger fraction
of fire and flare pixels missed by VIIRS thermal
bands (Polivka et al 2016, Elvidge et al 2019). The
DNB lies in the visible/near-infrared region and
has a large dynamic range, making it sensitive to
weaker combustion, especially with a small source
area (Elvidge et al 2019), and allows fire phase estim-
ation (Wang et al 2020). Despite the higher sensitiv-
ity of DNB, it is used for confirmation only, while
nightlight-only images have been used to detect off-
shore drilling (Lu et al 2020, Wang et al 2021b).
This highlights the need for incorporating features in
addition to VIIRS thermal bands to monitor weaker
combustion.

This study proposes a machine learning (ML)
approach for detecting combustion that utilizes
VIIRS thermal band and nighttime light (NTL)
observations from NASA’s Black Marble product
suite (VNP46, Román et al 2018) by jointly char-
acterizing its day/night visible and thermal emis-
sion. The approach is data-driven, and methodo-
logically independent of existing algorithms, such
as VNF, and leverages the orthogonal information
embedded in VIIRS observations to generate detec-
tions and can be used to assess error and uncertainty
in VIIRS-based combustion detection that serves as AD
for derived emission analyses.We applied the approach
for gas flare detection in the Eagle Ford Shale, Texas,
US, explored detection improvement using light
emission signals, and examined the differences with
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legacymethods (VNF) to generate potential detection
uncertainty. While the global share is less than 1%
of the total fossil fuel emissions (Gilfillan et al 2021),
flaring associated with oil and natural gas production
contributes to regional and local GHG and air pol-
lution emissions with severe impacts on the environ-
ment and Earth’s climate (Allen et al 2013, Fisher and
Wooster 2019, Zhang et al 2019, Caseiro et al 2020,
Faruolo et al 2020, Cushing et al 2021). Enhanced
satellite-based monitoring and spatio-temporal attri-
bution of these occurrences is essential for routinely
tracking adherence to mitigation policies, such as
Zero Routine Flaring by 2030 (TheWorld Bank 2022)
and progress towards the Paris Climate Agreement
Goal (Eggleston 2006, Falkner 2016, Zhang et al 2019)
globally.

2. Gas flare detection

2.1. Proposed methodology
We propose an anomaly detection approach utilizing
the top-of-atmosphere DNB andmoderate band (M-
band) observations from Black Marble VNP46A1 to
characterize the anomalous light and thermal emis-
sion of flares. Table 1 shows theM-bands and DNB in
the VNP46A1 dataset acquired by the VIIRS instru-
ment. We derive a high confidence set with both
thermal and light response, a moderate confidence
urban-masked, light-only response set, which are
merged to derive daily detections.

Increased adoption of ML in combustion and
emission monitoring has been observed to detect
power plant activities (Couture et al 2020), emissions
from combustion (Finch et al 2022), and fire using
thermal bands (Wang et al 2021a). We explore its
applicability in extracting multispectral thermal and
light emission signature of combustion and in detect-
ing weak combustion using light emission.

Our approach learns a multispectral model of the
non-anomalous thermal and light background sig-
nal from a small volume of data from the region and
monitors subsequent observations for deviations (see
SI: methodology) caused by high thermal and light
emissions, to derive pixel-based anomaly scores. The
study duration consists of K observations that are
divided into training set to learn background mod-
els, and test set when the models are applied to new
observations. Each observation Xk is a multispectral
image where pixel i forms a seven-dimensional vector

xk,i =
[
xMk,i,x

DNB
k,i

]
, withM representing all M-bands.

2.1.1. Training
2.1.1.1. M-band background model (thermal emission)
We characterize the non-anomalous multispectral
thermal (M-10 toM-16) backgroundproperties using
an autoencoder (Hinton and Salakhutdinov 2006,
Baldi 2012) by training it on clear-skyM-band spectra
from the training set. Anomalies are detected using a

Table 1. VNP46A1 dataset.

Dataset Bands
Wavelength

(µm) Emission signal

VNP46A1 15
arc second,
daily
(Román et al
2018)

DNB 0.5–0.9 Visible/near-infrared
M-10 1.58–1.64 Thermal
M-11 2.23–2.28
M-12 3.61–3.79
M-13 3.97–4.93
M-15 10.26–11.26
M-16 11.54–12.49

pixel’s multispectral deviation from the background
and denoted as anomaly scores. As thermal emissions
have a high signal in M-10 and M-11, we also apply
the Reed-Xiaoli detector (Chang and Chiang 2002)
and monitor a pixel’s deviation from daily back-
ground statistics in these bands to detect anomalies.
These approaches jointly model thermal bands and
reduce single-band spurious detections.

2.1.1.2. DNB background model (light emission)
We characterize the DNB background signal to ana-
lyze a pixel’s deviation and incorporate its spatial
neighbors to detect light emission. We partition the
training set’s radiance into clusters using a Gaussian
mixture model (GMM). For each cluster, we derive
a spatial relationship that predicts the central pixel’s
radiance as a function of its spatial neighbors using
an elastic net (Zou and Hastie 2005). In new obser-
vations, the GMM assigns each pixel to a cluster, and
the elastic net is applied to its neighbors to determine
its high radiance likelihood or anomaly score using a
daily variance-based threshold.

Clouds contaminate VIIRS M-bands and DNB,
necessitating masking. The standard VIIRS cloud
mask (VNP35) (Kopp et al 2014) mislabels night-
time clouds (Wang et al 2021c) and flags thermal
anomalies as ‘cloudy’ (Elvidge et al 2013). To min-
imize these errors, we train a cloud model from
M-12 to M-16 using principal component analysis
(PCA) to learn a projection of cloudy and clear spec-
tra. For new observations, we apply this model and
assign labels based on a pixel’s proximity to cloud
projections. This results in a conservative mask and
avoids mislabeling of thermal anomalies as seen in
VNP35. During high lunar illumination, light emis-
sionmay appear through clouds.We apply the anom-
alous light-emission detector over clouds that sets
clouds as background to remove such contamina-
tions but retains anomalous DNB radiance appearing
through clouds.

2.1.2. Test
We apply the trained models to new observations as
shown in figure 1 to detect anomalies. After removing
clouds by applying PCA-distancing on each pixel, the
detectors extract candidate anomalies. High M-band
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Figure 1. Proposed combustion detection workflow using VNP46A1 and derived detections.

deviations are used to detect thermal anomalies after
the removal of cloud andwater pixels, with thresholds
determined from daily variance. We compute the
DNB anomaly score, identify pixels exceeding the
daily threshold and suppress visible clouds. We then
use per-pixel urban settlement information from
World Settlement Footprint (WSF) (Marconcini et al
2020) and retain pixels with no urban signal to obtain
anomalous light emissions.

2.1.2.1. Detection sets
The anomalous thermal and light emissions are util-
ized to form the daily combined, DNB-only, and joint
detection sets as shown in figure 1. The combined
set consists of pixels with both anomalous thermal
and light emissions. Anomalous light emissions are
filtered to increase decision confidence by retaining
pixels (a) that lie in a neighborhood with negligible
WSF score, and (b) with at least one band (M-10 to
M-13) deviating positively above the background to
minimize interference from unlikely combustion sig-
nals, such as electric lighting. This forms the DNB-
only set capturing anomalous light emission, includ-
ing those from weaker anomalies with less distinct
thermal signals. The joint detection set consists of
merged detections from combined and DNB-only
sets.

2.2. Experimental details
We applied the detectors over the densely-welled
Eagle Ford Shale (Wolaver et al 2018, boundary from
Energy Information Administration (EIA) 2022)
to assess detection performance. Our study area
(26.94 N to 29.85 N and −97.02 W to −99.94 W)
corresponds to a 700 × 700 gridded block during 22
January 2021–28 February 2021 with 38 observations

(12 clear) (see SI: experimental details). The dura-
tion was selected to encompass the lunar cycle and
examine performance under varying cloud cover.
This includes the winter storm Uri that affected
natural gas production (Doss-Gollin et al 2021) and
allows assessment of tracking variations in active
flares.

3. Results

3.1. Evaluating and interpreting detections
The average number of anomalies detected by the
methods under clear and cloudy conditions is shown
in figure 2, with the DNB-only set detecting approx-
imately four times more anomalous pixels than the
combined set and can be attributed to higher sens-
itivity of light emission to weaker anomalies. As the
spatial extent of flaring signal can vary between M-
bands and DNB, we consider the combined method
to have matched a DNB-only detection, if there is at
least one combined detection within a 3× 3 grid cen-
tering a DNB-only detection and find 79.04±2.23%
of the DNB-only detections undetected in the com-
bined set.

The lack of ground truth combustion data
hinders validation, especially for the DNB-only
set, which lacks confirmation from thermal bands.
Accurate flare labeling is infeasible by experts given
its spatial footprint and daily variation. This is
worsened by clouds, DNB signal leakage around
urban areas (Wang et al 2021c), and unsuppressed
features in WSF. We assessed the likelihood of the
detections being flares by contrasting the multis-
pectral detection signal with the background and
examining visible features in higher-resolution
imagery after removing contaminations from false
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Figure 2. Average number of detections during the study in Eagle Ford using the (a) DNB-only and (b) combined methods over
clear and cloudy nights.

Table 2. Ratio of clear night detection signal against the background in the Eagle Ford area.

Detection, bands DNB M-10 M-11 M-12 (difference (K)) M-13 (difference (K))

DNB-only 13.04 222.00 119.16 1.003 (0.89) 1.002 (0.59)
Combined 48.09 1055.4 150.55 1.011 (3.01) 1.005 (1.3)

positives (FP). We calculated the fraction of FP as
n(FP)/n(pixels in the area), by outlining unremoved
clouds and leakage around cities using LabelMe
(Kentaro 2016), and n(.) is the number of pixels.
Throughout the study duration, this fraction is
0.00282 ± 0.00101, and 0.0117 ± 0.002 in the
block and Eagle Ford respectively, while no FP were
observed in the combined set. Thus, contaminations
are negligible due to masking and daily variance-
based thresholds, showing the detectors’ potential at
monitoring daily combustion occurrence.

The detections were analyzed using the following
approaches:

Multispectral profile: We calculated the ratio of
the average signal from the detections to that from
the background in each band as shown in table 2 (see
table SI-2). This ratio (and difference inM-12, M-13)
is high in each band for the combined set, indicating
these are very likely anomalies. The DNB-only detec-
tions showed a higher ratio in DNB, M-10, and M-
11. The higher M-10 and M-11 signals of the DNB-
only set, where gas flaring peaks, indicate that these
are likely combustion that are relatively weaker than
combined detections.

Co-location with flaring sites: We compared the
clear night spatio-temporal detection aggregate over
Eagle Ford with flaring infrastructure indicators to
examine their co-location. We resampled an openly
available flaring well dataset from The Texas Rail-
road Commission, (ArcGIS 2022), 2015 to 15 arc

seconds. At least one flaring site was found in a 7× 7
grid centering 71.04%, 73.92%, and 74.91% of the
combined, DNB-only, and VNF detections respect-
ively, showing comparable co-location of VIIRS
detections with flaring sites. We also compared the
DNB-only detections with a Landsat-8 composite
(Gorelick et al 2017) and confirmed by visual ana-
lysis that well pads are co-located with our detections
(figure 3). On examining the DNB-only and com-
bined detections non-co-located with flaring sites,
we observed 74.61% and 89.22% of the detections
overlap with these visible features, respectively. The
increased co-location with well pads is likely due to
the composite’s acquisition dates matching closely
with the study duration. Although ground truth com-
bustion information is unavailable, high co-location
indicates that DNB-only detections are associated with
flaring sites and minimally contaminated by non-
flaring sites. We selected the minimum grid size that
makes the co-location analysis feasible.

This indicates that DNB-only detections have
weaker thermal signals and are probable flares missed
by thermal bands, while the combined set consists of
high confidence detections. These sets together cap-
ture a more accurate representation of likely daily
flares at emission sites.

We examined flaring persistence by comparing
the DNB-only and combined detections with the
annual Black Marble composite (VNP46A4) from
2020 and observe 62.47 ± 0.32% and 82.43 ± 0.34%
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Figure 3. (a) Aggregate of DNB-only detections over the study area. Figures (b) and (c) shows examples of the light emission-only
detections co-located with visible well pads in a Landsat-8 composite.

overlap respectively, showing persistent flaring at
these locations. Persistence indicates consistent gas
flaring and is important for tracking changes at these
sites.

3.2. Comparison with VNF
We compare our daily detections (MLk) with VNF
(VNFk) to evaluate the overlap and increase in
detections with ML-based approaches. For a VNF
detection, a larger number of adjacent pixels are
detected by the methods. If we observe at least one
detection within a 5 × 5 grid centering a VNF detec-
tion, such flares are considered to have overlapped
and expressed as

o= (VNFk∩MLk)/ |VNFk| .

We observe high overlap between VNF and
the proposed approaches as shown in table 3,
showing that the methods effectively extract flar-
ing signatures. The combined set overlaps with

confirmed VNF detections. Approximately 87.06%
of the non-overlaps correspond to non-confirmed
VNF events, which may include spurious detections.
DNB-only detections show an increased overlap with
VNF. The joint set shows a high overlap with VNF.
We found four observations with ML detections that
are missed by VNF, and overlap is thus reported for
34 observations. By jointly learning the multispec-
tral distribution of theM-bands, our approach lowers
the chance of spurious detections in the combined
set that are seen in confirmed (A2021057) and non-
confirmed (A2021041) VNF detections.

ML-enabled detections undetected by VNF are
indicated as

dm = (MLk\VNFk)/ |MLk| .

We compute dm for pixels in MLk for which at
least one detection is not recorded in VNFk within
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Table 3. Comparison of proposed approaches with VNF.

Detection (MLk), metric o(%) dm (%)

Combined 74.74± 3.19,
a96.73

16. 70± 3.32

DNB-only 78.67± 3.65 72.14± 4.16
Joint 90.50± 2.83 67.94± 3.53
a Compared with confirmed VNF detections.

Figure 4. Detections in the Eagle Ford area using combined and DNB-only (filtered implies overlapping combined detections are
removed) sets and VNF. Clouds may reduce detections, however the sustained drop from 13 February 2021 is associated with
thick cloud cover and reduced flaring.

a 5 × 5 grid centering the ML detection. Table 3
shows increased detection with allMLk. For the DNB-
only set dm is computed over detections that overlap
with well pads in the Landsat composite. We hand-
label persistent DNB detections that do not show spa-
tial overlap with visible well-pads in Landsat imagery
to exclude such detections and these have been
masked to the best of our knowledge. The inclusion
of urban-masked DNB extracts weaker anomalies and
lowers the detection threshold without increasing FP
errors.

3.3. Temporal variation of gas flares detections
Figure 4 shows daily detection counts from the meth-
ods and VNF. Winter storm Uri, (Day of Year 44–
48) reduced natural gas production (Doss-Gollin et al
2021) resulting in reduced detections. The reduction
observed even in the DNB, which is more sensitive
to weaker or cloud-obscured flares, indicates a pos-
sible reduction in active flares. Minimum flares are
observed on 15 February 2021, and is lower than
the expected detection levels under cloudy condi-
tions seen earlier. This may be caused by clouds (sig-
nal attenuation) and reduced flaring. The number of
active pixels increases at the end of this phase showing

recovery to pre-storm flaring levels. Allmethods show
similar flaring trends throughout the study duration.

3.4. Impact of VIIRS-derived estimates of gas flares
The proposed method is expected to impact VIIRS-
derived estimates of active flares by extracting cur-
rently undetected occurrences and generating inde-
pendent estimates for approximating detection
uncertainties through intercomparison. Figure 5
compares the binarized average spatio-temporal
distribution of flaring between the ML detections.
Figures 6(a) and (b) show the binarized average
spatio-temporal distribution of flares fromML-based
detections and VNF. Figure 6(c) highlights the dif-
ference in spatial distribution and temporal persist-
ence of flaring, with approximately 72% of the dif-
ference arising from light emission. Both combined
and DNB-only sets (figures 5(a) and (b)) improve
the distribution and persistence record compared to
VNF (figure 6(b)) as seen from the detection intensity
scale. Given the lack of validation of VIIRS-derived
flares, intercomparison of detections can allow assess-
ment of potential uncertainty aliased into gridded
emission maps such as EDGAR (Janssens-Maenhout
et al 2019).
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Figure 5. Average spatial distribution and temporal persistence of flaring from (a) combined, (b) DNB-only, and (c) joint sets at
30 arc second, expected to enhance combustion attribution (spatial) and tracking (temporal).

Figure 6. Average spatial distribution and temporal persistence of flaring from (a) ML-joint set, (b) VNF at 30 arc second, and
(c) difference between (a) and (b).

4. Discussion

This work proposes an independent, data-driven
combustion detection approach by jointly consid-
ering all VNP46A1 bands, and the resulting detec-
tions when viewed with detections from algorithms
such as VNF, allow approximating uncertainties in
satellite-based combustion detection. As these detec-
tions serve as AD for deriving emission estimates,
approximating detection uncertainties show the sens-
itivity of derived emission estimates on input AD. As
detectors, both VNF and our data-driven approach
have intrinsic errors and biases. Intercomparison
allows quantifying these uncertainties for transpar-
ently informing emission reports. Table 3 shows
ML-based combined (16%) and DNB-only (72%)
detections that are undetected by VNF, highlight-
ing the necessity for complementary methods for
accurate monitoring. The use of an urban-masked
DNB-only signal detects likely weaker flares that are
missed by thermal bands and underlines the import-
ance of the DNB for combustion analysis and fur-
ther studies are required for understanding these
signals.

The lack of ground truth data limits validation
and highlights the need for collecting evaluation data
for improving detection accuracy. A limitation of the
DNB-only set is that co-occurrences with non-flaring
light signals, such as electric lighting, cannot be
decoupled. However, retaining urban-masked detec-
tions with positive deviation from the background in
at least oneM-bandminimizes the scope of such con-
taminations. The performance is also dependent on
the cloud mask and WSF.

The proposed approach is agnostic to anomaly
signatures and requires additional steps for general-
ization. We will apply the detectors over areas sus-
ceptible to combustion and extract theirmultispectral
representation to create a training dataset. By training
on this repository, we will explore generalized detect-
ors robust to spatio-temporal heterogeneity for scal-
ing globally and utilize anomaly score thresholds for
reducing contamination. Established methods will
be used to derive combustion-specific parameters
(Fisher and Wooster 2018, Liu et al 2018, Elvidge
et al 2019, Fisher and Wooster 2019, Caseiro et al
2020) for further characterization for enabling emis-
sion estimation from any increase in detections using
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ML that are currently unattributed in VIIRS-based
bottom-up analysis. Our approach should allow loc-
alizing uncertainties in AD by intercomparison with
existing detections and inform QA and verifica-
tion analysis suggested by IPCC guidelines. The use
of additional sources such as SLSTR, geostationary
sensors, should further improve uncertainty assess-
ment. Datasets with focused spatial or temporal cov-
erage such as the SLSTR detections in 2017 (Caseiro
et al 2020) can also provide independent estimates
for intercomparison over localized scales. Approaches
using annual flaring persistence bounds (Caseiro et al
2020), and atmospheric data-based (often called ‘top-
down’) estimates can also contribute to uncertainty
analysis.

Lastly, this is a step towards multifaceted Black
Marble-based emission mapping that is suitable for
CMS studies, given its extensive uncertainty assess-
ment (Wang et al 2021c). NTL-derived estimates
of human-caused emissions (Oda and Maksyutov
2011, Oda et al 2018) and city-level CO2 emis-
sions have been improved by leveraging BlackMarble
(Oda et al 2021b). Being a physical measurement,
satellite-derived NTL can derive value-added car-
bon products with science traceability through uncer-
tainty estimates.

5. Conclusion

This study proposed and developed a ML-based
nighttime gas flare detector using NASA’s Black
Marble product suite by jointly modeling the thermal
and light emission signals. Our approach detects
flares independently and provides an opportunity
for assessing uncertainties in VIIRS flare detections
through intercomparisonwith existing detections, for
transparently informing emission reports.We applied
the detector over the Eagle Ford Shale and showed the
light emission signal to be sensitive to probable weak
flares and should improve its detection compared to
thermal bands. Our approach is agnostic to combus-
tion type and future improvements will explore gen-
eralization techniques to scale globally.
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