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Since the Industrial Revolution, growing ‘atmo-
spheric stocks’ of greenhouse gas (GHG) concen-
trations (Joos and Spahni 2008, Dlugokencky and
Tans 2022) have led to global average temperature
increases of over 1 ◦C with carbon dioxide (CO2) the
leading contributor, accounting for roughly half the
total warming (IPCC 2014). Left unchecked, contin-
ued growth in GHG concentrations due to fossil fuel
combustion, deforestation, and other human activit-
ies is projected to have catastrophic impacts on the
Earth’s climate and habitability (IPCC 2014). While
the impact of human activity on climate may be well
understood globally over several decades, the abil-
ity to trace more granular activity, e.g. annual fuel
usage of individual countries, to changes in GHG
concentrations remains a landmark goal needed to
support climate change mitigation efforts. This com-
mentary addresses how this goal might be achieved
with a focus on transparency, verifiability, and the
challenges that lie ahead.

The 2015 Paris Agreement (PA; UNFCCC 2016),
reaffirmed by the 2021 Glasgow Pact (UNFCCC
2022a), plans to limit future global temperature
increases through coordinated reduction of GHG
emissions. These efforts will be evaluated every
5 years during UNFCCCGlobal Stocktakes (GSTs; PA
Article 14) with the first ongoing. GSTs are intended
to ‘assess collective progress [and] have no individual
Party focus’ (UNFCCC 2019). Individual Parties are
instead expected to assess their own progress through
the Enhanced Transparency Framework (ETF; PA
Article 13), a series of biennial reports starting in
2024. Table 1 of the ETF reference manual (UNFCCC
2022b) suggests parties detail how their effort ‘con-
tributes to the stabilization of GHG concentrations
[…] at a level that would prevent dangerous inter-
ference with the climate system.’ Observations of

GHG concentrations and derived scientific analyses
are thus expected to play a vital role in assessments of
mitigation efforts (Matsunaga and Maksyutov 2018,
Buendia et al 2019, Janssens-Maenhout et al 2020).

Our recent study (Weir et al 2021b) showed that
NASA’s Orbiting Carbon Observatory 2 (OCO-2;
Crisp et al 2004, Eldering et al 2017) was able to detect
the impact of human activity reductions on atmo-
spheric CO2 concentrations during the coronavirus
disease 2019 (COVID-19) pandemic. This achieve-
ment marked the first time that monthly, regional
changes in fossil fuel emissions were observed in the
atmosphere from space. While emissions decreases
due to COVID-19 were historically large, the sig-
nal in column CO2 was just 0.14–0.62 ppm, about
0.1% of background values. Nevertheless, year-to-
year decreases in CO2 growth of similar magnitude, if
not greater, will be needed to meet even the moderate
goal of less than 4.5 ◦Cwarming in 2100 (Forster et al
2020, Le Quéré et al 2020). Current spaceborne tech-
nology is therefore at or near the threshold for detect-
ing regional impacts of mitigation efforts on GHG
levels. Future advances in coverage, resolution, qual-
ity, and co-sampled species from planned missions
(Crisp et al 2018, Moore et al 2018, Sierk et al 2019,
Tsujihara et al 2021), are expected to further improve
the capabilities of GHG monitoring systems like our
own. For example, the Geostationary Carbon Cycle
Observatory (GeoCarb; Moore III et al 2018) mission
will observe the Americas twice daily, whereasOCO-2
soundings repeat after 16 days.

The impact of COVID-19 is just one applica-
tion of our broader effort to maintain and distrib-
ute results from a quasi-operational GHG monit-
oring system. To support scientific and stakeholder
needs, we provide 16 day, column-average CO2

concentrations, anomalies, and uncertainties on a
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Figure 1. Flow of information in a process-level assessment with concentrations. ‘Bottom-up’ simulations (yellow, center)
compile process representations from inventories, proxy data, and models to produce gridded fluxes, which are transported
through the atmosphere to simulate GHG stocks/concentrations, which then force the climate system. In coupled/interacting
systems, those climate outputs, typically radiation, soil moisture, and temperature, can be fed back into the underlying process
models (top and bottom arrows). Data assimilation (left, blue) ingests data from the growing fleet of GHG-observing satellites to
produce the best possible estimates of GHG concentrations and their uncertainties. The ‘top-down’ approach, another form of
data assimilation, goes directly from GHG observations to gridded fluxes through inversion (grey, left). While flux inversion is a
valuable tool, it is not considered an essential part of the proposed assessment methodology. Verification with atmospheric data
(red, top right) compares simulated and assimilated values from the other branches to independent in situ and remote-sensing
data. The ability to verify concentrations enables further analysis of the detection, attribution, and prediction of those signals and
to assess different a priori assumptions about causal processes (see example in figure 2 and discussion below).

nominally 50 km global grid through the trilateral
NASA/ESA/JAXA Earth observing (EO) dashboard
(https://eodashboard.org) and other NASA assets
(Weir and Ott 2022a, 2022b). These fields are the res-
ult of assimilating OCO-2 data into NASA’s God-
dard EO System (GEOS; Molod et al 2015, Ott et al
2015, Weir et al 2021b), a product we call OCO-
2/GEOS, using the Constituent Data Assimilation
System (Wargan et al 2020, Weir et al 2021a) capabil-
ities of GEOS. Data assimilation synthesizes the best
available science and observations to infer the state
of a system, in our case time-varying fields of atmo-
spheric CO2 concentrations on a spatial grid. Com-
bined with additional, ‘bottom-up’ simulations and
independent verification data, assimilated products
enable inferences about plausible driving processes
behind observed changes and uncertainties in GHG
concentrations, where the term ‘process’ is applied as
broadly as possible, including human activity, nat-
ural variability, and any other phenomena affecting
GHGs (figure 1). Notably, in figure 1 all information
meets at GHG concentrations where simulations of
different processes (center, yellow), assimilated fields
(left, blue), and verification data (right, red) are com-
parable in the same space. A further ability to study
interactions across the Earth system (top and bottom
center arrows) is possible through ongoing efforts to
couple and integrate model components, e.g. sharing
biospheric models in GEOS and the Goddard Insti-
tute for Space Studies’ ModelE (Kelley et al 2020).

A mitigation assessment with a strong focus on
atmospheric concentrations over surface fluxes has
several advantages. First, an assessment based on sur-
face fluxes alone would be challenging because fluxes
are unverifiable with atmospheric data except within
a few kilometers of a few hundred measurement sites

(Raczka et al 2013) or during intensive aircraft cam-
paigns (Hannun et al 2020). Instead, the primary
means for ‘verifying’ surface fluxes at broad scales is
indirect (Schuh et al 2019, Peiro et al 2022): concen-
trations produced from gridded fluxes and an atmo-
spheric transport model are verified against in situ
measurements (Masarie et al 2014) and remote-
sensing data (Wunch et al 2011) referenced to a cal-
ibration scale maintained by the World Meteorolo-
gical Organization (Hall et al 2021). In the case of
fossil fuels, the gridded fluxes are outputs of a spatial
disaggregation of inventory totals (transition from
processes to gridded fluxes in figure 1), a process
with its own uncertainties (Oda et al 2019, 2021).
Attribution is even more challenging, causing fossil
fuel flux estimates derived from atmospheric obser-
vations to thus far rely on additional isotope (Basu
et al 2020) or tracer (Reuter et al 2019, Pickers et al
2022) data. Second, under almost any circumstances,
concentration analyses can run at higher resolutions
than flux inversions. Among an intercomparison of
several analyses, many running at horizontal resol-
utions of a few 100 km, only OCO-2/GEOS was
able to reproduce observed gradients in column CO2

from Pasadena to Edwards, California, a distance of
roughly 100 km (Schuh et al 2021). This gradient,
due to emissions trapped in the Los Angeles basin, is
one of the clearest urban-to-background gradients in
the world, and underscores the importance of high
native resolution if a system hopes to capture sig-
nals from fossil fuel emission changes. Third, con-
centration analyses will always be needed as bound-
ary conditions for yet higher-resolution analyses over
limited domains. Such studies are likely necessary
at urban (1 km) and finer scales for the foresee-
able future due to resource constraints of even the

2
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Figure 2. Anomalies of column-average CO2 (XCO2) for 15–30 April 2020 from (A) OCO-2/GEOS assimilated total CO2,
(B) CarbonMonitor simulated fossil-only CO2, (C) LPJ-wsl+ CarbonMonitor simulated total CO2, and (D) Catchment–
CN+ CarbonMonitor simulated total CO2. Hatching on panel (A) indicates signals dominated by biospheric effects.

most powerful supercomputers. Finally, concentra-
tion analyses can easily integrate multi-species and
heterogeneous datasets of almost any size, support-
ing the coordinated implementation of sustainable
development goals through synergies with air qual-
ity analyses (Miyazaki et al 2020, Keller et al 2021).
For example, our system grew out of a meteorological
system monitoring ozone (Wargan et al 2017) and
the recovery of the Antarctic ozone hole due to the
Montreal Protocol, avoiding a duplication of effort.

There are, nevertheless, cases when a posteri-
ori gridded surface flux estimates may be conveni-
ent and/or necessary. Surface fluxes are certainly
easier to store and manipulate than concentrations
that resolve an additional vertical dimension. Fur-
thermore, anomaly analyses of concentrations must
account for transport variability in a non-trivial way
(see materials and methods of Weir et al 2021a).
When surface fluxes are necessary, they do follow
from atmospheric concentrations through simple
mass balance relationships (Crevoisier et al 2010).
Quantifying the uncertainty of these relationships
would likely require, at the very least, a sporadic,
baseline surface flux estimate. But even if the exact
surface fluxes of every Party to the PA were known,
we would be far from its ultimate goal. Effective mit-
igation requires the ability to assess and predict how
different socioeconomic pathways/processes impact
GHG concentrations and the subsequent responses of
the Earth’s climate and biosphere.

To be truly useful for mitigation purposes, any
assessment of surface fluxes must have some attribu-
tion ability, at the very least distinguishing between
natural and anthropogenic origins. Again owing to
limitations in direct flux verification, this is currently

only possible to the extent that different attributions
are evident in concentration data. Figure 2 shows
an example of our system successfully detecting and
assessing the impact of human activity on GHG con-
centrations: on 15–30 April 2020, while many coun-
tries were under COVID-19 lockdowns, we detec-
ted notable decreases (negative anomalies) in CO2

growth relative to a 2017–2019 baseline. The pan-
els depict the following anomalies: (A) observation-
based total CO2 from our concentration analysis,
OCO-2/GEOS, which assimilates OCO-2 into GEOS
(Weir et al 2021a), (B) simulated fossil-only CO2

from a companion GEOS run using CarbonMon-
itor near real time fossil fuel emissions estimates
(Liu et al 2020), (C) simulated total CO2 from a
GEOS run using CarbonMonitor fossil fuel from B
and a version of Lund, Potsdam, Jena–Wald, Schnee,
Landschaft (LPJ-wsl; Zhang et al 2018) biospheric
fluxes, and (D) the same as C, but with catchment–
carbon and nitrogen (Catchment–CN; Kolassa et al
2020) instead of LPJ-wsl (seeWeir et al 2021a formore
details). Hatching in panel (A) indicates areas where
the biospheric signal ‘dominates’ fossil fuels, defined
here as when the absolute value of the difference of
(C) and (D) is greater than (B). Even during a historic
short-term decline in emissions, the atmospheric sig-
nal of activity reductions is small compared to natural
variability over much of the Earth: compare (B), (C),
and (D). Nevertheless, over the Eastern United States,
Europe, India, and China, the observation derived
total CO2 anomalies (A) compare well with the two
simulations of total anomalies (C) and (D), with (A)
and (C) agreeing well across the globe. These res-
ults suggest that (a) OCO-2 detected regional sig-
nals driven by short-term changes in human activity,
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(b) the corresponding CarbonMonitor fossil fuel
emissions are consistent with the observed signal,
and (c) the system has skill making assessments in
general.

While our qualitative analysis suggests OCO-
2 and CarbonMonitor produced consistent estim-
ates of a historically large signal, we have thus
far stopped short of making quantitative emissions
estimates. This step still requires significant advances
in our understanding of remote-sensing (O’Dell et al
2018), natural surface flux variability (Ott et al 2015,
Weir et al 2021b, Peiro et al 2022), atmospheric trans-
port (Schuh et al 2019, 2022), atmospheric chem-
istry (Wang et al 2020), and several other factors
(Andres et al 2014, Oda et al 2019, Schuh et al
2021). In figure 2, for example, the observational
analysis (A) suggests a much smaller signal over
India than estimated by CarbonMonitor (B). Yet
this is an area with considerable biospheric variab-
ility, apparent as differences between (C) and (D),
and one in which consistently high aerosol load-
ings often prevent space-based observations and can
introduce retrieval biases (more discussion in Weir
et al 2021a). Successful quantitative attribution to
fossil fuel emissions will likely require integration
of several observational constraints including those
from isotopes (Basu et al 2020), atmospheric poten-
tial oxygen (Pickers et al 2022), and nitrogen dioxide
(Reuter et al 2019).

The ability to assess national and subnational
emissions in a transparent and verifiable way remains
a landmark, unsolved, long-term scientific goal. The
greatest difficulty is posed by the fact that national
emissions estimates, and thus stock changes, are
not directly verifiable. Atmospheric stocks/concen-
trations of GHGs, conversely, are verifiable across
spatial and temporal scales, especially so with the
growing satellite constellation (Crisp andMunro et al
2018) and multi-institution collections of in situ
measurements (Masarie et al 2014). When used to
evaluate different potential driving processes, we have
demonstrated how concentration analyses are power-
ful tools for mitigation assessments. Even with an
improving ability to connect atmospheric observa-
tions to surface fluxes, global atmospheric concen-
tration analyses with quantified uncertainties and
verified against independent data, such as our own
(Weir and Ott 2022a), will continue to serve as a
verification baseline for new observations and mod-
els. Finally, among all stocks (land, ocean, etc),
the atmospheric GHG stock controls the temperat-
ure changes (Hansen et al 2010, Gelaro et al 2017,
AIRS 2019, Lenssen et al 2019) the PA aims to
limit, making it perhaps the most essential climate
variable.
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