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Abstract
Carbon monitoring is critical for the reporting and verification of carbon stocks and change.
Remote sensing is a tool increasingly used to estimate the spatial heterogeneity, extent and change
of carbon stocks within and across various systems. We designate the use of the term wet carbon
system to the interconnected wetlands, ocean, river and streams, lakes and ponds, and permafrost,
which are carbon-dense and vital conduits for carbon throughout the terrestrial and aquatic
sections of the carbon cycle. We reviewed wet carbon monitoring studies that utilize earth
observation to improve our knowledge of data gaps, methods, and future research
recommendations. To achieve this, we conducted a systematic review collecting 1622 references
and screening them with a combination of text matching and a panel of three experts. The search
found 496 references, with an additional 78 references added by experts. Our study found
considerable variability of the utilization of remote sensing and global wet carbon monitoring
progress across the nine systems analyzed. The review highlighted that remote sensing is routinely
used to globally map carbon in mangroves and oceans, whereas seagrass, terrestrial wetlands, tidal
marshes, rivers, and permafrost would benefit from more accurate and comprehensive global maps
of extent. We identified three critical gaps and twelve recommendations to continue progressing
wet carbon systems and increase cross system scientific inquiry.
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1. Introduction

The Paris Climate Agreement requires net neutral
carbon emissions by reducing fossil fuel emissions
and balancing sources and sinks by 2100 [1]. Monit-
oring, reporting, and verification (MRV) are founda-
tional for tracking emission reductions from land-use
change and carbon removal attributed to reforest-
ation and afforestation [2, 3]. Oceans, coasts, and
wetlands are essential components of the global car-
bon cycle and are considered critical to achieving
emission reductions necessary for fulfilling a variety
of Sustainable Development Goals (figure 1) [4–6].
Carbon monitoring of wetlands, water bodies, and
oceans pose unique challenges because of their com-
plex ecosystem structure, seasonality, and susceptib-
ility to climate impacts such as sea-level rise, drought,
and increased storms [7, 8].

This review focuses on the fluxes and stocks of
carbon inwet carbon (WC) systems, a termused here-
inafter to include all freshwater, saline, and brackish
aquatic and wetland ecosystems, e.g. peatlands, man-
groves, and oceans. This term is not a paradigm shift
away from ‘blue carbon’ but a broader grouping of
carbon cycle systems with shared data needs, restora-
tion and preservation priority, and research direction.
‘Blue carbon’ is a term used to describe carbon-dense
coastal wetland ecosystems and has aided signific-
ant research progress, with an expansive agenda for
monitoring and applications [12]. However, focus-
ing exclusively on ‘blue carbon’ ecosystems emphas-
izes ∼20% of global wetlands (1520–1620 Mha) and
excludes terrestrial wetlands, permafrost, lakes, river-
ine, and marine systems [13, 14]. We primarily con-
sider the oceans a WC system due to the interconnec-
tedness between the oceans and other WC systems,
i.e. the land–ocean aquatic continuum (figure 1) [15].
Here, we conducted a synthesis review of these inter-
connected systems to identify shared data needs, con-
vergent research directions, and carbon monitoring
goals.

Carbon monitoring research has rapidly expan-
ded over the last 10–20 years due to international
agreements targeted at reducing carbon emissions
and establishing the need for accurate MRV of car-
bon. In 1997, the Kyoto Protocol prioritized the need
for agricultural soils and forests to bemanaged as nat-
ural carbon sinks [16], followed by the development
of Reduce Emissions from Deforestation and Forest
forest Degradation (REDD) and REDD+ in 2009.
The Paris Climate Agreement promotes wetland and
coastal ecosystemmanagement and provides a mech-
anism for developing and implementing their nation-
ally determined contributions (NDCs) [16, 17]. The
goal of carbon-neutral land-use change set forth
as part of the Paris Climate Agreement has added
additional exigency for developing MRV methods to
inform carbon offsets and facilitate the inclusion of
WC ecosystemswithinNDCs. To continue the further

expansion of carbon offsets to WC systems requires
high-quality remote sensing enabledMRV, a core goal
of the NASA CarbonMonitoring System (CMS) Pro-
gram [18].

Remote sensing data provide spatial and tem-
poral observations that can support carbon monitor-
ing at local, regional, and global scales. WC monitor-
ing of terrestrial and coastal wetlands are concerned
with both aboveground and subsurface carbon as
most of these systems’ carbon stock is below the sur-
face [19]. Tier 3 Intergovernmental Panel on Cli-
mate Change (IPCC) estimates require the inclusion
ofmodeled, local processes that impact emissions and
reduce uncertainty [20]. Therefore, spatially resolving
subsurface carbon requires modeling of hydrological,
biophysical, and topographic indicators [21]. At local
scales, carbonMRVcan be conducted exclusivelywith
in situ data. However,WCmonitoring at regional and
global scales requires combinations of in situ meas-
urements and remote sensing observables. Remote
sensing introduces uncertainty but helps resolve spa-
tial variability that in situ estimates cannot (figure 2).
Enabling our end goal of global continuous monitor-
ing of all WC systems and their interactions.

The NASA CMS program seeks to prototype
methods for MRV of the entire carbon cycle, and
these WC systems represent an essential compon-
ent with unique data needs and methodologies. As
part of this review, we surveyed nine WC systems
to determine earth observation-based WC monitor-
ing status within each. The inclusion of more systems
into global carbon budgets can reduce uncertainty,
improvemodeling outputs, and diversify climatemit-
igation solutions. WC monitoring is a relatively new
field that we explore through a systematic review of
the literature identifying gaps in our understanding,
including location, ecosystem function, and meth-
odological. We set forth the current state of carbon
monitoring science within a subset of WC systems,
includingmangroves, peatlands and permafrost, tidal
marsh and flats, terrestrial wetlands, oceans, coastal
and continental shelf seas, lakes and ponds, rivers and
streams, and submerged aquatic vegetation (SAV)
(including seagrasses, kelp). We focus on natural
WC systems due to their connections and shared
data needs; it should be noted that anthropogenic
WC systems, such as, rice paddies, are also import-
ant, but beyond the scope of our review. We discuss
the current state of carbon monitoring data, stake-
holder engagement, and provide recommendations
to inform the future of WC monitoring, the NASA
CMS program, and carbon accounting.

2. Systematic review

2.1. Methodology
The Web of Science was used to conduct this review
with the inclusion of the CMS literature archive,
and Google Scholar searches. Our search descriptions
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Figure 1. The global carbon cycle adapted from [9]. Wet carbon systems are highlighted with the interaction symbol from systems
ecology [10]. Vegetation and soil are both denoted as wet carbon systems, but only a portion of these carbon stores are wet
carbon. Images are Planetscope (permafrost, soil, vegetation, coasts), Sentinel-3 (atmospheric and organic carbon), and surface
sediment camera system (photo credit Kevin Stokesbury). Wetland soil carbon value from Bridgham et al [11]. Photo credit:
Kevin Stokesbury. Reproduced with permission.

Figure 2. Terrestrial carbon monitoring extents, platforms in relation to uncertainty and remote sensing spatial, temporal, and
spectral resolution domains.
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and strings can be found in supplemental table 1
(available online at stacks.iop.org/ERL/17/025009/
mmedia). This example search string resulted in 466
references within the Web of Science and cumulat-
ively all searches amounted to 1622 records. The sys-
tem terms used included salt marsh, tidal marsh,
mangroves, wetland, coral, seagrass, forested wet-
land, riparian, bog, peat, benthic, ocean, tidal flat,
mudflat, marsh, bog, vernal pool, salt flat, sub-
merged aquatic vegetation, beach, kelp, and playa.
The Google Scholar results, and CMS program out-
puts were screened with an automated text selection
algorithm, ensuring that all abstracts had a remote
sensing and WC system term. The resulting studies
were input into Cadima, a webtool for facilitating sys-
tematic reviews. All abstracts were screened by at least
two reviewers to identify if they fulfilled three require-
ments.

(a) The study used remote sensing data
(b) The study reports carbon monitoring findings

(land covermapping or solely in situ findingwere
excluded)

(c) The study at least partially focuses on a WC sys-
tem

If all these questions were answered in the affirm-
ative, we included that paper in the data extraction
step of the literature review. If reviewers disagreed
on an abstract’s relevancy, a three-reviewer panel
adjudicated its inclusion with most references being
passed to the next step i.e. full review by an expert
on that system. This process found 496 relevant ref-
erences. Additional references were added based on
expert knowledge resulting in a total of 574 (supple-
mental data 1). The references were divided into WC
systems including mangroves (n = 79), tidal marsh
and flats (n = 47), (SAV; n = 45), mineral wetlands
(n = 55), peatlands (n = 129), permafrost (n = 80),
lakes (n= 64), rivers (n= 33), oceans (n= 102), and
ocean shelf (n= 30). References were allowed to have
multiple system designations.

3. Results

Since 2010, studies of WC monitoring with remote
sensing have increased substantially (figure 3). The
research growth tracks with major literature mile-
stones, e.g. Nellemann et al [22], which first coined
the term ‘blue carbon,’ and Page et al [23], which
demonstrated the importance of tropical peatland
carbon. Interest further developed with a call for the
use of remote sensing to identify land-use change, pri-
ority areas for protection, and methods for measur-
ing C stocks within sediments [24]. However, growth
was not consistent between WC systems, with some
havingmore research interest, including oceans, peat-
lands, and mangroves.

Disparate levels of research interest across remote
sensing monitoring of WC systems are evident in this

result. In the past, ‘blue carbon’ research and media
coverage were highly skewed towards coral [25].
Realignment of research interest, media attention,
and funding is critical for understanding understud-
ied WC systems and providing scientific justification
and public support forWCmitigation.However, total
yearly citations demonstrate that WC research util-
ization has remained relatively consistent since 2010
(figure 4) despite more studies. Many systems are still
developing remote sensing methodologies to enable
carbon monitoring (see sections 3.1.2, 3.1.3, 3.2.1
and 3.3.2). A shared language of carbon monitoring
was evident across our WC systems. The use of earth
observation to capture spatial heterogeneity is appar-
ent in the two most common keywords, i.e. dynam-
ics and variability. These keywords were identified in
clusters across the literature and were areas of shared
interest (figure 5). Thematic mapping of the literat-
ure revealed that climate change, dynamics, and car-
bon were the most fundamental research themes and
that forestedWC systems were prominent in multiple
clusters. These two forest-related clusters correspond
with peatlands andmangroves, two systemswith con-
siderable growth in research interest from 2000 to
2019 (figure 3). An emerging cluster associated with
coastal remote sensing was evident, likely due to a
recent focus on the data requirements for monitoring
coastal systems. These keywordswere apparentwithin
our detailed reviews of WC systems and framed our
discussion of the status of carbon monitoring.

WC systems were separated into three categories
for this review: coastal wetlands, inland wetlands, and
ocean and shelves. Coastal wetlands included man-
groves, SAV, and tidal marshes and flats. Inland wet-
lands comprised of mineral wetlands, peatlands and
permafrost, whereas, inland waterbodies, lakes and
ponds, and rivers and streams. Each of these system
sections discusses the status of carbon monitoring
within the system.

3.1. Coastal wetlands
Coastal wetlands are located along the terrestrial-
aquatic interface and influenced by ocean and
freshwater processes [28]. ‘Blue carbon’ ecosystems
(seagrass, mangroves, tidalmarshes and forests) com-
prise a portion of coastal wetlands. Coastal wetlands
have consistently lost extent across the 19th and 20th
century (−0.228% yr−1), slightly less than inland
wetland loss (−0.391% yr−1) [29].

3.1.1. Mangroves
In total, we found 79 papers relevant to carbon
monitoring with remote sensing in mangrove eco-
systems. Mangroves have some of the highest car-
bon (C) density (401 ± 48 Mg C ha−1), with
between 49%–98% of carbon stored in the soils
[30]. Mangroves are a small fraction of global forest
area (0.3%–0.5%) but a significant global C stock
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Figure 3. The results of the systematic review. References separated by year and WC system. We have separated peatlands and
permafrost from terrestrial wetlands to demonstrate the disparity in research interest.

Figure 4. Total average citations per year by publication year and WC system category.

(5–10.4 PgC) [21, 31–36]. Recently, Global Man-
grove Watch identified 137 600 km2 of mangrove
extent in 2010 and has since measured change from
1996 to 2017 [35, 37]. These forests are under sig-
nificant threat from anthropogenic activity and sea-
level rise [38–40]. In general, mangroves are difficult
to survey, but remote sensing has increased our capa-
city to monitor their extent, C stocks, and change. We
have grouped our synthesis of the status of carbon
monitoring in mangroves into three sections: (a) car-
bon monitoring status, (b) data and applications.

3.1.1.1. Carbon monitoring status
Not long ago, mangrove biomass and carbon estim-
ates relied upon the extrapolation of field data,
environmental conditions, and partial extent maps
[e.g. 31, 41–45]. Giri et al [46] created the first
global mangrove map using Landsat imagery. This
map and other advances in remote sensing have
enabled regional-to-global-scale analyses of man-
grove carbon stocks and carbon stock change
[21, 36, 38, 40, 47–49]. Mangrove carbon monit-
oring combining field-based surveys and remote
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Figure 5. Thematic map created using keywords of WC research. We plotted relevance i.e. connection to the body of research on
the x axis and development i.e. connections within a cluster on the y axis—each cluster’s three most common keywords represent
it. The Bibliometrix package in R 4.1.1 [26, 27].

sensing occurs across; local [e.g. 50–56], regional
[e.g. 49, 57–62] and global [21, 34, 36, 63–67] scales.
Continued advancement, including machine learn-
ing, have led to recent studies classifying species
[68–71], quantifying height distributions and bio-
mass [36, 72–74], change in extent [40, 47, 49, 75]
and stand age [60], and productivity [76, 77].

Passive sensors are used to map mangrove extent,
change, and extrapolate C storage with field data
[8, 59, 60, 78–81]. Active sensors (e.g. light detec-
tion and ranging and radar) can measure mangrove
structural attributes, such as canopy height. Simard
et al [56] first derived accurate height estimates
in the Everglades with Shuttle Radar Topographic
Mission (SRTM). Subsequently, canopy height was
estimated using satellite stereo images, Synthetic
Aperture Radar (SAR) interferometry, and lidar
[56, 60, 82–84]. Canopy height enables estimates of
aboveground biomass [e.g. 36, 85–88]. Additional
active spaceborne sensors (e.g. SRTM, Sentinel-1,
TanDEM-X, ICESat, and GEDI) have improved can-
opy heightmodels [e.g. 82, 84, 89] enabled the identi-
fication of change hotspots [39, 40, 49], and the devel-
opment of mangrove carbon monitoring initiatives
[37, 47, 60, 90]. The Japanese Aerospace Exploration
Agency L-band SAR sensors (ALOS and ALOS-2) are
an important active sensor for mangrove mapping,
including the identification of invasive species [58],
prediction of aboveground biomass (AGB) [74, 91],
and long-term monitoring [39, 92]. Medium resolu-
tion sensors have enabled global-scale analysis but can
miss small mangrove patches and edges or small-scale
restoration efforts.

The recent increase in the resolution and access-
ibility of satellite imagery has provided fine-scale

mangrove data products suitable for MRV. The
European Space Agency’s (ESAs) Sentinel-1 and
Sentinel-2 launched in 2014 and 2015, respectively,
increased the spatial resolution of new mangrove
maps from 30 m (i.e. Landsat) to 10 and 20 m
[53, 93, 94]. Moreover, access to high-resolution
satellite, aerial, and unoccupied aerial systems (UAS)
imagery has further increased the spatial resolution of
mangrovemaps (<5m) [51, 59, 60, 70, 71, 79, 94, 95].
Data fusion with combinations of multispectral,
hyperspectral, lidar, radar, and high-resolution data
have been applied to increase the spatial and tem-
poral resolution of mangrove carbon storage and flux
estimates [60, 88]. The increased temporal resolution
also facilitates monitoring of short-term disturbance
and recovery [8, 49].

Coarse spatial resolution sensors such as MODIS
are also informative and often used with other satel-
lite imagery [96]. The high temporal resolution of
MODIS is particularly beneficial when tracking net
primary productivity (NPP) [76] or gross primary
productivity (GPP) change [55, 77], including due
to disturbance events like hurricanes [97] and insect
outbreaks [77].

3.1.1.2. Data and applications
Field and climate studies provided the first global
mangrove carbon models [41, 63] and continue
to be essential for monitoring mangrove car-
bon [30, 66, 98, 99]. Mangrove height and bio-
mass models have increased in accuracy, providing
improved estimates of aboveground C stocks and
change through restoration [100, 101], afforestation
and encroachment [50, 51, 59, 102, 103], natural
disturbances [40, 49, 57, 58] and local anthropogenic
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Table 1. Global carbon monitoring value for mangroves from the literature. Method refers to four categories, modeled, data synthesis,
extrapolation (in situ combined with extent to upscale estimates), and remote sensing (mapping or predicting spatial heterogeneity for
an indicator).

Carbon indicator System Value Units Method Source

System Extent Mangroves 0.137–0.16 106 km2 Remote Sensing [35, 46, 47]
System Extent
Change

Mangroves 0.16%–0.39%
(2000–2012),
2.1% (2000–2016)
∗ only losses, does
not include gains,
0.214%
(1995–2016)

Percent loss yr−1 Remote Sensing [35, 40, 47, 119]

Carbon stock Mangrove (total) 7.29–15.4 PgC Remote Sensing,
Extrapolation

[21, 67, 120]

Mangrove
(aboveground)

1.75–2.83 PgC Remote Sensing,
Extrapolation

[63, 120]

Mangrove
(belowground)

2.6–6.4 (1 meter),
11.2–12.6 (2 m)

PgC Remote Sensing,
Extrapolation

[21, 34, 67]

Carbon burial Mangroves 22.5–34.4 Tg OC yr−1 Extrapolation [24, 108, 121]
Emissions Mangrove (total

emissions)
0.01–0.52 PgC yr−1 Extrapolation,

Remote Sensing
[19, 48, 122]

Mangrove
(belowground
emissions)

2–8.1 TgC yr−1 Remote Sensing,
Extrapolation

[21]

CH4 Flux Mangrove 0.191 Tg CH4 yr
−1 Extrapolation [121]

Net Primary
Productivity

Mangrove 0.5–1.5 PgC yr−1 Extrapolation [44, 123–125]

impacts [40, 49, 57, 58]. Anne et al [104] modeled
mangrove soil carbon with hyperspectral data, which
improved on Landsat-based models. Global man-
grove carbon density has been extrapolated from
250 m to 30 m with a combination of machine learn-
ing, earth observation, and ancillary data [e.g. 21, 34].

Remote sensing further complicates the quantific-
ation of uncertainty in carbon monitoring (figure 2).
Simard et al [36, 56] demonstrate that allometric
equations can introduce considerable bias (>100%).
However, the remote sensing canopy height model
error was low with a root mean square error (RMSE)
of 2 m). In situ carbon monitoring samples are lim-
ited globally. If these samples are not representat-
ive, uncertainty will be high and unquantified. Extra-
polating carbon stocks and fluxes from relatively few
in situ measurements makes the accurate quanti-
fication of spatial uncertainty extremely important.
For example, Sanderman et al [21] used the existing
250mSoilGrid data, in situ training data, and Landsat
imagery to create a 30 m organic carbon stock (OCS)
map. The study resulted in an average uncertainty of
40.4% of the mean OCS [21]. Remote sensing meth-
ods can quantify the spatial uncertainty improving
stakeholder understanding of regional carbon estim-
ates and accuracy.

Despite comprising only 0.3% of global coastal
ocean area, mangroves contribute ∼55% of air-sea
CO2 exchange from the world’s wetlands and estu-
aries, 60% of dissolved inorganic carbon (DIC) and
27% of dissolved organic carbon (DOC) from trop-
ical rivers to the coastal ocean [105–107]. Over

half of mangrove carbon production was unaccoun-
ted for until recently [45, 108], when mangrove
carbon export (particularly DOC and DIC) were
quantified [106, 107]. Only 14 TgC yr−1 of man-
grove NPP is buried in soils, while export to coastal
oceans is approximately an order ofmagnitude higher
(158 TgC yr−1) [107]. Mangroves export an estim-
ated 15 Tg particulate organic carbon (POC) yr−1,
51 Tg DOC yr−1, and 124 Tg DIC yr−1 to coastal
oceans [106, 107]. Models of river and tidal flow
throughmangroves informed by remote sensing have
improved estimates of carbon export [126], identi-
fying relationships between environmental condi-
tions (tidal height, river-flow, precipitation, biogeo-
chemical constituents of water) and carbon export
associated with tidal pumping [45, 126], particu-
larly of DIC [127]. Furthermore, ocean color tech-
niques can identify the source of organic matter
through absorption coefficients [109, 110], allowing
for detection of mangrove derived chromophoric dis-
solved organicmatter (CDOM) andDOC [111]. Car-
bon export from mangroves is spatially and tem-
porally heterogeneous, and remote sensing can help
resolve this variability indirectly through characteriz-
ing water flow and directly through the identification
of CDOM.

Remote sensing has been essential for carbon
monitoring of mangroves due to their unique land-
scape position, structure, and spectral characterist-
ics. These data have enabled relatively precise quan-
tification of mangrove extent, carbon stocks, and
carbon fluxes from local-to-global scales (table 1).
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Mangroves are among the most carbon-dense eco-
systems (table 1) [107] and are likely to become
increasingly impacted by anthropogenic and natural
disturbances [112]. Continued remote sensing car-
bon monitoring is necessary with a particular focus
on climate-related range-shifts associated with sea-
level rise (coastal contraction and inland expansion
[113, 114]) and poleward range expansion [115–118].

3.1.2. Tidal marsh and flats
In total, we found 47 papers relevant to carbonmonit-
oring with remote sensing in tidal marsh and flat eco-
systems. Tidal marshes and flats share several char-
acteristics, including tidal inundation and a relatively
low energy environment; they may be salt, brack-
ish, or fresh water. These ecosystems provide carbon
storage and other valuable ecosystem services [128].
Tidal wetlands, likemangroves, are carbon-dense sys-
tems providing some of the highest carbon burial
rates [24]. Global estimates of salt marsh and tidal
flat extents are 54 950 km2 and 127921 km2, respect-
ively [129, 130]. Freshwater tidal wetlands also exist
with ∼2000 km2 around the great lakes [131]. Due
to the results of our review, this section’s primary
focus was on salt marshes. However, carbon account-
ing of freshwater tidal and non-mangrove forested
tidal wetlands would benefit from remote sensing
integration. Tidal ecosystems are changing due to
anthropogenic drivers, including sea-level rise [132],
coastal development [133], and reduced sediment
input [130, 134–136]. Coastal wetlands can also be
a variable source of methane emissions [137]. These
emissions can be classified as anthropogenic in cases
where built impoundments block tidal flow, leading
to artificial freshening and enhanced methane emis-
sions [138]. We have grouped our synthesis of the
status of carbon monitoring in tidal marsh and flats
into three sections: (a) carbonmonitoring status, and
(b) data and uncertainty.

3.1.2.1. Carbon monitoring status
Tidal marsh studies utilized earth observation data to
constrain and upscale in situ data, predict biomass
and soil organic carbon (SOC) stocks, and model
productivity. Land-use change was a primary theme,
including migration, invasion, and long-term mon-
itoring. The most common carbon indicators were
GPP and biomass. Other indicators included sedi-
mentation, leaf area index (LAI), vegetation fraction,
nitrogen, and gas fluxes [104, 139–141]. Temporal
dynamics of spectral indicators of biomass, i.e. nor-
malized difference vegetation index, were explored in
tidal flats, too [142, 143]. Most tidal system studies
(n= 33) pertained to marshes dictating this section’s
focus.

GPP is a common carbon indicator for tidal sys-
tems (n = 8). MODIS combined with eddy cov-
ariance towers was used to predict GPP in tidal
environments [144–146]. Less common were gas flux

chambers and incubation [139, 143]. Feagin et al
[147, 148] improved on the MOD17 GPP product
with an ecosystem-specific model. Tidal inundation
is a source of uncertainty within GPP estimation, and
studies addressed the tidal stage with spectral index
filtering and tidal modeling [143, 145, 149]. These
studies primarily rely on MODIS at a minimum spa-
tial scale of 250 m, biomass, derived from Landsat or
other high-medium resolution sensors is often used
to track finer scale change.

In the 1980s, tidal marsh AGB was first predicted
with in situ spectral measurement and expanded to
Landsat imagery [150–152]. Since those foundational
studies, researchers have assessed other sensors’ capa-
city to predict AGB, including Worldview-2, Hyper-
ion, UAS, lidar, MODIS, AVIRIS-NG, Planetscope,
and data fusion [141, 153–160]. A major limita-
tion of biomass prediction in tidal marshes is the
site and species-specific limitations of the modeling
results. Studies have sought to address this limita-
tion with model transfer but resulted in inaccurate
predictions [157], though regionally trained mod-
els have been successful [161–163]. AGB prediction
scope and accuracy have increased since the firstmod-
eling approaches, but scale and uncertainty limit their
applicability to global carbon monitoring.

Tidal marsh change was a frequent research topic,
including tracking invasive species [164], determ-
ining marsh migration [165], time-series change
analysis [166], and multitemporal regional change
[167]. Studies frequently upscaled carbon measure-
ments with land-use maps [167–170]. Braun et al
[171] determined that geomorphic change can dictate
whether and how freshwater coastal wetlands serve as
sources or sinks for terrestrial carbon and how carbon
stocks can fluctuate on a geologically rapid timescale.
A few studies used remote sensing data to constrain
in situ sampling with land-use maps [165, 172]. The
lack of baseline data availability and a focus on local
methods limited regional monitoring applications.

3.1.2.2. Data and uncertainty
The lack of a global extent map and change estimates
limits the use of remote sensing in tidal marsh car-
bon estimates (table 2). CMShas supported the devel-
opment of the US coastal wetland greenhouse gas
inventory [173]. In the contiguous US between 2006
and 2011, coastal wetlands emitted 10.3 TgCO2e yr−1

(1.6–21.3 Tg CO2e yr−1), and a robust sensitivity
analysis demonstrates major sources of uncertainty
where remote sensing could improve the model,
including coastal salinity classifications—and result-
ing CH4 emission categories—and the depth of soil
deposits lost to erosion [174, 175]. Improved predic-
tions on the fate of soil carbon following marsh loss
events could combine earth observations and addi-
tional ocean physical modeling. Carbon stock values
are well constrained compared to the uncertainty of
methane emissions and loss events [174, 175]. So far,

8



Environ. Res. Lett. 17 (2022) 025009 A D Campbell et al

Table 2. Global carbon monitoring values for tidal marsh and tidal flat systems from the literature. Tidal marsh and salt marsh were
considered interchangeably. Tidal flat and unvegetated sediments were also considered interchangeable. Method refers to four categories,
modeled, data synthesis, extrapolation (in situ combined with extent to upscale estimates), and remote sensing (mapping or predicting
spatial heterogeneity for an indicator). When available uncertainty is reported 95% confidence intervals in parenthesis and standard
error after±.

Carbon indicator System Value Units Method Source

System extent Tidal marsh 0.055 106 km2 Field and remote
sensing

[129]

Tidal flats 0.128
(0.124–0.132)

106 km2 Remote sensing [130]

System extent
change

Tidal marsh Not available
Tidal flats 0.5 % yr−1 Remote sensing [130]

Carbon burial Tidal marsh 0.028–0.070 PgC yr−1 Extrapolation [180]
Tidal flats 0.126 PgC y−1 Extrapolation

(total coastal
burial in
unvegetated
sediments)

[181, 182]

Carbon stock Tidal marsh 1.84 PgC Extrapolation [107]
Tidal flats Not available

Carbon Loss Tidal marsh 0.016
(0.005–0.065)

PgC yr−1 Extrapolation [19]

Tidal flats Not available
CH4 Flux Tidal marsh 0.85± 0.32 TgC yr−1 Extrapolation [183]

Tidal flats Not available
Net Primary
Productivity

Tidal marsh 0.17–0.42 PgC yr−1 Extrapolation [180]
Tidal flats 0.01± 0.013 PgC yr−1 Extrapolation

(unvegetated
sediments)

[184]

strategies for mapping US coastal wetland soil car-
bon stocks using nationally available soil and wet-
land maps have not outperformed simpler strategies
of applying a single average value for carbon stocks.
Holmquist et al [175, 176] utilized an extensive soil
core database to predict tidal marsh soil carbon to
1 m depth (0.72 PgC) within the Contiguous United
States (CONUS). The study also showed a way to
improve future mapping would be to generate maps
based on environmental drivers that differentiate
between organic and inorganic soils, differentiated by
a threshold of 13% organic matter by dry mass. Elev-
ation relative to the tidal amplitude [177, 178], and
long-term rates of relative sea-level rise [179] could
be potential predictors of carbon stock. These CMS
funded studies demonstrate the need for connecting
earth observations and models between land, wet-
land, and open water; further in situ data collection
of environmental driver data such as salinity and tidal
elevation; and the development of tidal marsh class
and change products that can be applied globally.

Additionally, global carbon export from tidal
marshes to estuaries is uncertain. The connection
between tidal marshes and coastal waters is a long-
standing consideration. Teal [185] identifies out-
welling as an important potential component of
the system, and its magnitude and role have been
debated since [186]. The magnitude of C export
is highly variable, with tidal marshes being both a
sink and a carbon source to coastal waters [187].
Salt marshes export an estimated 3.3 Tg POC yr−1,

14 Tg DOC yr−1, and 29 Tg DIC to coastal oceans
[107]. Remote sensing of ocean color to estimate
DOC and CDOM can discern spatial and temporal
patterns of tidal marsh export [188]. Gao et al [144]
explored the connection between tidal marsh pro-
ductivity and detritus export using in situ sampling
of detritus. Monitoring coastal waters is a difficult
remote sensing task (see sections 3.1.3 and 3.3.1).
The use of ocean color methods and fine-scale satel-
lite imagery could enhance the capacity to monitor C
export from tidal marshes.

3.1.3. Submerged aquatic vegetation
In total, we found 45 papers relevant to carbon mon-
itoring with remote sensing in SAV with a primary
focus on seagrass. Seagrass is found along all con-
tinents except Antarctica and refers to seventy-two
species, including Zostera marina, Posidonia ocean-
ica, Thalassia testudinum, and Zostera noltei [189].
Seagrass is estimated to store 10%–20% of the
ocean’s carbon within 0.2% of the total ocean area
[24, 125, 190]. However, seagrass extent decreased
∼30% in the last century [191]. During deterioration,
seagrass beds can release their carbon into the atmo-
sphere [192]. Improvements in mapping seagrass
extent, structure, and carbon storagewill enableman-
agement by valuing and including seagrass beds in
REDD+ type programs. We have grouped our syn-
thesis of the status of carbon monitoring in SAV into
two sections: (a) carbon monitoring status and (b)
data and limitations.
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Table 3. Global carbon monitoring value for seagrass from the literature. Method refers to the categories, modeled, data synthesis,
extrapolation (in situ combined with extent to upscale estimates), and remote sensing (mapping or predicting spatial heterogeneity for
an indicator).

Carbon indicator System Value Units Method Source

System extent Seagrass Confirmed: 0.15–0.35;
potential: 1.6∗

106 km2 Extrapolation [190, 202, 204,
215]∗

System extent
change

Seagrass 0.9% (1879–1940), 7%
(1990–2006)

Percent loss yr−1 Extrapolation [216]

Carbon stock Seagrass 4.2–8.4 PgC Extrapolation [190]
Carbon burial Seagrass 48–112 TgC yr−1 Extrapolation [125]
Emissions Seagrass 0.014–0.09 PgC yr−1 Extrapolation [19, 190]
CH4 Flux Seagrass Not Available
Net Primary
Productivity

Seagrass 0.06–1.94 PgC yr−1 Extrapolation [180]

3.1.3.1. Carbon monitoring status
Seagrass biomass is below the water’s surface;
therefore, atmospheric and coastal water conditions
influence mapping [190]. Similarly, temporal and
spatial variability in water quality and depth hinder
seagrass identification e.g. [193–197]. These diffi-
culties can result inmisclassification between seagrass
and algae [197–201]. Due to the remote sensing chal-
lenges, seagrass mapped extent is an order of mag-
nitude less than modeled extents [202, 203]. Con-
sequently, scientists lack a global map of seagrass
extent, and recent estimates are uncertain (160 387–
266 562 km2) [204]. Seagrass aboveground carbon
stocks are even more uncertain due to mapping error
and regional, intraspecies, and interspecies variability
in biomass [199, 203, 205, 206]. Globally, two-thirds
of seagrass living carbon (2.52 ± 0.48 Mg C ha−1) is
belowground, and seagrass SOC is ∼65 times greater
(165.6 Mg C ha−1) [190].

Novel methods for linking remote sensing and
in situ data have improved our understanding of
seagrass cover and carbon storage. For example,
seagrass cover estimates from UAS and in situ images
can bridge the scale differences of AGB samples and
remote sensing imagery [194, 196, 197]. Seagrass
extent mapped with UAS imagery has been used
to scale in situ carbon samples to the landscape by
percent cover [207]. Zoffoli et al [208] used a lin-
ear model to predict biomass with in situ radiance
(RMSE= 5.31 g m−2) and applied that to Sentinel-2
imagery, successfully capturing seasonality. Modeling
optical properties of seagrass has led to the develop-
ment of a model to estimate LAI that does not require
in situ data [209, 210]. In addition to satellite and aer-
ial platforms, ship-based acoustic sensors can identify
species [211] and estimate biomass [205]. Data fusion
between ship-based sensors, satellites, and UAS has
improved seagrass extent maps [212] and benefit bio-
mass mapping.

3.1.3.2. Data and limitations
Mapping was the primary seagrass research topic
reviewed due to the challenges of modeling seagrass
carbon and the need to address data gaps in known

seagrass extent. These challenges have resulted in high
uncertainty in seagrass extent estimates (table 3). For
example, high-resolution imagery, informed by a spe-
cies distributionmodel, was used tomanually digitize
seagrass beds within a single bay, resulting in a 44%
increase inmapped seagrass extent [213]. Poursanidis
et al [214] map change between submerged vegeta-
tion and other benthic substrate following the cyclone
season. Both Landsat and Sentinel-2 have the capacity
for regional to global mapping of seagrass.

Additionally, higher spatial resolution sensors,
such as Planetscope, have improved classification
accuracy compared to Sentinel-2 [197]. UAS imagery
(<5 cm) has shown the capability to map local
seagrass extent and carbon [207, 217]. Object-based
methods help separate areas of similar seagrass cover,
water quality, and depth [212] but do not neces-
sarily improve accuracy [217]. Recent advancements
in acoustic measurements of photosynthesis-derived
oxygen bubbles [218] and tracking seagrass graz-
ing animals [219] have increased seagrass mapped
extent. Furthermore, machine learning has improved
seagrass bed identification [195, 220, 221]. Remote
sensing methods, including object-based image ana-
lysis, machine learning, physics-based modeling, and
integration of multiple scales of training data, have
improved carbon monitoring of seagrass.

Estimating seagrass carbon fluxes with remote
sensing is difficult due to varying light, tides, cur-
rents, water quality, [e.g. 192, 197, 203] and biogeo-
chemical process (i.e. carbon fixation and CaCO3

[201, 222–225]), even with in situ CO2 flux meas-
urements [226]. Furthermore, the major drivers
of sediment carbon changes within regions from
autochthonous to allochthonous based on seagrass
canopy complexity, turbidity, and wave environ-
ment, further complicating carbon flux monitoring
[227]. Water depth is an important factor in estim-
ating seagrass carbon storage [227–229]. Thomas
et al [230] demonstrate a data fusion approach
using ICESat-2 and Sentinel-2 to map bathymetry
in shallow, optically clear coastal water address-
ing a key data gap in most optical seagrass map-
ping approaches. Carbon fluxes are challenging to
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monitor, but modeling and remote sensing have
improved our understanding of the biogeochemical
processes and site characteristics contributing to flux
variability.

The carbon impacts of seagrass loss are hard to
quantify due to a lack of precise mapping and car-
bon storage information. Local estimates of seagrass
loss range from highs of ∼2.8% yr−1 [191, 231] to
lows of 1.2% yr−1 [206], and globally, since 1990,
seagrass loss rate is estimated to be ∼7% yr−1 [24].
Themajor drivers of seagrass loss are direct anthropo-
genic impacts [232–234] from boats, development,
dredging, and marine pollution [191, 235], as well
as overgrazing due to alterations to the food web
[236]. Marine heat waves due to climate change can
exacerbate seagrass loss [192, 237], and temperat-
ure increases are likely to drive future losses [206].
Seagrass beds experience multiple stressors associ-
ated with water quality, temperature increases, and
overgrazing which can shift seagrass beds from stable
ecosystems to rapid deterioration [192, 206, 217].
However, both improvements in water quality
[207, 231, 238] and planting have successfully
restored seagrass and increased carbon storage and
ecosystem services [239, 240]. High but uncertain
loss rates and the success of restoration necessitate
improved remotely sensed and in situ quantification
of seagrass baseline and change in extent to facilit-
ate its inclusion into carbon monitoring and offset
programs.

3.2. Inland wetlands
In total, we found 55 papers relevant to carbon mon-
itoring with remote sensing in mineral wetlands. We
found an additional 129 papers relevant to carbon
monitoring with remote sensing in peatlands and 80
in permafrost due to the current status and prevalence
of the research themes we have separated these into
two sections.Wetlands are defined by vegetation type,
hydrology, and soil properties [241] and classified
in the US based on hydrogeomorphic position and
vegetation [242]. These landscapes are dynamic with
highly variable carbon fluxes, changing hydrology,
and impacted by anthropogenic disturbance such as
draining for agricultural development and deforest-
ation [29, 243]. Palustrine wetlands span organic
soil peatlands to mineral soil saline wetlands in arid
regions [242]. By this definition, inland wetlands dis-
proportionately contribute to carbon storage, stor-
ing 30% (202–754 PgC) of the global SOC stock
(1500 PgC) while only occupying 8%–11% of the
land surface [11, 244, 245]. Due to the magnitude of
carbon storage in inland wetlands, Nahlik and Fen-
nessy [245] referred to this carbon as ‘teal carbon.’
However, there is a distinctionwithin inlandwetlands
between peatlands and mineral soil wetlands. Peat-
land is a general term used to describe a wetland with
an organic soil; however, the definition of an organic
soil varies by country and region. We have grouped

our synthesis of the status of carbon monitoring in
inland wetlands into two sections: (a) mineral wet-
lands and (b) peatlands and permafrost.

3.2.1. Mineral wetlands
As previously mentioned, wetlands are defined by
vegetation, soils, and hydrology but remotely map-
ping wetland extent requires indirectly associating
these attributes with remote sensing data and intro-
duces additional uncertainty. The extent of wetlands
is a long, sought-after metric and has changed greatly
over time [246]. The United States National Wet-
land Inventory demonstrated that baseline mapping
followed by subsequent updated digitization from
aerial imagery can be utilized to create robust wet-
land change estimates [247]. Mineral wetlands are
difficult to map due to their high diversity, hydro-
logically dynamic, and variable size. These factors
impact carbon monitoring uncertainty and increase
from local to global extent (figure 2).Mineral wetland
carbon is challenging to measure, upscale, and mon-
itor over both large spatial extents and at fine scales.
Recent research has utilized time-series analysis of
satellite imagery to estimate inundation extents and
hydroperiods and, therefore, a variable approxima-
tion of wetland extent at the site level [248, 249].
Ignoring temporal variability, lidar has been used to
map wetland extent via landform delineation. Lidar
has been especially effective for mapping wetlands
under a forested canopy [250, 251]. SAR has also been
increasingly used inwetland extentmapping research,
e.g. using the L-Band frequency to detect inundation
at various spatial scales [252]. We have grouped our
synthesis of the status of carbon monitoring in min-
eral wetlands into two sections: (a) carbon monitor-
ing status and (b) data and uncertainty.

3.2.1.1. Carbon monitoring status
Wetland belowground carbon is primarily determ-
ined with field-intensive surveys to collect soil core
samples, e.g. the National Wetland Condition Assess-
ment in the United States [245]. Remote sensing has
been increasingly deployed to upscale field observa-
tions from sample points to the plot or study area
scale. For example, distribution maps of soil car-
bon stocks have been created from soil core meas-
urements using satellite imagery [253, 254]. Satellite
imagery has also aidedmeasurements of carbon accu-
mulation in sediments [255, 256]. Other fine-scale
approaches have used UASs and Ground Penetrating
Radar [257–259]. Despite these advances, high uncer-
tainty in soil carbon estimates from remote sensing
remain due to a lack of consistent depth measure-
ments, including the depth of the upper horizons
where most carbon is stored and can differentiate
more mineral soil wetlands from peatlands [245].

The prediction of carbon storage in AGB with
remote sensing is well studied, particularly in forested
ecosystems. For mineral wetlands, studies have used
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remote sensing to upscale plot-level data of AGB to
wider extents, such as the watershed-scale [260–262]
including forested riparian wetlands [263]. Lidar has
been used extensively in forest biomass research, and
mineral wetland applications are increasing [264].
Studies scale site-level aboveground carbon metrics
from estimates of AGB or carbon through land-
use maps and spectral indices from Landsat [265],
MODIS [266], Hyperion [267], and commercial
satellites [268]. Budzynska et al [269] predicted other
carbon indicators, e.g. LAI and % soil moisture,
with SAR and optical data. Riegel et al [264] estim-
ated aboveground carbon using aerial lidar and aer-
ial imagery. Productivity rates, including both GPP
[270, 271] and NPP [261], have been measured and
upscaled to local, regional, and global scales.

Carbon gas fluxes, in particular methane (CH4)
emissions, have been of interest in recent research
for mineral wetlands [272]. Most of this research
has focused on peatlands in northern latitudes with
fewer measurements and less a focus on mineral soil
mineral wetlands [241]. In terms of scale, CH4 has
been evaluated with remote sensing at the regional
or country level by combining satellite imagery with
process models [273]. Inundation detection has been
a key component to broad-scale CH4 mapping with
many models using the Global Inundation Extent
from Multi-Satellites dataset [274, 275]. However,
more recent research has used fine-scale, 3 m resol-
ution satellite imagery to map inundation detection
at the watershed scale to evaluate CH4 fluxes [276].
Lu et al [277] used eddy covariance data from flux
towers to demonstrate that mineral wetlands are net
sinks and identify a need to incorporate remote sens-
ing to predict CO2 flux spatially.

3.2.1.2. Data and uncertainty
Global assessment of mineral wetland carbon is lim-
ited by in situ carbonmeasurements andwetlandmap
coverage. Recent assessments of global wetland cov-
erage have utilized coarse-scale inundation mapping
downscaled by topographic metrics [257, 278]. How-
ever, inundation approaches do not distinguish wet-
land types, e.g. these maps often include peatlands
(section 3.2.2) and mineral wetlands. Thus, the best-
estimated extent comes from Lehner and Döll [279]
and the Global Lakes and Wetlands Database, which
estimated that non-peatland marshes, swamps, and
forested wetlands cover 3.7 × 106 km2 or ∼2.5% of
the terrestrial land surface [13].

Global scale carbon measurements have yet to
account for these changes in areal extent estimates.
For example, Bridgham et al [11] used an aver-
age of two older sources [280, 281] for freshwa-
ter mineral soil wetland area (2.315 × 106 km2)
to upscale carbon burial, carbon soil stock, and
CH4 flux (table 4). Similarly, Roehm [282] util-
ized two older sources [283, 284] to combine areal
extent estimates of northern and tropicalmarshes and

swamps (3.5 × 106 km2) to upscale NPP and CO2

flux (table 4). This latter estimate is closer to the
Lehner and Döll [279] estimate than the one used
in Bridgham et al [11]. Carbon monitoring research
interest in CH4 is high due to its global warming
potential. Thus, the global assessment of a CH4 flux
has been parsed by wetland type and separated from
peatlands [275].

3.2.2. Peatlands and permafrost
Peatland extent comprises ∼3% of the globe’s ter-
restrial area [285], and their carbon stock is estim-
ated to be between 528 and 600 Pg [286], repres-
enting 30% of the global belowground soil organic
C stock [287–289]. Generally, peatland refers to a
class of wetlands where the long-term rate of primary
production is greater than the decomposition rate
and losses from other sources such as wildfire and
dissolved carbon export [290]. Thus, peatlands have
soils with deep accumulations of organic matter, but
the minimum thickness necessary to be considered
peat varies significantly (∼30–50 cm) [285, 290]. The
accrual of peat over millennia leads to the formation
of deep peat deposits, which may reach depths of 15–
20 m [291–293]. We discuss peatlands by bioregion
(tropical, temperate, and boreal). Considering peat-
lands by climatic region is necessary due to the latit-
udinal gradient in carbon accumulation, with colder
regions having higher peat accumulation rates to a
point [294, 295], also higher in tropical mountain
peatlands [296]. We have grouped our synthesis of
the status of carbon monitoring in peatlands into five
sections: (a) tropical peatlands, (b) temperate peat-
lands, (c) boreal peatlands and permafrost, (d) peat-
land fires, and (e) data and uncertainty.

3.2.2.1. Tropical
Tropical peatland carbon indicators included AGB,
degradation, subsidence, and canopy height. South-
east Asia (n = 34) was the primary focus of tropical
peatland research, with additional studies focused on
South America and Africa. South American studies
mapped carbon stocks [296–299], extent and degrad-
ation [300], and mountain peatland stocks using
SAR and multispectral imagery [301, 302]. In Africa,
research focused on mapping the extent, depth [302,
303] and estimating carbon stocks [304]. In South-
east Asia, degradation, loss, and recovery were major
research topics enabled by lidar, SAR, and multispec-
tral imagery. Studies have used lidar to detect illegal
logging and carbon sequestration [305], map peat
depth [306], and estimate AGB for tropical peatlands
[307]. Minasny et al detail an open data andmapping
methodology with the ability to predict peat depth
at a lower cost than lidar [308]. SAR particularly
useful in tropical peatlands due to cloud and forest
canopy penetration and its sensitivity to inundation
and biomass [290, 296]. SAR applications included
dinSAR to map subsidence across Southeast Asia
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Table 4. Global carbon monitoring values for inland wetlands from the literature. Method refers to categories: modeled, extrapolation
(in situ combined with extent to upscale estimates), data synthesis, and remote sensing (mapping or predicting spatial heterogeneity for
an indicator).

Carbon indicator System Value Units Method Source

System extent Global Inland Wetlands
on Alluvial Soils

3.7 106 km2 Remote Sensing [13, 279]

North America Inland
Mineral Soil Wetlands

0.93 106 km2 Mixed [241]

System extent
change

Global Long-term
(Pre-1900s to 2000)

−0.39 % yr−1 Extrapolation [29]

Global Short-term (1990
to 2000s)

−0.48 % yr−1

Total loss of North
America Inland Mineral
Soil Wetlands

28.62 % Extrapolation [241]

Carbon burial
(sediment
accumulation)

Inland Freshwater
Mineral Soil Wetlands

39± 39 TgC yr−1 Extrapolation [11]

Carbon stock
(Soil)

Inland Freshwater
Mineral Soil Wetlands

46± 9 PgC Extrapolation [11]

North America Inland
Mineral Soil Wetlands

29.3 PgC Mixed [241]

Carbon emissions
(CO2 Flux)

Inland Freshwater
Mineral Soil Wetlands

2.2 PgC yr−1 Extrapolation [282]

Net Ecosystem
CO2 Exchange
(Net CO2 flux)

North America Inland
Mineral Soil Wetlands

−64.3 TgC yr−1 Mixed [241]

CH4 Flux Inland Freshwater
Mineral Soil Wetlands

68± 68 TgC yr−1 Remote Sensing
and Modeling

[11]

North America Inland
Mineral Soil Wetlands

25.2 TgC yr−1 Mixed [241]

Net Primary
Productivity

Inland Freshwater
Mineral Soil Wetlands

3.2 PgC yr−1 Extrapolation [282]

[309] and predict AGB [310]. Studies have addressed
remote sensing limitations by usingmultiple satellites
to expand spatial and temporal coverage of fires [311]
and the utilization of lidar to expand training data
[310]. Despite the significant research interest, trop-
ical peatlands lack regional and global scale monitor-
ing due in part to data availability, extent uncertainty,
and resources.

3.2.2.2. Temperate
Historically, temperate peatlands have frequently
been managed for fuel, drained for agriculture, or
other land-use [288, 312, 313]. Temperate peat-
land indicators included GPP [313, 314], water table
dynamics [315], erosion [316], disturbance [317],
peat depth [318], and moisture [313, 314]. Due to
the prevalence of past anthropogenic disturbance,
restoration and recovery are common research top-
ics [319–322]. High-resolution imagery is common
for site-scale studies, including satellite [316, 323,
324], UAS [325], aerial [326], and handheld spectro-
meters [314]. Aitkenhead and Coull [318] conduc-
ted a regional carbon monitoring system creating a
national map of peat depth and Scotland’s carbon
content. The variety of temperate peatland vegetation
and the importance of subsurface carbon stocks are
challenges for regional and global monitoring.

3.2.2.3. Boreal and permafrost peatlands
The boreal and tundra regions (n= 35) are data-poor
due to remoteness and the short field season limit-
ing in situ data collection. There are also significant
human development pressures in parts of the boreal
zone for petroleum exploration, mining, forestry,
agriculture, and infrastructure operations. Even low
impact disturbances such as seismic lines will increase
the fragmentation of wetlands and have ecological
impacts [345]. Most degraded peatlands are trop-
ical [288] but boreal peatlands and permafrost will
change significantly with warming and changes to
precipitation [346].

Optical remote sensing data in boreal environ-
ments is limited due to sun angle, cloud cover,
and the short growing season [347]. The floristic
similarity between peatlands and non-peatland eco-
types makes identifying landform and hydrology
with active sensors particularly important. The focus
on topography and landform included identify-
ing permafrost peat mound degradation with aer-
ial and high-resolution imagery [348], classifying
boreal bogs with microtopographic variation from
lidar [349], mapping thermokarst lakes with spec-
tral imagery [350, 351], detecting freeze thaw dynam-
ics with SAR [352], detecting permafrost extent
with electromagnetic imaging [353], and mapping
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Table 5. Existing global carbon monitoring indicator values for peatlands and permafrost. Method refers to the categories, modeled,
data synthesis, extrapolation (in situ combined with extent to upscale estimates), and remote sensing (mapping including remote
sensing derived spatial heterogeneity). No isolated values for CH4 flux or carbon export found.

Carbon indicator System Value Units Method Source

System Extent Total Peatlands 4.2 106 km2 Various [285]
Tropical Peatlands 0.387–1.7 106 km2 Various [327, 338]
Temperate/Boreal
Peatlands

4.06 106 km2 Various [287]

Permafrost 22.0 106 km2 Modeled [339]
System Extent
Change

Peatlands 0.5 % yr−1

(1990–2008)
Various methods [13, 340]

Carbon burial Peatlands 0.14± 0.007 PgC yr−1 Extrapolation [341]
Tropical Peatlands 0.02 PgC yr−1 Extrapolation [287]
Temperate/Boreal
Peatlands

0.09 PgC yr−1 Extrapolation [287]

Permafrost −0.55 PgC yr−1 Modeled [342]
Carbon stock Tropical peatlands 81.7–91.9 PgC Extrapolation [343]

Temperate/Boreal
Peatlands

473–621 PgC Various [287]

Permafrost 1700 PgC Extrapolation [9]
Carbon emissions Tropical peatlands 1.26± 0.77

(includes CH4)
Pg CO2e yr

−1

(2015)
Extrapolation [344]

Temperate/Boreal
peatlands

0.27± 0.03
(includes CH4)

Pg CO2e yr
−1

(2015)
Extrapolation [344]

Permafrost Not available

lake extent with multispectral imagery [354]. An
integration of multi-season SAR and multispectral
imagery was complementary in detecting vegetation
and hydrologic differences in bogs versus fens in the
boreal zone [290, 355]. Carbon monitoring efforts
included modeling gas fluxes [272, 328, 356], upscal-
ing in situ emission estimates with land cover maps
[350, 329, 330, 357], and peat extent [358]. Major
change drivers within the system include increas-
ing temperatures [351, 331, 332, 359] and fire [333,
360]. Boreal systems are critical for understanding
the global carbon cycle, and unique challenges to
in situ and remote sensing data collection are being
addressed by science programs such as the NASA
Artic-Boreal Vulnerability Experiment [361].

3.2.2.4. Fires
The global importance of peatland fires in Southeast
Asia has long been acknowledged, with peak yearly
emissions equaling 13%–40% of the mean annual
global carbon emissions from fossil fuels [23]. Earth
observation has enabled and verified peatland fires.
Page et al [23] primarily used fire extent mapped
from Landsat to understand peatland fires carbon
emissions (2002). Lidar has been used to map fire
scars and burn depth improving emission estim-
ates [362]. Emission estimates and burn area mod-
els have used satellite-derived peatland fire data from
the Global Fire Emissions Database for verification
[334, 335, 363]. SMAP soil moisture data has been
used to provide firewarnings, predict burn area [364],
and as an input in emission models [365]. Drought
can worsen emissions from forest fires within tem-
perate/subtropical peatlands (0.32 PgC) [366]. Thus,

earth observation is critical for modeling and verify-
ing this important source of CO2 emission. CMS has
supported several fire mapping efforts of which peat-
lands are the focus [367] or included in more general
fire data [368].

Fires in permafrost regions are also a major cli-
mate concernwith remote sensingmonitoring applic-
ations. Remote sensing has identified fires as themost
prevalent disturbance in the permafrost region [369],
leading to widespread permafrost thawing [370]. SAR
has been used to track subsidence following vegeta-
tion loss in permafrost regions, including subsidence
of 0.5–3 cm yr−1 in deforested areas [371] and the
rapidly developed thermokarst following fires with
rates of subsidence up to 6.2 cm yr−1 [372]. Stud-
ies have used SAR interferometry to model recovery
and loss estimating that 4 m of permafrost is lost in a
fire event and recovery takes up to 70 years [373]. For
wildfire effects, algorithms were developed for assess-
ing peat burn severity (depth) using Landsat-5 [293]
and Landsat-8 [374]. Projections suggest rapid thaw-
ing will release 60–100 PgC, and gradual thaw regions
will release another 200 PgC by 2030 [375]. Perama-
frost thawing will release significant mercury into the
environment [376].

3.2.2.5. Data and uncertainty
Globally, peatlands represent a massive SOC stock
(table 5) and a remote sensing challenge due to their
disparate data needs and global range. Peatland extent
is ∼4.0106 × 106 km2 and 4.5104 × 104 km2 in
the northern and southern hemispheres, respectively
[287, 290]. Boreal regions of the northern hemisphere
are 25%–30% peatland and comprise most of the
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global extent [290, 377]. Tropical peatland carbon
(88.6 Pg) is estimated to be 15%of the global peatland
carbon, with boreal and temperate peatland carbon
estimated to be 521.4 Pg [343]. Temperate peatland
carbon is understudied and as a result has high uncer-
tainty in the carbon estimates [378]. The area of trop-
ical peatlands is uncertain (387 201–657 430 km2),
and the largest area (56%) and most of the carbon
stock (77%) are in Southeast Asia [327], followed by
the Amazon basin [379]. Africa’s lowland peatland
area is largely unknown except for the Congo Basin
[303]. Tropical alpine peatlands are numerous in the
Andes, many islands, and Africa [290, 380, 381]. Per-
mafrost peatlands are estimated to contain 277 PgC
and are changing rapidly due to global warming and
fire [336, 337, 382]. The carbon store within the per-
mafrost region is estimated to be ∼1300 Pg (1100–
1500 Pg) with 500 Pg within the active layer [383].

3.3. Inland waterbodies
3.3.1. Lakes and ponds
In total, we found 64 papers relevant to carbon mon-
itoringwith remote sensing in lakes and ponds. Fresh-
water lakes are an important component of the global
carbon cycle, but this has not always been acknow-
ledged [384–388]. This oversight is primarily due to
the small fraction of the earth’s surface area covered
by lakes, the large number, the diversity of freshwater
lake type, and the complex carbon cycle of individual
lakes [384, 386, 387, 389]. Recent work suggests that
the carbon cycle of individual lakes can vary signi-
ficantly across time and space depending on thermal
stratification, allochthonous loading, trophic state,
and degree of anthropogenic influence [15, 388, 390,
391]. Large lakes are common in the boreal region
and freshwater lakes play a crucial role in transform-
ing and storing carbon [386]. We have grouped our
synthesis of the status of carbon monitoring in lakes
into two sections: (a) carbon monitoring status and
(b) data and applications.

3.3.1.1. Carbon monitoring status
Phytoplankton photosynthesis is the primary pro-
cess by which carbon dioxide is fixed from the water
column and overlying atmosphere. Remote sensing
applications to estimate phytoplankton photosyn-
thesis or primary production in the marine envir-
onment are numerous (see section 3.4). However
due to the spatial variability and optical complex-
ity, applications to freshwater systems are scarce.
Advances in remote sensing platforms and algorithm
development have allowed for the characterization of
phytoplankton abundance and productivity in vari-
ous freshwater environments [e.g. 392–397]. Remote
sensing approaches hold much promise for sampling
many lakes on the planet [398] and understanding
global trends in phytoplankton [399].

Globally, freshwater lakes exhibit a wide range
in size and shape, creating a unique challenge for

applying remote sensingmethods. Accurate estimates
of freshwater phytoplankton biomass require remote
sensing data with specific wavelengths associatedwith
spectrally narrow chlorophyll-a absorption features
and high signal-to-noise ratios [400]. Satellite sensors
with these spectral requirements often target oceans
and typically have a coarser spatial resolution (300m–
1000 m), limiting their ability to observe smaller
freshwater features. These requirements limit how
carbonmonitoring of freshwater lakes. The Plankton,
Aerosol, Clouds, ocean Ecosystem will address spec-
tral needs of ocean color remote sensing but is still
too coarse (<1 km2) to discern small-scale waterbod-
ies [401]. Instead, data fusion using high-resolution
imagery and ocean color remote sensing are likely
necessary to improve mapping of phytoplankton bio-
mass in lakes and ponds.

3.3.1.2. Carbon fixation
Several recent works have used a mechanistic car-
bon fixation model adapted for use in the Lauren-
tian Great Lakes [396, 397] to estimate carbon fixa-
tion in the world’s large lakes [402]. Additionally, a
simple depth integrated model approach (DIM) was
refined to estimate growing season carbon fixation of
∼80 000 freshwater lakes [403]. The DIM approach
relies on the light-utilization index, which relates to
latitude providing a straightforwardmethod to estim-
ate carbon fixation rates when minimal limnological
data is available. The marine standard Vertically Gen-
eralized Production Model has also been applied to
estimate carbon fixation in large lakes [409]. Remote
sensing approaches to estimate freshwater phyto-
plankton carbon fixation have been developed and
applied for small lakes [410, 411].

Lake carbon budgets are highly dependent on car-
bon fixation rates, yet these rates are unknown for
most lakes. McDonald et al [412] estimated that there
are over 60 million lakes. Estimating carbon fixation
in all these lakes would be impossible with in situ
methods. Therefore, the development of remote sens-
ing methods to estimate carbon fixation rates is a
current focus. Still, global-scale estimates remain elu-
sive due to the lack of readily available remote sens-
ing products appropriate for optically and spatially
complex inland lakes. However, several recent works
have estimated global scale freshwater carbon fixation
for satellite observable lakes [402, 403]. These works
also examined carbon fixation on multiple temporal
scales ranging froma single year growing season snap-
shot for ∼80 000 lakes [403] to a 15 year time-series
for the world’s eleven largest lakes [402]. The latter
work revealed significant changes in carbon fixation
for several lakes, likely in response to changes in cli-
mate. The use of remote sensing to understand spatial
variability across lakes is lacking in many of the exist-
ing global carbon monitoring values (table 6).

Additionally, common carbon monitoring meas-
urements in lakes include chlorophyll-a, DOC, CO2
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Table 6. Global carbon monitoring values for lakes. Method refers to the categories, modeled, extrapolation (in situ combined with
extent to upscale estimates), data synthesis, and remote sensing (mapping including remote sensing derived spatial heterogeneity).

Carbon indicator System Value Units Method Source

System extent Lakes 5 106 km2 Remote sensing [404]
Carbon burial
(sediment
accumulation)

Lakes and
Reservoirs

0.15 (0.06–0.25) Pg CO2–C yr−1 Modeling [405]

Carbon fixation Lakes 0.376 PgC yr−1 Remote sensing [403]
Carbon fixation Lakes 1.3 PgC yr−1 Modeling [406]
Carbon storage Lakes 820 PgC Extrapolation [384, 407]
Carbon Flux Lakes 0.75–1.65 PgC yr−1 Extrapolation [384]
CH4 Flux Lakes 71.6 Tg CH4 yr

−1 Extrapolation [408]

flux, and GPP. Kuhn et al [413] calculated boreal
lake GPPwith aerial and satellite imagery and verified
the result with in situ measurements. Remote sens-
ing combinedwith in situmeasurements clarified that
boreal lakes may have a limited role in carbon min-
eralization [414]. Lake color in the region has been
tracked with the satellite record identifying increased
connection with the surrounding landscape [415].
The combination of electromagnetic imaging and
satellite imagery has mapped the temporal dynam-
ics of hydrological connectivity between boreal lakes
and permafrost [416]. Remote sensing is critical for
understanding the effect of climate change on the car-
bon cycle in permafrost regions.

Methods to estimate chlorophyll-a concentra-
tions range from empirical and semi-analytical
approaches and, more recently, machine learning
and artificial intelligence-based techniques (Reviews
in [417, 418]). Initial work has been done to estim-
ate global freshwater lake chlorophyll concentrations
[398]. However, more robust methods to account
for the varying optical complexity of lakes should be
developed. The GloboLakes initiative has developed a
freshwater chlorophyll retrieval algorithm, generated
a global time-series of chlorophyll concentrations for
∼1000 lakes, and provided monitoring products for
the ESA Climate Change Initiative [419].

DOC and CDOM are also frequently monitored
in lake environments with remote sensing. CDOM
algorithm comparisons found that remote sens-
ing algorithms did not predict the highs or lows
well [420], but continued algorithm refinements are
promising [421]. Brezonik et al [422] demonstrated
a strong relationship between CDOM and DOC but
were cautious about assuming a consistent relation-
ship. Geographically diverse study sites suggest the
possibility of applying these methods globally [423].

CO2 flux has been estimated with partial pres-
sure of CO2 (pCO2) in coastal oceans [424]. Simple
relationships have also been developed between
bio-geochemical properties and freshwater carbon
flux through comparisons with Eddy-covariance flux
tower measurements [425]. While these methods
show promise, applications in freshwater lakes are
infrequent. Similarly, very few efforts have beenmade

to fully characterize carbon fractions in freshwater
systems, although initial efforts seempromising [426]
and are worthy of continued research.

3.3.2. Rivers
In total, we found 33 papers relevant to carbon mon-
itoring with remote sensing of rivers. Rivers and
streams receive a large amount of carbon from ter-
restrial ecosystems and actively cycle carbon through
them by outgassing CO2 and CH4 into the atmo-
sphere, burying particulate carbon in the riverbed,
and exporting organic and inorganic carbon into
estuaries and coasts [15, 384, 427–434]. Meanwhile,
the flowing waters in river networks link the carbon
cycle in non-flowing (or slowly flowing) waterbodies
and wetlands. Here we summarize and discuss car-
bon monitoring of rivers and streams based on the
literature.We do not include terrestrial carbon inputs
due to the lack of direct observations as that carbon
flux is often inferred throughmass balance analysis by
assuming no accumulation of carbon in inlandwaters
[435]. We have grouped our synthesis of the status of
carbon monitoring in rivers into three sections: (a)
carbon export, (b) outgassing of CO2 and CH4, and
(c) carbon burial.

3.3.2.1. Carbon export
Riverine C export is well constrained using global
streamflow discharge and measurements of aqueous
carbon concentrations [384, 433]. Stream gauge and
water quality data can provide the necessary data
for the extrapolation of C export at continental
scales [436] and global scales [437, 438]. Mass bal-
ance analysis and data initiatives have refined global
estimates [15, 439]. Many studies have established
empirical relationships between surface organic C
concentrations (e.g. POC, DOC, and phytoplankton)
and remote sensing data across various aquatic sys-
tems, including river reaches [e.g. 440–447].

Remote sensing derived C concentrations have
been used to estimate riverine export to estuaries and
coasts. For example, Chunhock et al [448] calculated
river-to-ocean fluxes with remote sensing derived
DOC concentrations near the river mouth in con-
junction with discharge data. Liu et al [449] used
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Landsat-derived POC concentrations and monthly
river discharges near the mouth of the Yangtze River
to assess long-term patterns of riverine POC fluxes
from 2000 to 2017. Successful application of remote
sensing methods requires continual monitoring of
constituent concentrations and a large enough water
body (e.g. river with a width larger than 90 m) to be
observed from satellite imagery [450], making it chal-
lenging to apply them in small rivers and streams.
High-resolution UAS imagery was applied to detect
water quality parameters in small rivers/streams, such
as chlorophyll-a, Secchi disc depth, and turbidity,
with limited success [451, 452]. Therefore, carbon
monitoring of rivers and small streams with remote
sensing requires further research and technological
advancement.

3.3.2.2. Outgassing of CO2 and CH4

In the past twodecades, quantification of regional and
global CO2 outgassing from streams and rivers has
made great progress. Richey et al [453] in a pioneering
study of regional-scale CO2 outgassing in the Amazon
River basin, used field observations to estimate CO2

emissions per unit area in mainstem and floodplains.
They used JERS-1 L-band SAR to estimate areal cov-
erage and inundation status of rivers and floodplains
(>100 m in width) and developed empirical relation-
ships for smaller streams. Since then, multiple stud-
ies have continued to use remote sensing to refine
estimates of CO2 emissions from the running waters
in the Amazon. For example, Johnson et al [454] con-
strained their analysis to seasonally inundated areas
based on SAR detected high and low water peri-
ods. De Fátima et al [455, 456] used a 100 m DEM
to improve the surface area calculation. Recently,
Sawakuchi et al [431] used model estimates of sur-
face area to estimate outgassing in the lower Amazon
River Basin. These advances have resulted in an
estimate of ∼0.96 PgC yr−1 CO2–C outgassing from
the rivers and streams in the Amazon [433], nearly
double the estimate by Richey et al [453], which
included both rivers and floodplains. In another sali-
ent example of regional carbon accounting, But-
man and Raymond [457] used numerous USGS field
observations and the National Hydrography Data-
set plus [458] river networks to estimate surface
water area. These studies demonstrate the need for
high-resolution river networks and water surface
area data to monitor CO2 outgassing from rivers
reliably.

At the global scale, Richey et al [453] upscaled
their estimates of CO2 outgassing in the Amazon
River Basin to calculate outgassing from rivers
and floodplains in the global humid tropics. This
was much higher than contemporary estimates not
informed by remote sensing [384, 459]. Battin et al
[460] analyzed the net heterotrophy (respiration—
GPP) of 130 rivers and streams and extrapolated
the results to the global scale by multiplying average

emissions of streams and rivers by global surface area.
Utilizing remote sensing data including hydrological
data derived from the SRTM, Raymond et al [430]
reported a 1.8 PgC yr−1 of CO2 outgassing from
global streams and rivers. Recently, the global relev-
ance of dry inland waters to the carbon cycle has been
identified [461–463], representing unreported CO2

emissions [430].
Progress has also been made for accounting CH4

emissions from global freshwaters. Bastviken et al
[408] synthesized and calculated average areal field
observations of CH4 fluxes of various types of fresh-
waters (including lakes, reservoirs, wetlands, and
lakes) by different latitudes to estimate a total of
103.3 Tg CH4 yr−1, of which rivers contributed
∼1.5 Tg CH4 yr−1 (or ∼10 Tg C (CO2−e) yr−1. The
scarcity of observed data points and the exclusion of
small streams in the river surface area likely contrib-
uted to low river flux [464]. Overall, CH4 emissions
from streams and rivers are less studied than CO2

emissions.
In general, current riverineCO2 andCH4 outgass-

ing estimates are subject to large uncertainties due to
difficulty in accurately measuring surface water area,
partial pressure of CO2, and gas exchange rates [427].
More field data and high spatial resolution remote
sensing are needed to refine surface water area and
gas exchange rates. The global studies rely on river
networks primarily based on NASA’s global SRTM
DEM at 90 m. In the US, 10 m DEM-derived high-
resolution hydrological data is available [465]. Still,
higher resolution lidar derivedDEMwith (∼2m) can
improve river network delineation [466]. Addition-
ally, SAR, multispectral, and hyperspectral data col-
lected from aerial, satellite, and UAS, have been used
tomap surface water area and characterize river chan-
nel morphology [467–470]. Although those applic-
ations achieved noticeable success, upscaling them
to continental or global scales face many challenges
[471].

The Surface Water and Ocean Topography
(SWOT) satellite mission [472], will measure ter-
restrial water at a spatial resolution of 50 m and
provide river vector products that represent reaches
with a collection of nodes spanning every 200 m
[473, 474]. Researchers estimate gas exchange coef-
ficient with remote sensing derived width and water
surface slope measurements, while surface water area
can be multiplied with estimated gas emissions per
unit area to estimate total C degassing.Note that small
streams are difficult to discern at SWOT’s spatial res-
olution; therefore, data fusion of SWOT river vectors
with high-resolution DEMs holds promise to provide
more accurate data regarding rivers and streams.

3.3.2.3. Carbon burial
Global estimates of aquatic organic C burial are
between 0.15 and 1.6 Pg CO2–C yr−1 [405, 475].
These studies focus on sedimentation in reservoirs,
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Table 7. Global carbon monitoring values for rivers. Method refers to three broad categories, modeled, extrapolation (in situ combined
with extent to upscale estimates), data synthesis (combination of data sources and methods), and remote sensing (mapping including
remote sensing derived spatial heterogeneity).

Carbon indicator System Value Units Method Source

System extent Rivers and
streams

0.773± 0.08 106 km2 Remote
sensing/modeling for
rivers less than 90 m
in width

[478]

Carbon input Inland waters 2.7–5.1 PgC yr−1 Data synthesis [15, 385, 427, 433]
Carbon export to
estuaries

Rivers and
streams

1.06 PgC yr−1 Data synthesis [439]

Carbon flux to
atmosphere

Rivers and
streams

1.8± 0.25 PgCO2 yr
−1 Extrapolation [430]

CH4 Flux Rivers and
streams

∼1.5 Tg CH4 yr
−1 Extrapolation [408]

lakes, and wetlands, without explicit global-scale C
burial in rivers and streams. Watershed models that
explicitly integrate terrestrial and aquatic carbon cyc-
ling processes are being developed to quantify the
burial of particulate organic carbon (OC) in rivers.
For example, Qi et al [476, 477] incorporated OC
deposition, resuspension, and diagenesis processes in
the soil and water assessment tool and showed that
a significant fraction of terrestrially originated POC
is deposited on the bed of small streams and fur-
ther decomposes into CO2 and CH4. These results
indicate that the inclusion of C burial in rivers and
streams would improve the accounting of global C
burial in inland waters. High-resolution riverine net-
works will be critical for updating and improving
existing carbon monitoring (table 7). Additionally,
certain carbon pathways are relatively unknown, e.g.
how much carbon enters wetlands and subsequently
enters rivers.

3.4. Ocean and shelves
In total, we found 102 papers relevant to carbon
monitoring with remote sensing of oceans. Earth
observation-derived oceanic carbon indicators have
been used to characterize a variety of carbon-related
properties and processes. The global oceans represent
a substantial sink for anthropogenic CO2, accounting
for more than 40% of the global sink of anthropo-
genically produced CO2 (figure 1) [9]. Moreover, the
magnitude of the ocean sink appears to be increas-
ing with the buildup of CO2 in our planet’s atmo-
sphere. Approaches to estimate the ocean sink have
relied on a combination of global ocean biogeochem-
istry models (GOBMs) along with comparison to
observation-based estimates, including pCO2-based
interpolations. These interpolations, in some cases,
have relied on remote sensing products as described
in Rödenbeck et al [479], involving regression to
remotely sensed external drivers such as sea surface
temperature, sea surface salinity, and chlorophyll-a
concentration. Many of the GOBMs also use remote
sensing for model implementation and model-data
comparisons [e.g. 480–482].

Several studies have examined regional time-
series changes in values averaged over the 17 biomes
of Fay andMcKinley [483], which were defined based
on various environmental datasets including the Sea-
WiFS chlorophyll-a product. These times-series have
revealed substantial interannual and decadal variab-
ility as well as regional patterns in atmosphere-ocean
CO2 fluxes [9, 484, 485]. Interannual and multi-
year variability can be related to climate oscillations
including El Niño as well as decadal scale oscillations
in theNorth Pacific and SouthernOcean, as described
by Liao et al [486] in a NASA CMS-supported
study. The Liao et al [486] simulations expanded
on prior observational studies that have identified
negative anomalies in eastern Pacific surface pCO2

during El Niño events as well as other seasonal
and interannual variations and regional patterns
[e.g. 479, 487–489]. More recently,Watson et al [490]
provided a revised estimate of observation-basedCO2

atmosphere-ocean fluxes, accounting for temperat-
ure gradients between the surface and sampling at
a few meters’ depth, or for the effect of the cool
ocean surface skin. Their estimate resulted in an
upward revision of the net flux into the oceans of
0.8–0.9 PgC yr−1, with a best estimate for the period
1994–2007 of −2.5 ± 0.4 PgC yr−1 (where negative
values denote net uptake into the ocean) that is con-
sistent with ocean interior inventory increases [491].
This estimate is considerably less than that of Wang
et al [492], who applied an atmospheric inversion
approach toGOSAT and in situ observations of atmo-
spheric CO2 and derived estimates for ocean fluxes of
−3.1± 0.5 PgC yr−1. Considerable progress has been
made in the assessment of oceanic CO2 flux, with dif-
ferent approaches converging.

3.4.1. Sedimentation/benthic-pelagic coupling
Satellite observations have also been used to observe
coupling between surface and benthic biogeochem-
ical processes with implications for carbon transport
from the surface to the deep ocean. Waga et al [493]
found evidence of linkages between surface phyto-
plankton size structure, derived with ocean color
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proxies, and deep ocean benthic macrofaunal distri-
butions. Corliss et al [494] reported lower benthic
foraminiferal diversity in North Atlantic latitudes
coinciding with high seasonality in primary produc-
tion as inferred from SeaWiFS satellite imagery. Sur-
face patterns of SeaWiFS-derived chlorophyll-a were
also found to be related to regional differences inmac-
robenthic community structure in the deep Gulf of
Mexico [495]. Satellite observations have also been
used to assess transport to offshore waters of unat-
tached benthic algae and found to be associated with
a substantial carbon footprint [496]. These stud-
ies highlight the apparent coupling between surface
ocean carbon dynamics, as observed by remote sens-
ing, and deep ocean biogeochemistry.

3.4.2. Ocean chlorophyll and primary production
Oceanic NPP, estimated as diurnal photosynthesis
minus diel respiration, is responsible for almost half
of global NPP (∼50 PgC yr−1) and is the primary
source of energy for marine food webs [497]. NPP
draws down CO2 levels in the surface ocean, thus
shifting net fluxes from the atmosphere to the ocean
and thereby exerting an important control on global
climate [498]. The export of fixed carbon from the
surface ocean by sinking particles to the deep through
the ‘biological pump’ stores carbon on time scales
ranging from seasons to centuries and is a critical
estimate of how oceans regulate our planet’s climate
[499–501]. Thus, accurate and well-characterized
regional, basin, and global scale NPP products are
essential for understanding how ocean biology influ-
ences ocean carbon dynamics.

NPP estimates derived from satellite data, have
the advantage of providing unprecedented spatial and
temporal coverage. However, despite considerable
progress over the past two decades, remotely sensed
NPP estimates continue to suffer from large uncer-
tainties [502–505]. At present, satellite-based global
annual NPP estimates range from 32 to 79 PgC yr−1

[502], and annual carbon export fluxes range from 5
to >12 PgC yr−1 [506, 507]. The uncertainties asso-
ciated with these measurements are clearly as large
as the annual anthropogenic CO2 emission rates of
between∼7 and 11 PgC yr−1 [508].Necessitating that
we continue improving remote sensing methods to
estimate NPP.

Satellite-based NPP models span a wide range of
complexity from empirical [509] to semi-analytical
models [510, 511], but can be generally categorized
into one of three modeling strategies [512]. Two of
these, are the biology-based models, of which one
uses phytoplankton biomass (chlorophyll-a) derived
from remote sensing reflectance (Rrs) [502, 513–
519], while the other, the carbon based Productiv-
ity Model, uses phytoplankton carbon stock (Cphyto)
retrieved from backscattering coefficients at 443 nm
(bbp(443)). The latter is also derived from Rrs. The
term ocean color is described with the spectrum of

Rrs(λ) and defined as the ratio of water-leaving radi-
ance to downwelling irradiance just above the sur-
face. A major problem in using chlorophyll-a as a
critical input parameter is the disparate and often
opposing responses of cellular chlorophyll-a content
to nutrient availability, light limitations, and temper-
ature conditions that can confound any simple rela-
tionship between NPP and chlorophyll-a. To allevi-
ate this, Behrenfeld et al [520] used the ‘carbon-based
approach’ and replaced chlorophyll-a with Cphyto.
However, this method includes a new uncertainty due
to scattering by non-phytoplankton particles includ-
ing bubbles [521–523].

The third category is the absorption-based mod-
els (AbPMs), which rely on the absorption coefficient
of phytoplankton (aph) an inherent optical prop-
erty, derived directly from Rrs. The recent model,
Carbon Absorption Fluorescence Euphotic resolv-
ing [505], belongs to this category. AbPM’s derive
NPP as the product of aph, photosynthetically act-
ive radiation (PAR) [524] and the efficiency (ϕ)
with which absorbed energy is converted into car-
bon biomass [525–533]. Currently, broad use of
AbPM models has been hampered by the lack of
adequate in situ ϕmeasurements, forcing reliance on
estimates that ignore large, temporal (diurnal, sea-
sonal) and spatial (regional and vertical) variability
[526, 529, 534–536]. One approach to circumvent-
ing this problem is via modeling ϕ as a function of
PAR and temperature [533, 537].While this approach
will continue to be useful for application to ocean
color from polar orbiting satellites, full realization of
AbPM for use with the new generation of geostation-
ary ocean color satellites such as GOCI-1, GOC1-2
and NASA GLIMR will rely on our ability to meas-
ure diurnal variability in ϕ. In conclusion, while it
is clear AbPM models will help reduce uncertainty
in deriving NPP from satellite data, their usefulness
for obtaining NPP will require community efforts to
accurately derive aph, diurnal PAR, and ϕ.

Satellite observations have improved global
estimates of organic carbon export from the surface
ocean. DeVries and Weber [538] combined satel-
lite and ship-based observations in an assimilative
global carbon cycle model to estimate a global POC
flux out of the euphotic zone of ∼9 PgC yr−1. Their
study showed that carbon export ratios (ratios of
NPP to carbon export) were highest in higher latit-
udes, even though export from lower latitudes was
higher than previously estimated. Satellite-derived
NPP and particle size as variables in a foodwebmodel
enabled estimation of a climatological mean global
carbon export from the euphotic zone of∼6 PgC yr−1

[508]. Regional and basin-scale estimates of carbon
export with satellite-derived NPP and empirical rela-
tionships are prevalent [495, 539–541]. The NASA
Exports program [542] focused on developing new
approaches to characterize global carbon export using
satellite observations of ocean surface properties,
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Table 8. Existing carbon monitoring indicators for oceans and continental shelves. Method refers to broad categories, modeled,
extrapolation (in situ combined with extent to upscale estimates), data synthesis, and remote sensing (mapping or predicting spatial
heterogeneity for an indicator).

Carbon indicator System Value Units Method Source

Carbon stocks Ocean
POC (upper mixed
layer)

0.77–1.9 PgC Remote Sensing [547, 548]

Total Organic C 700 PgC Extrapolation [9]
DIC 38 000 PgC Extrapolation [9]
PIC (euphotic zone) 0.63–0.7 PgC Remote Sensing [545]
Surface Sediments 1750 PgC Extrapolation [9]
Carbonate Rock 60× 106 PgC Extrapolation [550]
Shelf
Surface Sediments 10–45 PgC Extrapolation [9]

Carbon export
from upper mixed
layer

Ocean
Organic Carbon 5–>12 PgC yr−1 Extrapolation and

Remote Sensing
[506–
508, 551, 552]

PIC 0.59 PgC yr−1 Model [553]
Shelf
Organic Carbon 0.2–0.7 PgC yr−1 Extrapolation and

Remote Sensing
[554, 555]

Carbon Burial Ocean 0.012± 0.02 PgC yr−1 Extrapolation [551]
Shelf 0.29± 0.15 PgC yr−1 Extrapolation [551]

CO2 flux
(negative values
correspond to net
ocean uptake)

Ocean −2.5± 0.4 PgC yr−1 Remote Sensing
and Extrapolation

[490]

−3.1± 0.5 PgC yr−1 Remote Sensing
(inversion)

[492]

−1.6–2.8 PgC yr−1 Various [9]
Shelf −0.1–0.2 PgC yr−1 Extrapolation and

Model
[556, 557]

Primary
Production

Ocean 32–79 PgC yr−1 Remote Sensing
(in situ
extrapolation)

[502]

Shelf 9–11 PgC yr−1 Remote Sensing;
Extrapolation

[554, 555, 558]

Calcification Ocean 1.1–1.6 PgC yr−1 Remote Sensing;
Model

[545, 553, 559]

specifically considering different mechanisms. These
include settling of particulate carbon in the form
of intact phytoplankton, aggregates, and zooplank-
ton byproducts; net vertical transport of suspen-
ded particulate and DOC by physical and microbial
processes; and vertical transport of organic carbon
associated with migration of zooplankton and their
predators.

3.4.3. Satellite assessments of ocean carbon stocks
Remotely sensed observations have also been used to
derive stocks of different forms of carbon in ocean
waters (table 8). Estimations of basin scale DOC
have been explored on the basis of relationships to
satellite-observable optical properties, specifically
CDOM absorption [e.g. 543]. The method requires
a priori knowledge of the relationship between DOC
and CDOM, the latter comprising only a small por-
tion of the total DOC pool. Various approaches have
also been developed to estimate global satellite-based
estimates of total surface POC [e.g. 522, 544] and
PIC [560, 545, 546]. Estimates of mixed-layer integ-
rated global POC range between 0.77 and 1.3 PgC of

carbon [547]. Cloud-Aerosol LIdar with Orthogonal
Polarization (CALIOP), a space-based lidar system,
was used to derive global average mixed-layer stand-
ing stocks of phytoplankton carbon (Cphyto) and total
POC, with estimated values of 0.44 PgC forCphyto and
1.9 PgC for POC [548]. Balch et al [549] extended the
PIC surface algorithms by developing approaches
for estimation of PIC concentrations integrated over
both the upper 100 m and the euphotic zone depths,
based on relationships between ship-based PIC
concentrations.

3.4.4. Coastal and continental shelf seas
Coastal and continental shelf seas make up 7%–
11% of the total area of the ocean, yet have a sig-
nificant impact on the global carbon cycle relative
to their size [561]. Shelf seas are estimated to con-
tribute almost a third of the total marine primary
production, up to 50% of the inorganic carbon
burial, and up to 80% of the organic carbon burial
[550, 551, 554, 555, 558, 562], and therefore sig-
nificantly contribute to oceanic-atmosphere carbon
exchange [556, 563]. Each coastal region is different,
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and carbon monitoring tends to focus on each one
individually, but there are a number of robust syn-
thesis and review papers on coastal carbon cycling
[e.g. 561, 562, 564] and we refer the reader to those
for recent coastal carbon budgets. Here, we review
the status of carbon monitoring in these regions
(n= 30).

3.4.4.1. Carbon monitoring status
The carbon cycle in coastal shelf seas is very sim-
ilar to that of the open oceans. Thus, carbon mon-
itoring methods in shelf seas tend to overlap with
oceanic approaches. However, the coastal shelf has
unique data needs i.e. spatial resolution to dis-
cern coastal features, spectral influence of depth
and terrestrial hydrology. Thus, oceanic remote sens-
ing methods require alteration for use in coastal
shelf regions. NPP monitoring has used methods
derived for ocean systems both directly and with
slight modifications [504, 554], but the perform-
ance of these methods is lowest in coastal shelf
seas [504]. One region of particular focus is the
Arctic Ocean and its surrounding shelf seas, where
many regional algorithms exist [e.g. 514, 565, 566].
Lee et al [512] provide an assessment of 32 Arctic
NPP satellite models, finding the models perform-
ing relatively well in low-productivity seasons and
deep-water regions. However, the algorithms ten-
ded to overestimate NPP, but yielded underestim-
ates when a subsurface chlorophyll-a maximum was
present.

Given that the shelf sea represents the continuum
between terrestrial and ocean ecosystems, there are
additional factors to be considered compared to car-
bon monitoring in ocean systems. NASA CMS stud-
ies have focused on improved observation and mod-
eling of lateral transport of terrestrial carbon into
the watershed and ultimately to the coasts [567–
574]. Other studies have focused on the estimation
of DOC and CDOM [188, 575–578]. As described
in section 3.3.1, CDOM only makes up a fraction of
the total DOC pool, but in coastal systems dominated
by terrestrial discharge, CDOM and DOC co-vary.
The exact form of the relationship between CDOM
andDOC varies both temporally and spatially, driven
by terrestrial source characteristics and biogeochem-
ical processes, thus the need for regional approaches.
However, Vantrepotte et al [579] demonstrated
the potential of a generalized approach in deriv-
ing DOC from CDOM in very contrasting coastal
environments.

The CMS program has supported carbon mon-
itoring in the northern Gulf of Mexico and the
region influenced by the Mississippi River. This
included efforts to map pCO2 and estimate fluxes
[580–584], model simulations using a coupled
physical-biogeochemical model [585] and satellite-
derived estimation of pCO2 and air-sea flux of
CO2 [424]. Studies have also examined patterns in

phytoplankton community composition and poten-
tial relationships to carbon dynamics [586, 587].
Other CMS program efforts examined carbon prop-
erties in both the Gulf of Mexico and the Atlantic
coast [564, 588], and other studies have focused on
sedimentation and flux of various carbon forms to
the seafloor [554, 589–592].

There remains considerable uncertainty in the
estimate of global coastal ocean uptake of CO2. Some
of this is related to differences in the extent to
which estuarine and inland waters are included in
the inventory. However, estimates based on in situ
extrapolations as well as global models have gen-
erally converged around −0.1 to −0.3 PgC yr−1

[556, 557, 593].

4. Stakeholders

Although there are different approaches for mon-
itoring WC systems, the full potential of satellite
WC products requires and thrives with stakeholder
involvement to utilize and disseminate the resulting
maps and perpetuate monitoring. WC stakehold-
ers are diverse across systems, scales, and studies. In
general, stakeholders for carbon monitoring and cli-
mate action are cities, international organizations,
non-government organizations (NGOs), and other
governing bodies. Several international agreements
include carbon monitoring such as The UN Sustain-
able Development Goals, which encourages national
monitoring. The IPCC outlines carbon monit-
oring methods and the Paris Agreements NDCs,
which outline carbon monitoring and mitigation
activities.

The inclusion of WC systems within these agree-
ments varies. In 1997, the Kyoto protocol had no
mention of wetlands [594], in 2006, the first IPCC
guidelines included only peatlands and flooded lands
[20], and in 2013, a supplement added recommend-
ations for monitoring additional WC systems [595].
Oceans were conspicuously absent [596] but have
subsequently been addressed in a special report [597]
due in part to their importance for achieving climate
goals [4]. The IPCC methods are focused on anthro-
pogenic emissions and recommend isolating these by
identifying a change in managed lands [20]. Defin-
ing managed lands is straightforward in forestry and
agriculture; however, the term is ambiguous in WC
systems. Therefore, national monitoring programs
have addressed this ambiguity by considering all wet-
landsmanaged [173]. Codifying this approach within
an update to the IPCC protocols would ensure a uni-
form application of WC monitoring. Many coun-
tries cite the IPCC guidelines in their NDCs and seek
to report and mitigate land-use, land-use change,
and forestry emissions; however, only a few directly
stated their intention to track wetland restoration
[598]. Enhanced stakeholder capacity will improve
the MRV of carbon stocks and fluxes for NDCs, and

21



Environ. Res. Lett. 17 (2022) 025009 A D Campbell et al

carbon markets [599]. The gaps in WC monitor-
ing within international agreements and resulting
national monitoring leave a critical role for NGOs,
universities, and subnational governing bodies
to fill.

The transition from remote sensing methodo-
logy, often prototyped over a subnational region,
to globally consistent time-series is difficult and
requires stakeholder involvement. For example, the
Global Mangrove Watch, a scientific data initiat-
ive has mapped mangrove change, provided carbon
monitoring data, and disseminated data [35]. Carbon
monitoring can inform management of protected
areas, as an example, with no intervention, the Great
Dismal Swamp would have emitted 6.5 million tons
of CO2 through 2062 (Net Present Value (NPV): $232
million) but due to informed management practices,
it is expected to offset 9.9 million tons of CO2 emis-
sions (NPV: $326 million) [600]. Similarly, peatland
restoration approaches, project size, and stakeholder
involvement have advanced over the last 25 years
[601]. Local, regional, and international stakehold-
ers are critical for taking the science from space to
policy.

5. Recommendations

Upon review of the status of WC monitoring, clear
gaps exist. Several systems lack fundamental remote
sensing baselines, such as, location, extent, and
change. Complete global extent maps are a prior-
ity for seagrass, tidal marsh, and mineral wetlands.
Similarly, peatlands could benefit from an improved
extent map, e.g. peatlands in Africa [304]. There are
additional systems that were not a focus of this review
due to limited remote sensing-based carbon monit-
oring research that would benefit from global map-
ping forested wetlands, freshwater tidal marshes, and
riparian wetlands. Also, thematic classifications that
focus on differences in carbon storage, e.g. separ-
ating mineral wetlands and peatlands or species of
mangroves. Existing wetland inventories can have
high classification errors, and omission bias for wet-
lands that are difficult to detect, e.g. forested wetlands
obscured by tree canopy. Another major challenge in
understanding carbon stocks and fluxes is the lim-
ited availability of data on the factors contributing
to the variability of carbon stocks and fluxes, such
as the hydroperiod, hydrologic connectivity, plant
and microbial communities, soil properties, chem-
ical characteristics, and disturbance. This data would
improve the ability to quantify change uncertainty
and outcomes as they relate to carbon stocks and
flows. Remote sensing research can fill these gaps by
providing improved up to date wetland inventor-
ies [602], reconstruction of both seasonal and long-
term changes in wetland hydroperiod [248, 552],
monitoring disturbance [130, 603], and improving

subsurface measurements [230]. Terrestrial and
coastal carbon budgets can be enhanced by determin-
ing the type of disturbance [40] and quantifying the
carbon impacts of varied change processes includ-
ing degradation, loss, and restoration [604]. Poulter
et al [378] proposed reducing global-scale wetland
carbon uncertainty with additional field collection,
continuous flux measurements, new satellite data
sources, improved modeling of biogeochemical pro-
cesses, and harnessing high-performance computing.
While initially proposed for wetlands, these meth-
ods for reducing uncertainty are helpful for all WC
monitoring.

Carbon fluxes are an area of research across WC
systems. The flows and interactions between sys-
tems are still understudied, e.g. ocean carbon fluxes
and linkages across the terrestrial-shelf-ocean con-
tinuum as a constraint on terrestrial carbon fluxes.
Remote sensing has the potential to reduce carbon
stock and flux uncertainty by optimizing and fus-
ing techniques that take advantage of the spatial,
e.g. morphology, spectral, e.g. species, and temporal,
e.g. phenology and change, remote sensing resolu-
tion domains, including the limitations and tradeoffs
of applying these techniques. The next generation of
carbon monitoring will capture the complex link-
ages between WC systems, e.g. the linked perma-
frost and boreal lake carbon cycle [414–416]. As we
address these challenges and opportunities, our abil-
ity to understandWC storage and fluxes will improve,
and in turn, our understanding of how these eco-
systems function, allowing for sustainable manage-
ment and conservation. Our suggestions and recom-
mendations to accelerate the development of WC
monitoring fall into four categories remote sens-
ing, in situ, terrestrial and blue carbon and aquatic
recommendations (table 9).

As noted by Shutler et al [611] satellite obser-
vations, international collaboration, and methodo-
logical advancement have resulted in accurate and
robust oceanic carbon monitoring. Following a
similar roadmap robust carbon monitoring can be
achieved in all WC systems. The global-scale WC
monitoring relies on remote sensing often as ancil-
lary data. Our remote sensing WC agenda priorit-
izes the integration of remote sensing within WC
monitoring at local to global scales identifying the
importance of change locations and types. To sum-
marize, major priorities are: (a) mapping or improv-
ing existing baselines will benefit all systems and
the ability to understand their interconnections (b)
determining linkages between systems and how cli-
mate change will alter these, (c) leveraging local
remote sensing and in situ measurements to facil-
itate global analysis, and (d) continued and expanded
global-scale remote sensing-based MRV to enable,
subnational, national, and international carbon
budgets.
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Table 9. Recommendations for future wet carbon monitoring with remote sensing.

Type Recommendation Potential outcome

Remote Sensing Continued evaluation of new sensors
and technology for WC monitoring.

Increased temporal, spatial, and
thematic coverage. Reduced
uncertainty.

Remote Sensing The perpetuation of long running earth
observation missions to ensure a
continuous observation of global
carbon processes.

Improved monitoring reporting and
verification

Remote Sensing Access to long-term archives to resolve
trends, regional patterns, and their
underlying mechanisms

Elucidate climate effects on carbon cycle

Remote Sensing Data consistency to support
development of remote sensing
algorithms and model data assimilation.

Improved accuracy and applicability of
methodologies

Remote Sensing The use of spatial-temporal data to
determine fine-phase temporal effects
(e.g. extreme events, river plumes,
drought) and how these affect WC
systems.

Improved carbon budgets and
understanding of carbon cycle
interactions

Remote Sensing Increased spatial and temporal coverage
of lidar [548, 605].

Expanded understanding of vegetation
and landscape structure and change

Remote Sensing Coordination of carbon monitoring
across boundaries including
terrestrial-aquatic boundary,
fresh-saline gradient, and peat-mineral
wetlands.

Determination of WC linkages

In situ Open access to in situ data. Reducing barriers to carbon monitoring
research and expanded impact of in situ
data

In situ Methods for scaling the limited in situ
data for use in prediction and modeling
of carbon products from satellite data.

Reduced uncertainty and spatial biases
in carbon monitoring

In situ Greater geographic distribution of in
situ samples collection.

Global data products with reduced
uncertainty and spatial biases in carbon
monitoring e.g. pCO2 across ocean
basins [606]

Terrestrial and Blue carbon Spatial variability of belowground
carbon [34, 607]

Improved spatial estimates of carbon
stock and change impacts

Terrestrial and Blue carbon Impact of disturbance and recovery
[8, 115, 607–609]

Determine carbon stock stability and
major change drivers

Terrestrial and Blue carbon Concurrent loss, gain [49], and
restoration monitoring [610]

Improved change maps and extents

Aquatic Development and refinement of ocean
color remote sensing methods in
optically complex coastal shelf sea and
nearshore environments

Improved carbon budgets and
understanding of carbon cycle
interactions in coastal margins

6. Conclusions

Carbon monitoring depends heavily on in situ
measurements (e.g. shipboard water and spectral
sampling, soil cores, allometric equations, and bio-
mass collection). These data are limited in WC sys-
tems due to inaccessibility and cost. Global carbon
monitoring often uses mass balance equations and
modeling with limited need for measurements of
individual systems. Local estimates rely on in situ
samples to estimate site-level carbon budgets. The
gap between these scales will increasingly rely on

earth observation. System-specific estimates are often
extrapolated from limited in situ data, but remote
sensing can capture spatial variability, quantify
uncertainty, and improve carbon estimates. Remote
sensing is critical for national carbon monitoring
programs that fulfill IPCC level 3 data requirements.
Therefore, NDCs supplement the existing need for
remote sensing monitoring of WC systems. All these
recommendations culminate in a primary goal for
all WC systems, quantifying their contribution to
global and national carbon budgets with associated
uncertainties.
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Kauffman J B and Marbà N 2012 Estimating global “blue
carbon” emissions from conversion and degradation of
vegetated coastal ecosystems PLoS One 7 e43542

[20] Eggleston H S, Buendia L, Miwa K, Ngara T and Tanabe K
2006 2006 IPCC Guidelines for National Greenhouse Gas
Inventories

[21] Sanderman J, Hengl T, Fiske G, Solvik K, Adame M F,
Benson L, Bukoski J J, Carnell P, Cifuentes-Jara M and
Donato D 2018 A global map of mangrove forest soil
carbon at 30 m spatial resolution Environ. Res. Lett.
13 055002

[22] Nellemann C, Corcoran E, Duarte C M, Valdes L,
DeYoung C, Fonseca L and Grimsditch G 2009 Blue
Carbon: The Role of Healthy Oceans in Binding Carbon
Center for Coastal and Ocean Mapping

[23] Page S E, Siegert F, Rieley J O, Boehm H, Jaya A and
Limin S 2002 The amount of carbon released from peat
and forest fires in Indonesia during 1997 Nature 420 61–65

[24] Mcleod E, Chmura G L, Bouillon S, Salm R, Björk M,
Duarte C M, Lovelock C E, Schlesinger W H and
Silliman B R 2011 A blueprint for blue carbon: toward an
improved understanding of the role of vegetated coastal
habitats in sequestering CO2 Front. Ecol. Environ. 9 552–60

[25] Duarte C M, Dennison W C, Orth R J and Carruthers T J
2008 The charisma of coastal ecosystems: addressing the
imbalance Estuar. Coasts 31 233–8

24

https://orcid.org/0000-0001-8379-9513
https://orcid.org/0000-0001-8379-9513
https://orcid.org/0000-0001-8379-9513
https://orcid.org/0000-0002-1130-6748
https://orcid.org/0000-0002-1130-6748
https://orcid.org/0000-0002-1130-6748
https://orcid.org/0000-0003-2546-6766
https://orcid.org/0000-0003-2546-6766
https://orcid.org/0000-0003-2546-6766
https://orcid.org/0000-0001-9932-3050
https://orcid.org/0000-0001-9932-3050
https://orcid.org/0000-0001-9932-3050
https://orcid.org/0000-0001-9962-2472
https://orcid.org/0000-0001-9962-2472
https://orcid.org/0000-0002-9442-4562
https://orcid.org/0000-0002-9442-4562
https://orcid.org/0000-0002-9442-4562
https://orcid.org/0000-0002-6788-1055
https://orcid.org/0000-0002-6788-1055
https://orcid.org/0000-0002-6788-1055
https://orcid.org/0000-0003-4711-7751
https://orcid.org/0000-0003-4711-7751
https://orcid.org/0000-0003-4711-7751
https://doi.org/10.1038/ncomms14856
https://doi.org/10.1038/ncomms14856
https://doi.org/10.1088/1748-9326/6/1/014002
https://doi.org/10.1088/1748-9326/6/1/014002
https://doi.org/10.1088/1748-9326/8/3/034038
https://doi.org/10.1088/1748-9326/8/3/034038
https://doi.org/10.1126/science.aaz4390
https://doi.org/10.1126/science.aaz4390
https://doi.org/10.3390/w11030609
https://doi.org/10.3390/w11030609
https://doi.org/10.1007/s13157-018-1023-8
https://doi.org/10.1007/s13157-018-1023-8
https://doi.org/10.1007/s13157-018-1016-7
https://doi.org/10.1007/s13157-018-1016-7
https://doi.org/10.1088/1748-9326/ab82cf
https://doi.org/10.1088/1748-9326/ab82cf
https://doi.org/10.5194/essd-12-3269-2020
https://doi.org/10.5194/essd-12-3269-2020
https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2
https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1071/MF17377
https://doi.org/10.1071/MF17377
https://doi.org/10.5194/essd-11-189-2019
https://doi.org/10.5194/essd-11-189-2019
https://doi.org/10.1038/ngeo1830
https://doi.org/10.1038/ngeo1830
https://doi.org/10.1186/s13021-017-0089-6
https://doi.org/10.1186/s13021-017-0089-6
https://doi.org/10.1371/journal.pone.0043542
https://doi.org/10.1371/journal.pone.0043542
https://doi.org/10.1088/1748-9326/aabe1c
https://doi.org/10.1088/1748-9326/aabe1c
https://doi.org/10.1038/nature01131
https://doi.org/10.1038/nature01131
https://doi.org/10.1890/110004
https://doi.org/10.1890/110004
https://doi.org/10.1007/s12237-008-9038-7
https://doi.org/10.1007/s12237-008-9038-7


Environ. Res. Lett. 17 (2022) 025009 A D Campbell et al

[26] Aria M and Cuccurullo C 2017 Bibliometrix: an R-tool for
comprehensive science mapping analysis J. Informetr.
11 959–75

[27] Cobo M J, López-Herrera A G, Herrera-Viedma E and
Herrera F 2011 An approach for detecting, quantifying,
and visualizing the evolution of a research field: a practical
application to the fuzzy sets theory field J. Informetr.
5 146–66

[28] Perillo G, Wolanski E, Cahoon D R and Hopkinson C S
2018 Coastal Wetlands: An Integrated Ecosystem Approach
(Amsterdam: Elsevier)

[29] Davidson N C 2014 How much wetland has the world lost?
Long-term and recent trends in global wetland areaMar.
Freshw. Res. 65 934–41

[30] Rovai A S, Coelho-Jr C, de Almeida R, Cunha-Lignon M,
Menghini R P, Twilley R R, Cintrón-Molero G and
Schaeffer-Novelli Y 2021 Ecosystem-level carbon stocks
and sequestration rates in mangroves in the
Cananéia-Iguape lagoon estuarine system, southeastern
Brazil For. Ecol. Manage. 479 118553

[31] Donato D C, Kauffman J B, Murdiyarso D, Kurnianto S,
Stidham M and Kanninen M 2011 Mangroves among the
most carbon-rich forests in the tropics Nat. Geosci. 4 293–7

[32] Jardine S L and Siikamäki J V 2014 A global predictive
model of carbon in mangrove soils Environ. Res. Lett.
9 104013

[33] Keenan R J, Reams G A, Achard F, de Freitas J V, Grainger A
and Lindquist E 2015 Dynamics of global forest area:
results from the FAO global forest resources assessment
2015 For. Ecol. Manage. 352 9–20

[34] Atwood T B et al 2017 Global patterns in mangrove soil
carbon stocks and losses Nat. Clim. Change 7 523–8

[35] Bunting P, Rosenqvist A, Lucas R M, Rebelo L, Hilarides L,
Thomas N, Hardy A, Itoh T, Shimada M and Finlayson CM
2018 The global mangrove watch—a new 2010 global
baseline of mangrove extent Remote Sens. 10 1669

[36] Simard M, Fatoyinbo L, Smetanka C, Rivera-Monroy V H,
Castañeda-Moya E, Thomas N and Van der Stocken T 2019
Mangrove canopy height globally related to precipitation,
temperature and cyclone frequency Nat. Geosci. 12 40–45

[37] Worthington T A, Andradi-Brown D A, Bhargava R,
Buelow C, Bunting P, Duncan C, Fatoyinbo L, Friess D A,
Goldberg L and Hilarides L 2020 Harnessing big data to
support the conservation and rehabilitation of mangrove
forests globally One Earth 2 429–43

[38] Richards D R and Friess D A 2016 Rates and drivers of
mangrove deforestation in Southeast Asia, 2000–2012 Proc.
Natl Acad. Sci. 113 344–9

[39] Thomas N, Lucas R, Bunting P, Hardy A, Rosenqvist A and
Simard M 2017 Distribution and drivers of global
mangrove forest change, 1996–2010 PLoS One 12 e0179302

[40] Goldberg L, Lagomasino D, Thomas N and Fatoyinbo T
2020 Global declines in human-driven mangrove loss Glob.
Change Biol. 26 5844–55

[41] Twilley R R, Chen R H and Hargis T 1992 Carbon sinks in
mangroves and their implications to carbon budget of
tropical coastal ecosystemsWater Air Soil Pollut. 64 265–88

[42] Chmura G L, Anisfeld S C, Cahoon D R and Lynch J C
2003 Global carbon sequestration in tidal, saline wetland
soils Glob. Biogeochem. Cycles 17 4

[43] Alongi D M 2002 Present state and future of the world’s
mangrove forests Environ. Conserv. 29 331–49

[44] Alongi D M 2014 Carbon cycling and storage in mangrove
forests Annu. Rev. Mar. Sci. 6 195–219

[45] Bouillon S, Borges A V, Castañeda-Moya E, Diele K,
Dittmar T, Duke N C, Kristensen E, Lee S Y, Marchand C
and Middelburg J J 2008 Mangrove production and carbon
sinks: a revision of global budget estimates Glob.
Biogeochem. Cycles 22 1–12

[46] Giri C, Ochieng E, Tieszen L L, Zhu Z, Singh A, Loveland T,
Masek J and Duke N 2011 Status and distribution of
mangrove forests of the world using earth observation
satellite data Glob. Ecol. Biogeogr. 20 154–9

[47] Hamilton S E and Casey D 2016 Creation of a high
spatio-temporal resolution global database of continuous
mangrove forest cover for the 21st century (CGMFC-21)
Glob. Ecol. Biogeogr. 25 729–38

[48] Hamilton S E and Friess D A 2018 Global carbon stocks
and potential emissions due to mangrove deforestation
from 2000 to 2012 Nat. Clim. Change 8 240–4

[49] Lagomasino D, Fatoyinbo T, Lee S, Feliciano E, Trettin C,
Shapiro A and Mangora MM 2019 Measuring mangrove
carbon loss and gain in deltas Environ. Res. Lett.
14 025002

[50] Zhu Y, Liu K, Liu L, Myint S W, Wang S, Cao J and Wu Z
2020 Estimating and mapping mangrove biomass dynamic
change using worldview-2 images and digital surface
models IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
13 2123–34

[51] Zhu Y, Liu K, Myint S W, Du Z, Li Y, Cao J, Liu L and Wu Z
2020 Integration of GF2 optical, GF3 SAR, and UAV data
for estimating aboveground biomass of China’s largest
artificially planted Mangroves Remote Sens. 12 2039

[52] Salum R B, Souza-Filho P, Simard M, Silva C A,
Fernandes M E B, Cougo M F, Do Nascimento Junior W
and Rogers K 2020 Improving mangrove above-ground
biomass estimates using LiDAR Estuar. Coast. Shelf Sci.
236 106585

[53] Ghosh S M, Behera M D and Paramanik S 2020 Canopy
height estimation using sentinel series images through
machine learning models in a Mangrove forest Remote
Sens. 12 1519

[54] Anand A, Pandey P C, Petropoulos G P, Pavlides A,
Srivastava P K, Sharma J K and Malhi R K M 2020 Use of
hyperion for Mangrove forest carbon stock assessment in
bhitarkanika forest reserve: a contribution towards blue
carbon initiative Remote Sens. 12 597

[55] Shrestha S, Miranda I, Kumar A, Pardo M L E, Dahal S,
Rashid T, Remillard C and Mishra D R 2019 Identifying
and forecasting potential biophysical risk areas within a
tropical mangrove ecosystem using multi-sensor data Int. J.
Appl. Earth Obs. Geoinf. 74 281–94

[56] Simard M, Zhang K, Rivera-Monroy V H, Ross M S,
Ruiz P L, Castañeda-Moya E, Twilley R R and Rodriguez E
2006 Mapping height and biomass of mangrove forests in
Everglades National park with SRTM elevation data
Photogramm. Eng. Remote Sens. 72 299–311

[57] Elmahdy S I, Ali T A, Mohamed MM, Howari F M,
Abouleish M and Simonet D 2020 Spatiotemporal
mapping and monitoring of Mangrove forests changes
from 1990 to 2019 in the Northern Emirates, UAE using
random forest, Kernel logistic regression and Naive Bayes
tree models Front. Environ. Sci. 8 102

[58] Nwobi C, Williams M and Mitchard E T 2020 Rapid
Mangrove forest loss and Nipa Palm (Nypa fruticans)
expansion in the Niger Delta, 2007–2017 Remote Sens.
12 2344

[59] Suyadi J G, Lundquist C J and Schwendenmann L 2020
Aboveground carbon stocks in rapidly expanding
Mangroves in New Zealand: regional assessment and
economic valuation of blue carbon Estuar. Coasts
43 1456–69

[60] Lucas R, De Kerchove R V, Otero V, Lagomasino D,
Fatoyinbo L, Omar H, Satyanarayana B and
Dandouh-Guebas F 2020 Structural characterisation of
mangrove forests achieved through combining multiple
sources of remote sensing data Remote Sens. Environ.
237 111543

[61] Jones A R, Raja Segaran R, Clarke K D, Waycott M,
Goh W S and Gillanders B M 2020 Estimating Mangrove
tree biomass and carbon content: a comparison of forest
inventory techniques and drone imagery Front. Mar. Sci.
6 784

[62] Fatoyinbo T E and Simard M 2013 Height and biomass of
mangroves in Africa from ICESat/GLAS and SRTM Int. J.
Remote Sens. 34 668–81

25

https://doi.org/10.1016/j.joi.2017.08.007
https://doi.org/10.1016/j.joi.2017.08.007
https://doi.org/10.1016/j.joi.2010.10.002
https://doi.org/10.1016/j.joi.2010.10.002
https://doi.org/10.1071/MF14173
https://doi.org/10.1071/MF14173
https://doi.org/10.1016/j.foreco.2020.118553
https://doi.org/10.1016/j.foreco.2020.118553
https://doi.org/10.1038/ngeo1123
https://doi.org/10.1038/ngeo1123
https://doi.org/10.1088/1748-9326/9/10/104013
https://doi.org/10.1088/1748-9326/9/10/104013
https://doi.org/10.1016/j.foreco.2015.06.014
https://doi.org/10.1016/j.foreco.2015.06.014
https://doi.org/10.1038/nclimate3326
https://doi.org/10.1038/nclimate3326
https://doi.org/10.3390/rs10101669
https://doi.org/10.3390/rs10101669
https://doi.org/10.1038/s41561-018-0279-1
https://doi.org/10.1038/s41561-018-0279-1
https://doi.org/10.1016/j.oneear.2020.04.018
https://doi.org/10.1016/j.oneear.2020.04.018
https://doi.org/10.1073/pnas.1510272113
https://doi.org/10.1073/pnas.1510272113
https://doi.org/10.1371/journal.pone.0179302
https://doi.org/10.1371/journal.pone.0179302
https://doi.org/10.1111/gcb.15275
https://doi.org/10.1111/gcb.15275
https://doi.org/10.1007/BF00477106
https://doi.org/10.1007/BF00477106
https://doi.org/10.1029/2002GB001917
https://doi.org/10.1029/2002GB001917
https://doi.org/10.1017/S0376892902000231
https://doi.org/10.1017/S0376892902000231
https://doi.org/10.1146/annurev-marine-010213-135020
https://doi.org/10.1146/annurev-marine-010213-135020
https://doi.org/10.1029/2007GB003052
https://doi.org/10.1029/2007GB003052
https://doi.org/10.1111/j.1466-8238.2010.00584.x
https://doi.org/10.1111/j.1466-8238.2010.00584.x
https://doi.org/10.1111/geb.12449
https://doi.org/10.1111/geb.12449
https://doi.org/10.1038/s41558-018-0090-4
https://doi.org/10.1038/s41558-018-0090-4
https://doi.org/10.1088/1748-9326/aaf0de
https://doi.org/10.1088/1748-9326/aaf0de
https://doi.org/10.1109/JSTARS.2020.2989500
https://doi.org/10.1109/JSTARS.2020.2989500
https://doi.org/10.3390/rs12122039
https://doi.org/10.3390/rs12122039
https://doi.org/10.1016/j.ecss.2020.106585
https://doi.org/10.1016/j.ecss.2020.106585
https://doi.org/10.3390/rs12091519
https://doi.org/10.3390/rs12091519
https://doi.org/10.3390/rs12040597
https://doi.org/10.3390/rs12040597
https://doi.org/10.1016/j.jag.2018.09.017
https://doi.org/10.1016/j.jag.2018.09.017
https://doi.org/10.14358/PERS.72.3.299
https://doi.org/10.14358/PERS.72.3.299
https://doi.org/10.3389/fenvs.2020.00102
https://doi.org/10.3389/fenvs.2020.00102
https://doi.org/10.3390/rs12142344
https://doi.org/10.3390/rs12142344
https://doi.org/10.1007/s12237-020-00736-x
https://doi.org/10.1007/s12237-020-00736-x
https://doi.org/10.1016/j.rse.2019.111543
https://doi.org/10.1016/j.rse.2019.111543
https://doi.org/10.3389/fmars.2019.00784
https://doi.org/10.3389/fmars.2019.00784
https://doi.org/10.1080/01431161.2012.712224
https://doi.org/10.1080/01431161.2012.712224


Environ. Res. Lett. 17 (2022) 025009 A D Campbell et al

[63] Hutchison J, Manica A, Swetnam R, Balmford A and
Spalding M 2014 Predicting global patterns in mangrove
forest biomass Conserv. Lett. 7 233–40

[64] Taureau F, Robin M, Proisy C, Fromard F C, Imbert D and
Debaine F C 2019 Mapping the mangrove forest canopy
using spectral unmixing of very high spatial resolution
satellite images Remote Sens. 11 367

[65] Tang W, Zheng M, Zhao X, Shi J, Yang J and Trettin C C
2018 Big geospatial data analytics for global mangrove
biomass and carbon estimation Sustainability 10 472

[66] Rovai A S, Twilley R R, Castañeda-Moya E, Riul P,
Cifuentes-Jara M, Manrow-Villalobos M, Horta P A,
Simonassi J C, Fonseca A L and Pagliosa P R 2018 Global
controls on carbon storage in mangrove soils Nat. Clim.
Change 8 534–8

[67] Kauffman J B et al 2020 Total ecosystem carbon stocks of
mangroves across broad global environmental and physical
gradients Ecol. Monogr. 90 01405

[68] Jones T G, Ratsimba H R, Ravaoarinorotsihoarana L,
Cripps G and Bey A 2014 Ecological variability and carbon
stock estimates of mangrove ecosystems in northwestern
Madagascar Forests 5 177–205

[69] Pandey P C, Anand A and Srivastava P K 2019 Spatial
distribution of mangrove forest species and biomass
assessment using field inventory and earth observation
hyperspectral data Biodivers. Conserv. 28 2143–62

[70] Li Z, Zan Q, Yang Q, Zhu D, Chen Y and Yu S 2019 Remote
estimation of mangrove aboveground carbon stock at the
species level using a low-cost unmanned aerial vehicle
system Remote Sens. 11 1018

[71] Rahman MM, Lagomasino D, Lee S, Fatoyinbo T, Ahmed I
and Kanzaki M 2019 Improved assessment of mangrove
forests in Sundarbans East Wildlife Sanctuary using
WorldView 2 and Tan DEM-X high resolution imagery
Remote Sens. Ecol. Conserv. 5 136–49

[72] Wicaksono P, Danoedoro P, Hartono and Nehren U 2016
Mangrove biomass carbon stock mapping of the
Karimunjawa Islands using multispectral remote sensing
Int. J. Remote Sens. 37 26–52

[73] Pham L T H and Brabyn L 2017 Monitoring mangrove
biomass change in Vietnam using SPOT images and an
object-based approach combined with machine learning
algorithms ISPRS J. Photogramm. Remote Sens. 128 86–97

[74] Pham T D, Yoshino K, Nga N L and Dieu T B 2018
Estimating aboveground biomass of a mangrove plantation
on the Northern coast of Vietnam using machine learning
techniques with an integration of ALOS-2 PALSAR-2 and
Sentinel-2A data Int. J. Remote Sens. 39 7761–88

[75] Shapiro A C, Trettin C C, Küchly H, Alavinapanah S and
Bandiera S 2015 The mangroves of the Zambezi Delta from
1995 to 2013 increase in extent observed via satellite
Remote Sens. 7 16504–18

[76] Sannigrahi S 2017 Modeling terrestrial ecosystem
productivity of an estuarine ecosystem in the Sundarban
biosphere region, India using seven ecosystem models Ecol.
Model. 356 73–90

[77] Lu W, Xiao J, Cui X, Xu F, Lin G and Lin G 2019 Insect
outbreaks have transient effects on carbon fluxes and
vegetative growth but longer-term impacts on reproductive
growth in a mangrove forest Agric. For. Meteorol.
279 107747

[78] Wicaksono P, Danoedoro P, Hartono H, Nehren U and
Ribbe L 2011 Preliminary work of mangrove ecosystem
carbon stock mapping in small island using remote
sensing: above and below ground carbon stock mapping on
medium resolution satellite image Remote Sensing for
Agriculture, Ecosystems, and Hydrology XIII Prague, Czech
Republic 81741B

[79] Oostdijk M, Santos M J, Whigham D, Verhoeven J and
Silvestri S 2018 Assessing rehabilitation of managed
mangrove ecosystems using high resolution remote sensing
Estuar. Coast. Shelf Sci. 211 238–47

[80] Wang M, Cao W, Jiang C, Yan Y and Guan Q 2018 Potential
ecosystem service values of mangrove forests in
southeastern China using high-resolution satellite data
Estuar. Coast. Shelf Sci. 209 30–40

[81] Wang M, Cao W, Guan Q, We G and Wang F 2018
Assessing changes of mangrove forest in a coastal region of
southeast China using multi-temporal satellite images
Estuar. Coast. Shelf Sci. 207 283–92

[82] Lee S and Fatoyinbo T E 2015 TanDEM-X Pol-InSAR
inversion for mangrove canopy height estimation IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 8 3608–18

[83] Lagomasino D, Fatoyinbo T, Lee S and Simard M 2015
High-resolution forest canopy height estimation in an
African blue carbon ecosystem Remote Sens. Ecol. Conserv.
1 51–60

[84] Lagomasino D, Fatoyinbo T, Lee S, Feliciano E, Trettin C
and Simard M 2016 A comparison of Mangrove canopy
height using multiple independent measurements from
land, air, and space Remote Sens. 8 327

[85] Stringer C E, Trettin C C and Zarnoch S J 2016 Soil
properties of mangroves in contrasting geomorphic
settings within the Zambezi River Delta, MozambiqueWetl.
Ecol. Manage. 24 139–52

[86] Feliciano E A, Wdowinski S, Potts M D, Lee S and
Fatoyinbo T E 2017 Estimating Mangrove canopy height
and above-ground biomass in the everglades national park
with Airborne LiDAR and TanDEM-X data Remote Sens.
9 702

[87] Fatoyinbo T, Feliciano E A, Lagomasino D, Lee S K and
Trettin C 2018 Estimating mangrove aboveground biomass
from airborne LiDAR data: a case study from the Zambezi
River delta Environ. Res. Lett. 13 025012

[88] Yin D and Wang L 2019 Individual mangrove tree
measurement using UAV-based LiDAR data: possibilities
and challenges Remote Sens. Environ. 223 34–49

[89] Lee S, Fatoyinbo T E, Lagomasino D, Feliciano E and
Trettin C 2018 Multibaseline TanDEM-X Mangrove height
estimation: the selection of the vertical wavenumber IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 11 3434–42

[90] Hansen M C et al 2013 High-resolution global maps of
21st-century forest cover change Science 342 850–3

[91] Hamdan O, Aziz H K and Hasmadi I M 2014 L-band ALOS
PALSAR for biomass estimation of Matang Mangroves,
Malaysia Remote Sens. Environ. 155 69–78

[92] Lucas R, Otero V, Van De Kerchove R, Lagomasino D,
Satyanarayana B, Fatoyinbo T and Dahdouh-Guebas F
2021 Monitoring Matang’s Mangroves in Peninsular
Malaysia through Earth observations: a globally relevant
approach Land Degrad. Dev. 32 354–73

[93] Wang D, Wan B, Liu J, Su Y, Guo Q, Qiu P and Wu X 2020
Estimating aboveground biomass of the mangrove forests
on northeast Hainan Island in China using an upscaling
method from field plots, UAV-LiDAR data and Sentinel-2
imagery Int. J. Appl. Earth Obs. Geoinf. 85 101986

[94] Navarro J A, Algeet N, Fernández-Landa A, Esteban J,
Rodríguez-Noriega P and Guillén-Climent M L 2019
Integration of UAV, sentinel-1, and sentinel-2 data for
mangrove plantation aboveground biomass monitoring in
Senegal Remote Sens. 11 77

[95] Hartoko A et al 2015 Carbon biomass algorithms
development for Mangrove vegetation in Kemujan, Parang
Island Karimunjawa National Park and Demak coastal
area—Indonesia Procedia Environ. Sci. 23 39

[96] Hickey S M, Callow N J, Phinn S, Lovelock C E and
Duarte C M 2018 Spatial complexities in aboveground
carbon stocks of a semi-arid mangrove community: a
remote sensing height-biomass-carbon approach Estuar.
Coast. Shelf Sci. 200 194–201

[97] Barr J G, Engel V, Smith T J and Fuentes J D 2012
Hurricane disturbance and recovery of energy balance,
CO2 fluxes and canopy structure in a Mangrove forest of
the Florida everglades Agric. For. Meteorol. 153 54–66

26

https://doi.org/10.1111/conl.12060
https://doi.org/10.1111/conl.12060
https://doi.org/10.3390/rs11030367
https://doi.org/10.3390/rs11030367
https://doi.org/10.3390/su10020472
https://doi.org/10.3390/su10020472
https://doi.org/10.1038/s41558-018-0162-5
https://doi.org/10.1038/s41558-018-0162-5
https://doi.org/10.1002/ecm.1405
https://doi.org/10.1002/ecm.1405
https://doi.org/10.3390/f5010177
https://doi.org/10.3390/f5010177
https://doi.org/10.1007/s10531-019-01698-8
https://doi.org/10.1007/s10531-019-01698-8
https://doi.org/10.3390/rs11091018
https://doi.org/10.3390/rs11091018
https://doi.org/10.1002/rse2.105
https://doi.org/10.1002/rse2.105
https://doi.org/10.1080/01431161.2015.1117679
https://doi.org/10.1080/01431161.2015.1117679
https://doi.org/10.1016/j.isprsjprs.2017.03.013
https://doi.org/10.1016/j.isprsjprs.2017.03.013
https://doi.org/10.1080/01431161.2018.1471544
https://doi.org/10.1080/01431161.2018.1471544
https://doi.org/10.3390/rs70x000x
https://doi.org/10.3390/rs70x000x
https://doi.org/10.1016/j.ecolmodel.2017.03.003
https://doi.org/10.1016/j.ecolmodel.2017.03.003
https://doi.org/10.1016/j.agrformet.2019.107747
https://doi.org/10.1016/j.agrformet.2019.107747
https://doi.org/10.1117/12.897926
https://doi.org/10.1016/j.ecss.2018.06.020
https://doi.org/10.1016/j.ecss.2018.06.020
https://doi.org/10.1016/j.ecss.2018.05.023
https://doi.org/10.1016/j.ecss.2018.05.023
https://doi.org/10.1016/j.ecss.2018.04.021
https://doi.org/10.1016/j.ecss.2018.04.021
https://doi.org/10.1109/JSTARS.2015.2431646
https://doi.org/10.1109/JSTARS.2015.2431646
https://doi.org/10.1002/rse2.3
https://doi.org/10.1002/rse2.3
https://doi.org/10.3390/rs8040327
https://doi.org/10.3390/rs8040327
https://doi.org/10.1007/s11273-015-9478-3
https://doi.org/10.1007/s11273-015-9478-3
https://doi.org/10.3390/rs9070702
https://doi.org/10.3390/rs9070702
https://doi.org/10.1088/1748-9326/aa9f03
https://doi.org/10.1088/1748-9326/aa9f03
https://doi.org/10.1016/j.rse.2018.12.034
https://doi.org/10.1016/j.rse.2018.12.034
https://doi.org/10.1109/JSTARS.2018.2835647
https://doi.org/10.1109/JSTARS.2018.2835647
https://doi.org/10.1126/science.1244693
https://doi.org/10.1126/science.1244693
https://doi.org/10.1016/j.rse.2014.04.029
https://doi.org/10.1016/j.rse.2014.04.029
https://doi.org/10.1002/ldr.3652
https://doi.org/10.1002/ldr.3652
https://doi.org/10.1016/j.jag.2019.101986
https://doi.org/10.1016/j.jag.2019.101986
https://doi.org/10.3390/rs11010077
https://doi.org/10.3390/rs11010077
https://doi.org/10.1016/j.proenv.2015.01.007
https://doi.org/10.1016/j.proenv.2015.01.007
https://doi.org/10.1016/j.ecss.2017.11.004
https://doi.org/10.1016/j.ecss.2017.11.004
https://doi.org/10.1016/j.agrformet.2011.07.022
https://doi.org/10.1016/j.agrformet.2011.07.022


Environ. Res. Lett. 17 (2022) 025009 A D Campbell et al

[98] Adame M F et al 2021 Future carbon emissions from global
mangrove forest loss Glob. Change Biol. 27 2856–66

[99] Dai Z, Trettin C C, Birdsie R and Frolking S 2018 Mangrove
carbon assessment tool: model development and sensitivity
analyses Estuar. Coast. Shelf Sci. 208 23–35

[100] Bournazel J, Kumara M P, Jayatissa L P, Viergever K,
Morel V and HuxhamM 2015 The impacts of shrimp
farming on land-use and carbon storage around Puttalam
lagoon, Sri Lanka Ocean Coast. Manage. 113 18–28

[101] Duncan C, Primavera J H, Pettorelli N, Thompson J R,
Loma R J A and Koldewey H J 2016 Rehabilitating
mangrove ecosystem services: a case study on the relative
benefits of abandoned pond reversion from Panay Island,
PhilippinesMar. Pollut. Bull. 109 772–82

[102] Yang J, Gao J, Cheung A, Liu B, Schwendenmann L and
Costello M J 2013 Vegetation and sediment characteristics
in an expanding mangrove forest in New Zealand Estuar.
Coast. Shelf Sci. 134 11–18

[103] Ellegaard M, Nguyen N T G, Andersen T J, Michelsen A,
Nguyen N L, Doan N H, Kristensen E, Weckström K,
Son T P H and Lund-Hansen L C 2014 Temporal changes
in physical, chemical and biological sediment parameters in
a tropical estuary after mangrove deforestation Estuar.
Coast. Shelf Sci. 142 32–40

[104] Anne N J, Abd-Elrahman A H, Lewis D B and Hewitt N A
2014 Modeling soil parameters using hyperspectral image
reflectance in subtropical coastal wetlands Int. J. Appl.
Earth Obs. Geoinf. 33 47–56

[105] Huang T, Fu Y, Pan P and Chen C A 2012 Fluvial carbon
fluxes in tropical rivers Curr. Opin. Environ. Sustain.
4 162–9

[106] Bauer J E, Cai W-J, Raymond P A, Bianchi T S,
Hopkinson C S and Regnier P A G 2013 The changing
carbon cycle of the coastal ocean Nature 504 61–70

[107] Alongi D M 2020 Carbon balance in salt marsh and
mangrove ecosystems: a global synthesis J. Mar. Sci. Eng.
8 767

[108] Breithaupt J L, Smoak J M, Smith T J III, Sanders C J and
Hoare A 2012 Organic carbon burial rates in mangrove
sediments: strengthening the global budget Glob.
Biogeochem. Cycles 26 GB3011

[109] Hansen A M, Kraus T E C, Pellerin B A, Fleck J A,
Downing B D and Bergamaschi B A 2016 Optical properties
of dissolved organic matter (DOM): effects of biological
and photolytic degradation Limnol. Oceanogr. 61 1015–32

[110] Lu C J, Benner R, Fichot C G, Fukuda H, Yamashita Y and
Ogawa H 2016 Sources and transformations of dissolved
lignin phenols and chromophoric dissolved organic matter
in Otsuchi Bay, Japan Front. Mar. Sci. 3 85

[111] Sanyal P, Ray R, Paul M, Gupta V K, Acharya A, Bakshi S,
Jana T K and Mukhopadhyay S K 2020 Assessing the
dynamics of dissolved organic matter (DOM) in the coastal
environments dominated by mangroves, Indian
Sundarbans Front. Earth Sci. 8 218

[112] Friess D A, Rogers K, Lovelock C E, Krauss K W,
Hamilton S E, Lee S Y, Lucas R, Primavera J, Rajkaran A and
Shi S 2019 The state of the world’s mangrove forests: past,
present, and future Annu. Rev. Environ. Resour. 44 89–115

[113] Krauss K W, From A S, Doyle T W, Doyle T J and Barry M J
2011 Sea-level rise and landscape change influence
mangrove encroachment onto marsh in the Ten Thousand
Islands region of Florida, USA J. Coast. Conserv. 15 629–38

[114] Ross M S, Meeder J F, Sah J P, Ruiz P L and Telesnicki G J
2000 The southeast saline Everglades revisited: 50 years of
coastal vegetation change J. Veg. Sci. 11 101–12

[115] Osland M J, Day R H and Michot T C 2020 Frequency of
extreme freeze events controls the distribution and
structure of black mangroves (Avicennia germinans) near
their northern range limit in coastal Louisiana Divers.
Distrib. 26 1366–82

[116] Charles S P, Kominoski J S, Armitage A R, Guo H,
Weaver C A and Pennings S C 2020 Quantifying how

changing mangrove cover affects ecosystem carbon storage
in coastal wetlands Ecology 101 e02916

[117] Doughty C L, Langley J A, Walker W S, Feller I C, Schaub R
and Chapman S K 2016 Mangrove range expansion rapidly
increases coastal wetland carbon storage Estuar. Coasts
39 385–96

[118] Yando E S, Osland M J, Willis J M, Day R H, Krauss K W
and Hester MW 2016 Salt marsh-mangrove ecotones:
using structural gradients to investigate the effects of
woody plant encroachment on plant–soil interactions and
ecosystem carbon pools J. Ecol. 104 1020–31

[119] Worthington T A et al 2020 A global biophysical typology
of mangroves and its relevance for ecosystem structure and
deforestation Sci. Rep. 10 1–11

[120] Simard M, Fatoyinbo T, Smetanka C, Rivera-Monroy V H,
Castaneda E, Thomas N and Van Der Stocken T 2019
Global Mangrove Distribution, Aboveground Biomass, and
Canopy Height (https://doi.org/10.3334/ORNLDAAC/
1665)

[121] Rosentreter J A, Maher D T, Erler D V, Murray R H and
Eyre B D 2018 Methane emissions partially offset “blue
carbon” burial in mangroves Sci. Adv. 4 eaao4985

[122] Richards D R, Thompson B S and Wijedasa L 2020
Quantifying net loss of global mangrove carbon stocks
from 20 years of land cover change Nat. Commun. 11 1–7

[123] Twilley R R, Castañeda-Moya E, Rivera-Monroy V H and
Rovai A 2017 Productivity and carbon dynamics in
mangrove wetlandsMangrove Ecosystems: A Global
Biogeographic Perspective (Berlin: Springer) pp 113–62

[124] Duarte C M and Cebrían J 1996 The fate of marine
autotrophic production Limnol. Oceanogr. 41 1758–66

[125] Duarte C M, Losada I J, Hendriks I E, Mazarrasa I and
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[535] Ostrowska M, Woźniak B and Dera J 2012 Modelled
quantum yields and energy efficiency of fluorescence,
photosynthesis and heat production by phytoplankton in
the World Ocean Oceanologia 54 565–610

[536] Sorensen J C and Siegel D A 2001 Variability of the effective
quantum yield for carbon assimilation in the Sargasso Sea
Deep Sea Res. II 48 2005–35

[537] Iluz D and Dubinsky Z 2013 Quantum yields in aquatic
photosynthesis Photosynthesis (Rijeka: Intech) pp 135–58

[538] DeVries T and Weber T 2017 The export and fate of
organic matter in the ocean: new constraints from
combining satellite and oceanographic tracer observations
Glob. Biogeochem. Cycles 31 535–55

[539] Arteaga L, Haëntjens N, Boss E, Johnson K S and
Sarmiento J L 2018 Assessment of export efficiency
equations in the southern ocean applied to satellite-based
net primary production J. Geophys. Res. Oceans
123 2945–64

[540] Goes J I, Do R Gomes H, Limsakul A, Balch WM and
Saino T 2001 El Niño related interannual variations in
biological production in the North Pacific as evidenced by
satellite and ship data Prog. Oceanogr. 49 211–25

[541] Goes J I, Saino T, Oaku H, Ishizaka J, Wong C S and
Nojiri Y 2000 Basin scale estimates of sea surface nitrate
and new production from remotely sensed sea surface
temperature and chlorophyll Geophys. Res. Lett. 27 1263–6

[542] Siegel D A, Buesseler K O, Behrenfeld M J,
Benitez-Nelson C R, Boss E, Brzezinski M A, Burd A,
Carlson C A, D’Asaro E A and Doney S C 2016 Prediction
of the export and fate of global ocean net primary
production: the EXPORTS science plan Front. Mar. Sci. 3 22

[543] Matsuoka A, Hooker S B, Bricaud A, Gentili B and
Babin M 2013 Estimating absorption coefficients of colored
dissolved organic matter (CDOM) using a semi-analytical
algorithm for southern Beaufort Sea waters: application to

deriving concentrations of dissolved organic carbon from
space Biogeosciences 10 917–27

[544] Le C, Zhou X, Hu C, Lee Z, Li L and Stramski D 2018 A
color-index-based empirical algorithm for determining
particulate organic carbon concentration in the ocean from
satellite observations J. Geophys. Res. Oceans 123 7407–19

[545] Balch WM, Gordon H R, Bowler B C, Drapeau D T and
Booth E S 2005 Calcium carbonate measurements in the
surface global ocean based on moderate-resolution
imaging spectroradiometer data J. Geophys. Res. Oceans
110 C07001

[546] Mitchell C, Hu C, Bowler B, Drapeau D and Balch WM
2017 Estimating particulate inorganic carbon
concentrations of the global ocean from ocean color
measurements using a reflectance difference approach J.
Geophys. Res. Oceans 122 8707–20

[547] Evers-King H, Martinez-Vicente V, Brewin R J,
Dall’Olmo G, Hickman A E, Jackson T, Kostadinov T S,
Krasemann H, Loisel H and Röttgers R 2017 Validation and
intercomparison of ocean color algorithms for estimating
particulate organic carbon in the oceans Front. Mar. Sci.
4 251

[548] Behrenfeld M J, Hu Y, Hostetler C A, Dall’Olmo G,
Rodier S D, Hair J W and Trepte C R 2013 Space-based
lidar measurements of global ocean carbon stocks Geophys.
Res. Lett. 40 4355–60

[549] Balch WM, Bowler B C, Drapeau D T, Lubelczyk L C and
Lyczkowski E 2018 Vertical distributions of
coccolithophores, PIC, POC, biogenic Silica, and
chlorophyll a throughout the global ocean Glob.
Biogeochem. Cycles 32 2–17

[550] Hedges J I and Keil R G 1995 Sedimentary organic matter
preservation: an assessment and speculative synthesisMar.
Chem. 49 81–115

[551] Dunne J, Sarmiento J and Gnanadesikan A 2007 A
synthesis of global particle export from the surface ocean
and cycling Glob. Biogeochem. Cycles 21 GB4006

[552] DeVries B, Huang C, Lang MW, Jones J W, Huang W,
Creed I F and Carroll M L 2017 Automated quantification
of surface water inundation in wetlands using optical
satellite imagery Remote Sens. 9 807

[553] Moore J K, Doney S C, Glover D M and Fung I Y 2002 Iron
cycling and nutrient-limitation patterns in surface waters
of the World Ocean Deep Sea Res. II 49 463–507

[554] Muller-Karger F E, Varela R, Thunell R, Luerssen R, Hu C
and Walsh J J 2005 The importance of continental margins
in the global carbon cycle Geophys. Res. Lett. 32 L01602

[555] Jahnke R A 2010 Global synthesis Carbon and Nutrient
Fluxes in Continental Margins ed K K Liu, L Atkinson, R
Quinones and L Talaue-mcmanus (Berlin: Springer) pp
597–615

[556] Cai W 2011 Estuarine and coastal ocean carbon paradox:
CO2 sinks or sites of terrestrial carbon incineration? Annu.
Rev. Mar. Sci. 3 123–45

[557] Bourgeois T, Orr J C, Resplandy L, Terhaar J, Ethé C,
Gehlen M and Bopp L 2016 Coastal-ocean uptake of
anthropogenic carbon Biogeosciences 13 4167–85

[558] Gattuso J, Frankignoulle M and Wollast R 1998 Carbon
and carbonate metabolism in coastal aquatic ecosystems
Annu. Rev. Ecol. Syst. 29 405–34

[559] Hopkins J and Balch WM 2018 A new approach to
estimating coccolithophore calcification rates from space J.
Geophys. Res. Biogeosci. 123 1447–59

[560] Gordon H R, Boynton G C, Balch WM, Groom S B,
Harbour D S and Smyth T J 2001 Retrieval of
coccolithophore calcite concentration from SeaWiFS
imagery Geophys. Res. Lett. 28 1587–90

[561] Benway H M et al 2016 A science plan for carbon cycle
research in North American coastal waters Report of the
Coastal CARbon Synthesis (CCARS) Community Workshop
(19–21 August 2014) ed Ocean Carbon and
Biogeochemistry Program and North American Carbon
Program (Woods Hole, MA) p 84

39

https://doi.org/10.1029/95GB02831
https://doi.org/10.1029/95GB02831
https://doi.org/10.1007/s00300-010-0949-y
https://doi.org/10.1007/s00300-010-0949-y
https://doi.org/10.4319/lo.1983.28.4.0770
https://doi.org/10.4319/lo.1983.28.4.0770
https://doi.org/10.1364/AO.35.000453
https://doi.org/10.1364/AO.35.000453
https://doi.org/10.1109/JSTARS.2014.2298863
https://doi.org/10.1109/JSTARS.2014.2298863
https://doi.org/10.4319/lo.1993.38.1.0232
https://doi.org/10.4319/lo.1993.38.1.0232
https://doi.org/10.1029/2004JC002784
https://doi.org/10.1029/2004JC002784
https://doi.org/10.3389/fmars.2018.00446
https://doi.org/10.3389/fmars.2018.00446
https://doi.org/10.1016/S0967-0645(99)00144-7
https://doi.org/10.1016/S0967-0645(99)00144-7
https://doi.org/10.5697/oc.54-4.565
https://doi.org/10.5697/oc.54-4.565
https://doi.org/10.1016/S0967-0645(00)00170-3
https://doi.org/10.1016/S0967-0645(00)00170-3
https://doi.org/10.1002/2016GB005551
https://doi.org/10.1002/2016GB005551
https://doi.org/10.1016/S0079-6611(01)00023-4
https://doi.org/10.1016/S0079-6611(01)00023-4
https://doi.org/10.1029/1999GL002353
https://doi.org/10.1029/1999GL002353
https://doi.org/10.3389/fmars.2016.00022
https://doi.org/10.3389/fmars.2016.00022
https://doi.org/10.5194/bg-10-917-2013
https://doi.org/10.5194/bg-10-917-2013
https://doi.org/10.1029/2018JC014014
https://doi.org/10.1029/2018JC014014
https://doi.org/10.1029/2004JC002560
https://doi.org/10.1029/2004JC002560
https://doi.org/10.3389/fmars.2017.00251
https://doi.org/10.3389/fmars.2017.00251
https://doi.org/10.1002/grl.50816
https://doi.org/10.1002/grl.50816
https://doi.org/10.1002/2016GB005614
https://doi.org/10.1002/2016GB005614
https://doi.org/10.1016/0304-4203(95)00008-F
https://doi.org/10.1016/0304-4203(95)00008-F
https://doi.org/10.1029/2006GB002907
https://doi.org/10.1029/2006GB002907
https://doi.org/10.3390/rs9080807
https://doi.org/10.3390/rs9080807
https://doi.org/10.1016/S0967-0645(01)00109-6
https://doi.org/10.1016/S0967-0645(01)00109-6
https://doi.org/10.1029/2004GL021346
https://doi.org/10.1029/2004GL021346
https://doi.org/10.1007/978-3-540-92735-2
https://doi.org/10.1146/annurev-marine-120709-142723
https://doi.org/10.1146/annurev-marine-120709-142723
https://doi.org/10.5194/bg-13-4167-2016
https://doi.org/10.5194/bg-13-4167-2016
https://doi.org/10.1146/annurev.ecolsys.29.1.405
https://doi.org/10.1146/annurev.ecolsys.29.1.405
https://doi.org/10.1029/2000GL012025
https://doi.org/10.1029/2000GL012025
https://doi.org/10.1575/1912/7777


Environ. Res. Lett. 17 (2022) 025009 A D Campbell et al

[562] Fennel K, Alin S, Barbero L, Evans W, Bourgeois T,
Cooley S, Dunne J, Feely R A, Hernandez-Ayon J M and
Hu X 2019 Carbon cycling in the North American coastal
ocean: a synthesis Biogeosciences 16 1281–304

[563] Signorini S R, Mannino A, Najjar J, Raymond G,
Friedrichs M AM, Cai W, Salisbury J, Wang Z A,
Thomas H and Shadwick E 2013 Surface ocean pCO(2)
seasonality and sea-air CO2 flux estimates for the North
American east coast J. Geophys. Res. Oceans 118 5439–60

[564] Najjar R G et al 2018 Carbon budget of tidal wetlands,
estuaries, and shelf waters of eastern North America Glob.
Biogeochem. Cycles 32 389–416

[565] Bélanger S, Babin M and Tremblay J 2013 Increasing
cloudiness in Arctic damps the increase in phytoplankton
primary production due to sea ice receding Biogeosciences
10 4087–101

[566] Huot Y, Babin M and Bruyant F 2013 Photosynthetic
parameters in the Beaufort Sea in relation to the
phytoplankton community structure Biogeosciences
10 3445–54

[567] Liu M, Tian H, Yang Q, Yang J, Song X, Lohrenz S E and
Cai W 2013 Long-term trends in evapotranspiration and
runoff over the drainage basins of the Gulf of Mexico
during 1901–2008Water Resour. Res. 49 1988–2012

[568] Lohrenz S E, Cai W, Chakraborty S, Gundersen K and
Murrell M C 2014 Nutrient and carbon dynamics in a large
river-dominated coastal ecosystem: the
Mississippi-Atchafalaya River system Biogeochemical
Dynamics at Major River-Coastal Interfaces: Linkages with
Global Change (New York: Cambridge University Press) pp
448–72

[569] Ren W, Tian H, Tao B, Yang J, Pan S, Cai W, Lohrenz S E,
He R and Hopkinson C S 2015 Large increase in dissolved
inorganic carbon flux from the Mississippi River to Gulf of
Mexico due to climatic and anthropogenic changes over the
21st century J. Geophys. Res. Biogeosci. 120 724–36

[570] Ren W, Tian H, Cai W, Lohrenz S E, Hopkinson C S,
Huang W, Yang J, Tao B, Pan S and He R 2016
Century-long increasing trend and variability of dissolved
organic carbon export from the Mississippi River basin
driven by natural and anthropogenic forcing Glob.
Biogeochem. Cycles 30 1288–99

[571] Tao B, Tian H, Ren W, Yang J, Yang Q, He R, Cai W and
Lohrenz S 2014 Increasing Mississippi river discharge
throughout the 21st century influenced by changes in
climate, land use, and atmospheric CO2 Geophys. Res. Lett.
41 4978–86

[572] Tian H, Ren W, Yang J, Tao B, Cai W, Lohrenz S E,
Hopkinson C S, Liu M, Yang Q and Lu C 2015 Climate
extremes dominating seasonal and interannual variations
in carbon export from the Mississippi River Basin Glob.
Biogeochem. Cycles 29 1333–47

[573] Tian H, Yang Q, Najjar R G, Ren W, Friedrichs M A,
Hopkinson C S and Pan S 2015 Anthropogenic and
climatic influences on carbon fluxes from eastern North
America to the Atlantic Ocean: a process-based modeling
study J. Geophys. Res. Biogeosci. 120 757–72

[574] Xue Z, He R, Fennel K, Cai W, Lohrenz S and Hopkinson C
2013 Modeling ocean circulation and biogeochemical
variability in the Gulf of Mexico Biogeosciences 10 7219–34

[575] Signorini S R et al 2019 Estuarine dissolved organic carbon
flux from space: with application to Chesapeake and
Delaware Bays J. Geophys. Res. Oceans 124 3755–78

[576] Shanmugam P, Varunan T, Jaiganesh S N N, Sahay A and
Chauhan P 2016 Optical assessment of colored dissolved
organic matter and its related parameters in dynamic
coastal water systems Estuar. Coast. Shelf Sci. 175 126–45

[577] Mannino A, Russ M E and Hooker S B 2008 Algorithm
development and validation for satellite-derived
distributions of DOC and CDOM in the US Middle
Atlantic Bight J. Geophys. Res. Oceans 113 C07051

[578] Balch W, Huntington T, Aiken G, Drapeau D, Bowler B,
Lubelczyk L and Butler K 2016 Toward a quantitative and

empirical dissolved organic carbon budget for the Gulf of
Maine, a semienclosed shelf sea Glob. Biogeochem. Cycles
30 268–92

[579] Vantrepotte V, Danhiez F, Loisel H, Ouillon S, Mériaux X,
Cauvin A and Dessailly D 2015 CDOM-DOC relationship
in contrasted coastal waters: implication for DOC retrieval
from ocean color remote sensing observation Opt. Express
23 33–54

[580] Cai W J, Chen C A and Borges A 2013 Carbon dioxide
dynamics and fluxes in coastal waters influenced by river
plumes Biogeochemical Dynamics at Major River-Coastal
Interfaces ed T S Bianchi, M A Allison and W J Cai
(Cambridge: Cambridge University Press) pp 155–73

[581] Guo X, Cai W, Huang W, Wang Y, Chen F, Murrell M C,
Lohrenz S E, Jiang L, Dai M and Hartmann J 2012 Carbon
dynamics and community production in the Mississippi
River plume Limnol. Oceanogr. 57 1–17

[582] Huang W, Cai W, Wang Y, Lohrenz S E and Murrell M C
2015a The carbon dioxide system on the M ississippi R
iver-dominated continental shelf in the northern G ulf of
M exico: 1. Distribution and air-sea CO2 flux J. Geophys.
Res. Oceans 120 1429–45

[583] Huang W, Cai W, Wang Y, Hu X, Chen B, Lohrenz S E,
Chakraborty S, He R, Brandes J and Hopkinson C S 2015b
The response of inorganic carbon distributions and
dynamics to upwelling-favorable winds on the northern
Gulf of Mexico during summer Cont. Shelf Res. 111 211–22

[584] Huang W, Cai W, Castelao R M, Wang Y and Lohrenz S E
2013 Effects of a wind-driven cross-shelf large river plume
on biological production and CO2 uptake on the Gulf of
Mexico during spring Limnol. Oceanogr. 58 1727–35

[585] Xue Z, He R, Fennel K, Cai W, Lohrenz S, Huang W and
Tian H 2014 Modeling pCO2 variability in the Gulf of
Mexico Biogeosci. Discuss. 11 12673–95

[586] Chakraborty S and Lohrenz S E 2015 Phytoplankton
community structure in the river-influenced continental
margin of the northern Gulf of MexicoMar. Ecol. Prog. Ser.
521 31–47

[587] Chakraborty S, Lohrenz S E and Gundersen K 2017
Photophysiological and light absorption properties of
phytoplankton communities in the river-dominated
margin of the northern Gulf of Mexico J. Geophys. Res.
Oceans 122 4922–38

[588] Wang Z A, Wanninkhof R, Cai W, Byrne R H, Hu X, Peng T
and Huang W 2013 The marine inorganic carbon system
along the Gulf of Mexico and Atlantic coasts of the United
States: insights from a transregional coastal carbon study
Limnol. Oceanogr. 58 325–42

[589] O’Mara N A and Dunne J P 2019 Hot spots of carbon and
alkalinity cycling in the coastal oceans Sci. Rep. 9 1–8

[590] Dale A W, Graco M and Wallmann K 2017 Strong and
dynamic benthic-pelagic coupling and feedbacks in a
coastal upwelling system (Peruvian shelf) Front. Mar. Sci.
4 29

[591] Theodor M, Schmiedl G, Jorissen F and Mackensen A 2016
Stable carbon isotope gradients in benthic foraminifera as
proxy for organic carbon fluxes in the Mediterranean Sea
Biogeosciences 13 6385–404

[592] Sanchez-Vidal A, Pasqual C, Kerhervé P, Calafat A,
Heussner S, Palanques A, Durrieu de Madron X, Canals M
and Puig P 2008 Impact of dense shelf water cascading on
the transfer of organic matter to the deep western
Mediterranean basin Geophys. Res. Lett. 35 L05605

[593] Kwon E Y, DeVries T, Galbraith E, Hwang J, Kim G and
Timmermann A 2020 Stable carbon isotopes suggest large
terrestrial carbon inputs to the global ocean Glob.
Biogeochem. Cycles 35 e2020GB006684

[594] UNFCCC 1997 United Nations framework convention on
climate change Kyoto Protocol (Kyoto) vol 19 p 497

[595] Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J,
Fukuda M and Troxler T G 2014 2013 Supplement to the
2006 IPCC Guidelines for National Greenhouse Gas
Inventories: Wetlands (Switzerland: IPCC)

40

https://doi.org/10.5194/bg-16-1281-2019
https://doi.org/10.5194/bg-16-1281-2019
https://doi.org/10.1002/jgrc.20369
https://doi.org/10.1002/jgrc.20369
https://doi.org/10.1002/2017GB005790
https://doi.org/10.1002/2017GB005790
https://doi.org/10.5194/bg-10-4087-2013
https://doi.org/10.5194/bg-10-4087-2013
https://doi.org/10.5194/bg-10-3445-2013
https://doi.org/10.5194/bg-10-3445-2013
https://doi.org/10.1002/wrcr.20180
https://doi.org/10.1002/wrcr.20180
https://doi.org/10.1002/2014JG002761
https://doi.org/10.1002/2014JG002761
https://doi.org/10.1002/2016GB005395
https://doi.org/10.1002/2016GB005395
https://doi.org/10.1002/2014GL060361
https://doi.org/10.1002/2014GL060361
https://doi.org/10.1002/2014GB005068
https://doi.org/10.1002/2014GB005068
https://doi.org/10.5194/bg-10-7219-2013
https://doi.org/10.5194/bg-10-7219-2013
https://doi.org/10.1029/2018JC014646
https://doi.org/10.1029/2018JC014646
https://doi.org/10.1016/j.ecss.2016.03.020
https://doi.org/10.1016/j.ecss.2016.03.020
https://doi.org/10.1029/2007JC004493
https://doi.org/10.1029/2007JC004493
https://doi.org/10.1002/2015GB005332
https://doi.org/10.1002/2015GB005332
https://doi.org/10.1364/OE.23.000033
https://doi.org/10.1364/OE.23.000033
https://doi.org/10.4319/lo.2012.57.1.0001
https://doi.org/10.4319/lo.2012.57.1.0001
https://doi.org/10.1016/j.csr.2015.08.020
https://doi.org/10.1016/j.csr.2015.08.020
https://doi.org/10.4319/lo.2013.58.5.1727
https://doi.org/10.4319/lo.2013.58.5.1727
https://doi.org/10.3354/meps11107
https://doi.org/10.3354/meps11107
https://doi.org/10.1002/2016JC012092
https://doi.org/10.1002/2016JC012092
https://doi.org/10.4319/lo.2013.58.1.0325
https://doi.org/10.4319/lo.2013.58.1.0325
https://doi.org/10.1038/s41598-019-41064-w
https://doi.org/10.1038/s41598-019-41064-w
https://doi.org/10.3389/fmars.2017.00029
https://doi.org/10.3389/fmars.2017.00029
https://doi.org/10.5194/bg-13-6385-2016
https://doi.org/10.5194/bg-13-6385-2016
https://doi.org/10.1029/2007GL032825
https://doi.org/10.1029/2007GL032825
https://doi.org/10.1029/2020GB006684
https://doi.org/10.1029/2020GB006684


Environ. Res. Lett. 17 (2022) 025009 A D Campbell et al

[596] Rehdanz K, Tol R S and Wetzel P 2006 Ocean carbon sinks
and international climate policy Energy Policy 34 3516–26

[597] IPCC 2019 IPCC Special Report on the Ocean and
Cryosphere in a Changing Climate ed H O Pörtner, D C
Roberts, V Masson-Delmotte, P Zhai, M Tignor, E
Poloczanska, K Mintenbeck, A Alegría, M Nicolai, A Okem,
J Petzold, B Rama and N MWeyer

[598] UNFCCC 2015 1/CP. 21, adoption of the Paris agreement
Report of the Conference of the Parties on Its Twenty-First
Session, Held in Paris

[599] Zeng Y, Friess D A, Sarira T V, Siman K and Koh L P 2021
Global potential and limits of mangrove blue carbon for
climate change mitigation Curr. Biol. 31 1737–1743.e3

[600] Pindilli E, Sleeter R and Hogan D 2018 Estimating the
societal benefits of carbon dioxide sequestration through
peatland restoration Ecol. Econ. 154 145–55

[601] Chimner R A, Cooper D J, Wurster F C and Rochefort L
2017 An overview of peatland restoration in North
America: where are we after 25 years? Restor. Ecol.
25 283–92

[602] Halabisky M, Moskal L M and Hall S A 2011 Object-based
classification of semi-arid wetlands J. Appl. Remote Sens.
5 053511

[603] Kennedy R E, Yang Z, Gorelick N, Braaten J, Cavalcante L,
Cohen W B and Healey S 2018 Implementation of the
LandTrendr algorithm on google earth engine Remote Sens.
10 691

[604] Sharma S, MacKenzie R A, Tieng T, Soben K,
Tulyasuwan N, Resanond A, Blate G and Litton C M 2020
The impacts of degradation, deforestation and restoration

on mangrove ecosystem carbon stocks across Cambodia
Sci. Total Environ. 706 135416

[605] Chmura G L 2013 What do we need to assess the
sustainability of the tidal salt marsh carbon sink? Ocean
Coast. Manage. 83 25–31

[606] Krishna K V, Shanmugam P and Nagamani P V 2020 A
multiparametric nonlinear regression approach for the
estimation of global surface ocean pCO2 using satellite
oceanographic data IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 13 6220–35

[607] Sasmito S D, Taillardat P, Clendenning J N, Cameron C,
Friess D A, Murdiyarso D and Hutley L B 2019 Effect of
land-use and land-cover change on mangrove blue carbon:
a systematic review Glob. Change Biol. 25 4291–302

[608] Lagomasino D, Fatoyinbo L, Castaneda E, Cook B,
Montesano P, Neigh C, Lawrence C, Ott L, Chavez S and
Morton D 2021. Storm surge and ponding explain
mangrove dieback in southwest Florida following
Hurricane Irma Nat. Commun. 12 4003

[609] Krauss K W and Osland M J 2020 Tropical cyclones and the
organization of mangrove forests: a review Ann. Bot.
125 213–34

[610] Osland M J et al 2020b Rapid peat development beneath
created, maturing mangrove forests: ecosystem changes
across a 25-yr chronosequence Ecol. Appl. 30 e02085

[611] Shutler J D, Wanninkhof R, Nightingale P D, Woolf D K,
Bakker D C, Watson A, Ashton I, Holding T, Chapron B
and Quilfen Y 2020 Satellites will address critical science
priorities for quantifying ocean carbon Front. Ecol. Environ.
18 27–35

41

https://doi.org/10.1016/j.enpol.2005.07.015
https://doi.org/10.1016/j.enpol.2005.07.015
https://doi.org/10.1016/j.cub.2021.01.070
https://doi.org/10.1016/j.cub.2021.01.070
https://doi.org/10.1016/j.ecolecon.2018.08.002
https://doi.org/10.1016/j.ecolecon.2018.08.002
https://doi.org/10.1111/rec.12434
https://doi.org/10.1111/rec.12434
https://doi.org/10.1117/1.3563569
https://doi.org/10.1117/1.3563569
https://doi.org/10.3390/rs10050691
https://doi.org/10.3390/rs10050691
https://doi.org/10.1016/j.scitotenv.2019.135416
https://doi.org/10.1016/j.scitotenv.2019.135416
https://doi.org/10.1016/j.ocecoaman.2011.09.006
https://doi.org/10.1016/j.ocecoaman.2011.09.006
https://doi.org/10.1109/JSTARS.2020.3026363
https://doi.org/10.1109/JSTARS.2020.3026363
https://doi.org/10.1111/gcb.14774
https://doi.org/10.1111/gcb.14774
https://doi.org/10.1038/s41467-021-24253-y
https://doi.org/10.1038/s41467-021-24253-y
https://doi.org/10.1093/aob/mcz161
https://doi.org/10.1093/aob/mcz161
https://doi.org/10.1002/eap.2085
https://doi.org/10.1002/eap.2085
https://doi.org/10.1002/fee.2129
https://doi.org/10.1002/fee.2129

	A review of carbon monitoring in wet carbon systems using remote sensing
	1. Introduction
	2. Systematic review
	2.1. Methodology

	3. Results
	3.1. Coastal wetlands
	3.1.1. Mangroves
	3.1.2. Tidal marsh and flats
	3.1.3. Submerged aquatic vegetation

	3.2. Inland wetlands
	3.2.1. Mineral wetlands
	3.2.2. Peatlands and permafrost

	3.3. Inland waterbodies
	3.3.1. Lakes and ponds
	3.3.2. Rivers

	3.4. Ocean and shelves
	3.4.1. Sedimentation/benthic-pelagic coupling
	3.4.2. Ocean chlorophyll and primary production
	3.4.3. Satellite assessments of ocean carbon stocks
	3.4.4. Coastal and continental shelf seas


	4. Stakeholders
	5. Recommendations
	6. Conclusions
	Acknowledgments
	References


