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Abstract
Increased upright vegetation growth (i.e. trees and shrubs) in northern environments can
profoundly impact ground surface thermal conditions through winter warming (e.g. enhanced
snow trapping) and summer cooling (e.g. increased shading). The debate over these opposite
effects emphasizes the need to better constrain net temperature impacts of upright vegetation on
soils in northern environments. We generate a series of simulations with a widely-used permafrost
model to partition the absolute warming and cooling impacts of upright vegetation on ground
surface temperatures for a variety of shading scenarios, climates and surficial materials types (i.e.
bedrock, mineral and organic soils). These scenarios simulate annual temperature differences
between the air and ground surface caused by upright vegetation to provide likely ranges for the
net effects induced by vegetation. These simulations showed that ground surface temperature
warming in the winter mostly overwhelmed ground surface cooling in the thawing season even
when simulations included extreme shading effects. Constraining the simulations to current best
estimates of the possible summer cooling impact of vegetation yielded a dominant winter warming
signal for most snow depths and climate types. Differences in the magnitude of air-surface
temperature offsets between sites underlain by bedrock, mineral and organic soil highlights the
importance of considering differences in unfrozen moisture content in areas where the ground
freezes and thaws seasonally. The results of this study suggest that the net ground surface
temperature impacts of increased snow trapping by vegetation will far exceed cooling caused by
enhanced shading following increases in tall vegetation in most northern environments.

1. Introduction

Satellite remote sensing shows that high-latitude
landscapes are greening in response to climate warm-
ing and Arctic amplification processes (Olthof and
Pouliot 2009, Pouliot et al 2009, Fraser et al 2011,
Ju and Masek 2016, Vickers et al 2016, Arndt et al
2019). Warmer summer air temperatures are chan-
ging northern vegetation (Post et al 2009, Olthof
and Pouliot 2010) by increasing the abundance and
density of shrubs in mountain and tundra environ-
ments (Tape et al 2006) and increasing ecosystem net
primary productivity (Euskirchen et al 2009). Field-
based empirical studies have shown increased shrub
abundance in tundra vegetation (Myers-Smith et al

2019), with plot-scale data demonstrating biome-
wide trends of increasing plant canopy height, abund-
ance of evergreen, prostrate and upright shrubs, and
a decrease in bare ground (Elmendorf et al 2012).
The combination of increased shrub biomass, abund-
ance and cover is colloquially termed shrubification
(Myers-Smith et al 2011). Shrubification can influ-
ence biophysical environments by modifying snow
depth and other associated hydrologic elements, sur-
face albedo (Myers-Smith et al 2011), northern wild-
life (Rickbeil et al 2018), the diversity and abund-
ance of understory species, ground temperatures
(Elmendorf et al 2012) and permafrost (Wilcox et al
2019). Land cover changes can markedly impact
ground thermal conditions (Myers-Smith and Hik
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2013) through various interrelated factors by: (a)
changing surface organic cover (Shur and Jorgenson
2007, Jorgenson et al 2010, Smith and Riseborough
2010a); (b) altering snow cover and associated pro-
cesses (Sturm et al 2001b, Lawrence and Swenson
2011, Wang et al 2019); and (c) changing maximum
thaw depths (Fisher et al 2016, Wilcox et al 2019).

Whether shrubification in mountain and tun-
dra environments will result in a positive or neg-
ative ground temperature feedback remains some-
what contested in the interdisciplinary literature
(Myers-Smith et al 2011, Loranty et al 2018). Empir-
ical studies have largely shown that increased shrub
cover results in warmer winter ground temperat-
ures (Sturm et al 2001b, Myers-Smith and Hik 2013,
Paradis et al 2016, Frost et al 2018), and deeper
frost table depths (e.g. Dafflon et al 2017, Pelletier
et al 2019, Wilcox et al 2019), with scenario mod-
elling also showing increased permafrost thaw (e.g.
Lawrence and Swenson 2011). Process- and physical-
based modelling has shown increased soil surface
temperatures and active layer depths resulting from
increased leaf area index (Grant et al 2019) and
the presence of shrubs (Domine et al 2016). How-
ever, increased vegetation cover can also cool sum-
mer ground surface temperatures (e.g. Myers-Smith
and Hik 2013, Paradis et al 2016, Frost et al 2018) and
shrub removal has been shown to advance ground
thaw (Kade and Walker 2008, Blok et al 2010, Nauta
et al 2015). The net impact of shrub encroachment
will likely be heterogeneous with the combined influ-
ence of peat, organic layer thickness and vegetation
on soil temperatures possibly modifying both climate
warming effects (Yi et al 2007) and maximum sum-
mer thaw depths (Walker et al 2003). The oppos-
ing impacts of freezing season warming (e.g. due
to snow) and thawing season cooling (e.g. due to
shading) emphasize the need to better constrain the
total potential ground surface temperature effect of
increasing vegetation in mountainous, Subarctic and
Arctic environments.

This study uses ground thermal modelling to
investigate the theoretical range of ground surface
temperature responses to differences in snow thick-
ness and vegetation shading caused by increases in
upright vegetation.Here, an increase in upright veget-
ation refers to changes in the height or biomass
of shrubs and trees due to greening and shrubi-
fication processes. The process-based modelling we
employ enables quantification of theoretical con-
straints on the absolute magnitude of air-surface
temperature differences because of upright vegeta-
tion during the thawing (warm) and freezing (cold)
seasons. This modelling is guided by outputs from
one-dimensional ground thermal modelling and is
parameterized by a meta-analysis of the permafrost
and ecology literature which enables us to evalu-
ate thermal impacts across a range of soil types and
climates.

2. Methods

Approaches to modelling ground surface temperat-
ures range in complexity from fully coupled surface
energy balance solutions (process-based) to local-
scale statistical fits of field data (empirical model-
ling) (Riseborough et al 2008). Process-based mod-
els are preferred in permafrost modelling studies
because empirical models do not explicitly consider
physical heat transfer theory and ground thermal
dynamics (Etzelmüller 2013). Process-based ground
thermal models use either analytical (intermediate
complexity) or numerical (high complexity) frame-
works with the latter being more computationally
onerous due to fewer implicit assumptions and thus
more complex inputs (Etzelmüller 2013, Stieglitz
et al 2003, Riseborough et al 2012). Nevertheless,
intermediate-complexity analytical models generally
consider physical processes like numerical models
while allowing efficient calculations and paramet-
erization from field data (Riseborough et al 2008).
Such analytical models have become widespread for
applications ranging from site specific modelling of
the ground thermal regime (e.g. Wright et al 2003,
Bevington andLewkowicz 2015, Ferreira et al 2017) to
global mapping of permafrost distribution (e.g. Obu
et al 2019). In this study, we combine numerical mod-
elling outputs with empirical data from field studies
to partition theoretical ground surface temperature
impacts of upright vegetation growth (figure 1).

We use the surface offset (SO) as presented in
the temperature at the top of permafrost (TTOP)
model (Romanovsky andOsterkamp1995, Smith and
Riseborough 1996, Riseborough 2004) to quantify
annual temperature differences between the air and
ground surface. Application of a TTOP framework
enables partitioning of the SO into components sum-
marizing air-surface temperature (t) differences dur-
ing the thawing (t > 0 ◦C) and freezing (t < 0 ◦C)
seasons, including implied warming impacts from
snow and cooling impacts from canopy shading. Our
estimate of the potential cooling impact of veget-
ation during the thawing season (e.g. shading and
organic mat related) on ground surface temperat-
ures employs simple heat transfer theory constrained
by local climate, and literature-informed (vegetative)
cooling scenarios. Simulations of air-surface temper-
ature differences caused by snow during the freezing
season are derived from one-dimensional energy bal-
ance simulations previously generated for a range of
index soil and climate conditions found in Canada
(Riseborough 2004).

2.1. Theoretical framework
The TTOP model is a widely used analytical frame-
work that has been validated against heat conduction
models (Romanovsky and Osterkamp 1995, Smith
and Riseborough 1996, Riseborough 2004) and
empirical field data (Wright et al 2003, Juliussen and
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Figure 1. Process-diagram illustrating the parameters used in the numerical model-based nival offset (NVO) and the empirical
model-based thawing season offset (TSO) estimations to elucidate the total annual air-surface temperature difference (i.e. the
surface offset (SO)).

Humlum 2007, Gisnås et al 2013, Bevington and
Lewkowicz 2015,Way and Lewkowicz 2018, Obu et al
2019). TTOP provides an equilibrium estimate of the
mean annual ground temperature at the top of per-
mafrost or at the base of the freeze-thaw layer in
seasonally frozen ground (Smith and Riseborough
2002). The typical equation for TTOP and the variant
used in this study is expressed in appendix 1. TTOP
uses transfer functions known as n-factors (Lunardini
1978) such as the thawing n-factor (i.e. ratio of thaw-
ing degree days at ground surface to thawing degree
days in the air; TDDs/TDDa) to convert accumulated
degree days (◦C) in the air to corresponding values at
the ground surface. These transfer functions account
for the cumulative impacts of snow, vegetation cover
and structure, and moisture on the ground surface
(Smith and Riseborough 2002). The mean ground
temperature at TTOP can be calculated using frozen
and thawed thermal conductivities for the ground, or

via a thermal offset summarizing the annual temper-
ature influence of soil characteristics in the active layer
or freeze-thaw layer (Burn and Smith 1988, Roman-
ovsky and Osterkamp 1995).

Following a TTOP framework, the mean annual
ground surface temperature (MAGST) can be
expressed as equations (1) or (2). Combining
equations (1) and (2) gives equation (3) for the SO
which determines the mean annual temperature dif-
ference between the air and the ground surface (Smith
and Riseborough 2002).

MAGST=
(TDDs− FDDs)

P
(1)

where:
MAGST=Mean annual ground surface temperature
(◦C)
TDDs= Cumulative thawing degree days recorded at
the ground surface (◦C days)
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FDDs= Cumulative freezing degree days recorded at
the ground surface (◦C days)
P = Period (typically, 365 days)

MAGST = MAAT + SO (2)

where:
MAAT = Mean annual air temperature (◦C) or
(TDDa− FDDa) ÷ P
SO=Mean annual surface offset (◦C)
TDDa=Cumulative thawing degree days recorded in
the air (◦C days)
FDDa=Cumulative freezing degree days recorded in
the air (◦C days)

SO=
1

P
(FDDa− FDDs+TDDs−TDDa) . (3)

The SO (equation (3)) can be further partitioned
into two components (equation (4)) reflecting dif-
ferences between the air and ground surface during
the freezing (t < 0 ◦C) (FDDa, FDDs) and thaw-
ing (t > 0 ◦C) (TDDa, TDDs) seasons. Function-
ally, these two separate components correspond to the
nival offset (NVO; ◦C) (equation (5)) discussed by
Smith and Riseborough (2002) and the thawing sea-
son offset (TSO; ◦C) (equation (6)) described byWay
and Lewkowicz (2018)

SO=NVO+TSO (4)

NVO=
(FDDa− FDDs)

P
(5)

TSO=
(TDDs−TDDa)

P
. (6)

To quantify air-surface temperature differences,
many prior permafrost studies have used freezing (nf)
and thawing (nt) n-factors and the original TTOP for-
mulation (appendix 1) (e.g. Karunaratne and Burn
2003, Wright et al 2003, Juliussen and Humlum 2007,
Bevington and Lewkowicz 2015, Ferreira et al 2017,
Obu et al 2019) rather than the NVO/TSO formula-
tion given above. However, numerical model experi-
ments performed by Riseborough (2004) suggest that
NVO may be more intuitively linked to air temperat-
ure than the freezing n-factor. The NVO/TSO formu-
lation also provides a direct temperature effect estim-
ate as opposed to n-factors which require climate
inputs to quantify absolute temperature impacts. For
these reasons, we use the NVO and TSO to elucidate
freezing season (e.g. snow) and thawing season (e.g.
shading & organic mat) air-surface temperature dif-
ferences in modelling scenarios (figure 1).

2.2. Simulating air-surface temperature differences
in the thawing season
Thawing season air-surface temperature differ-
ences (TSO) were modelled by adjusting cumulative

thawing degree days (◦C days) in the air (TDDa) with
five scenarios meant to represent the net impacts of
different magnitudes of vegetative cooling (e.g. due
to differing vegetation canopy or structural charac-
teristics) at the ground surface (figure 2(a)). TDDa
were derived using a sine curve fit to mean annual
air temperature and annual temperature amplitude
following Riseborough et al (2012) (supplemental S1
(available online at stacks.iop.org/ERL/16/054077/
mmedia)). Simulated TDDa used MAATs ranging
from −16 ◦C to +6 ◦C (intervals of 0.5 ◦C) and
assumed a temperature amplitude of 20 ◦C (Risebor-
ough 2004). The minimum and maximum TDDa for
a givenMAAT, when used to calculate TSO (equation
(6)) , provide theoretical limits for the net air-surface
temperature differences that could arise from dif-
ferent vegetation characteristics in the thawing sea-
son (figure 1(b)). Prior empirical estimates of nt for
upright vegetation show that the values are usually
between 0.5 and 1.0, with a best estimate around
0.75 (e.g. partial cooling) (table 1) (e.g. Kropp et al
2021). This partial cooling (nt = 0.75) scenario was
included in addition to two more extreme cooling
scenarios where only a quarter of TDDa (nt = 0.25;
large cooling) and half the TDDa (nt= 0.5; half cool-
ing) reach the ground surface (figures 2(a) and (b)).
These two more unlikely (extreme) scenarios help us
explore the limits of possible temperature effects of
vegetation in the thawing season.

2.3. Simulating air-surface temperature differences
in the freezing season
Snow cover impacts on ground surface temperat-
ures depend largely on snow characteristics including
depth, density and duration (Sturm et al 2001a, 2010,
Johansson et al 2013, Gisnås et al 2014, Way and
Lewkowicz 2018, Zhang et al 2018), local climate con-
ditions and the soil layers’ characteristics (Osterkamp
and Romanovsky 1998, Romanovsky and Osterkamp
2000, Riseborough 2004, Throop et al 2012). TTOP-
based studies typically have related freezing n-factors
(nf) to snow depths or ecosystem types using field
data (Ménard et al 1998, Juliussen andHumlum2007,
Karunaratne et al 2008, Davesne et al 2017, Gisnås
et al 2016) or one-dimensional model simulations
stratified by climate types (Henry and Smith 2001,
Smith and Riseborough 2002, Way and Lewkowicz
2016, 2018, Obu et al 2019). A critical challenge to
both approaches is the role of unfrozen moisture and
latent heat in the active layer which modifies the
thermal impact of snow for different surficial types
(Romanovsky and Osterkamp 2000, Riseborough
2002, 2004, Zhang 2005, Throop et al 2012).

In our model scenarios, we determined NVO
for three standard surficial types (bedrock, mineral
soil, and organic soil) meant to broadly represent
a range of moisture/soil thermal characteristics in
northern environments using experiments originally
performed by Riseborough (2004) (figures 2(c) and
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Figure 2. (a) Simulated thawing degree days (◦C days; TDDa) in the air (◦C days; TDDa) and at the ground surface used for five
thawing season cooling scenarios. TDDa are presented as thawing n-factor (nt) scenarios, where nt= 1.0 is equivalent to the
thawing degree days in the air (no cooling). Thawing n-factors and thawing degree days at the ground surface are stratified by
mean annual air temperature (◦C); (b) simulated thawing season offsets (◦C; TSO) calculated using equation (6), the thawing
degree days in the air and ground surface for warm-season cooling scenarios presented in (a); interpolated nival offset (◦C; NVO)
surfaces derived from Riseborough (2004) TONE simulations, with thermal and moisture properties for (c) bedrock and
(d) mineral soil. Surfaces were generated using MAATs ranging from−18 ◦C to+6 ◦C and snow depths from 0 to 1.5 m.
Contours for NVO use a 1 ◦C interval. Surface plots were generated using the fields package (Nychka et al 2020) in R.

(d)). Each surficial type corresponds to a different
moisture regime ranging from high (i.e. organic soil),
to moderate (i.e. mineral soil) to negligible (i.e. bed-
rock) moisture contents. These simulations were ori-
ginally prepared with the one-dimensional finite ele-
ment thermal conduction model TONE (Goodrich
1978, 1982) which has been thoroughly validated
for use in northern environments with empirical
data, soil analytical solutions and surface energy bal-
ance modelling (Zhang et al 1996, 2003, Zhang and
Stamnes 1998, Oelke et al 2003, Riseborough 2004,
Smith and Riseborough 2010b, O’Neill and Burn
2017). The original TONE simulations were per-
formed using MAATs ranging from−18 ◦C to+6 ◦C
and snowdepths from0 to 1.5m (see supplemental S2
for model details). These simulations were not avail-
able in tabular form but were precisely digitized from
Riseborough (2004) and then interpolated using a
thin plate spline from the fields package (Nychka et al
2020) in R (figures 2(c) and (d); see supplemental S3
for full graphics).

Estimates of NVO were generated for bedrock,
mineral, and organic soil for the sameMAATs used in
the TSO experiments (−16 ◦C to+6 ◦C, 0.5 ◦C inter-
vals) and for late-winter snow depths ranging from
0 to 1.5 m (0.1 m intervals). Snow cover duration

varied depending on the air temperature (e.g. snow
cover duration increased with cooler MAATs) and
numerical simulations used a mean snow density of
250 kg m−3; therefore, applying this method across
different snow densities (e.g. ecosystem types or cli-
mate classes) would require normalization to equi-
valent snow depth (e.g. Riseborough 2004, Way and
Lewkowicz 2016). For our analysis, we focused on dif-
ferences between bedrock and mineral soil. Organic
soil simulations are only presented in the Online Sup-
plement because of similarities between results for
mineral and organic soils, though divergence does
occur at MAATs colder than −8 ◦C (supplemental
S4).

3. Results

3.1. Model simulations
The results in this section are presented in the form
of SOs (i.e. SO or NVO + TSO) which sum the
model-based estimates for the warming effect of
snow cover (NVO) and the scenario-based cooling
effects attributed to vegetation (TSO) (e.g. figure 1).
Simulated SOs show the mean annual air-surface
temperature difference, with positive values when
warming exceeds cooling (NVO > TSO) and negative

5
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Figure 3. Violin plots showing the results of simulated SOs (n= 720) (NVO+ TSO; ◦C) for (a) bedrock, (b) mineral soil and
(c) organic soil. Five thawing n-factor (nt) scenarios (representing different vegetation covers) were used, ranging from maximum
(nt= 0.0) to no (nt= 1.0) cooling. Positive values indicate scenarios where warming exceeded cooling (NVO > TSO) and
negative values represent cooling exceeding warming (TSO > NVO). The plots can be interpreted as follows: median values are
represented by white dots, the interquartile range is represented by the black bar in the center of the plot, the first and third
quartiles are represented by the black lines stretching up and down from the black bar, and the probability density distribution of
the data can be interpreted by the shape of the plot.

values when cooling exceeds warming (TSO >NVO).
In total, we derived NVOs for 45 different MAATs
and 16 different late-winter snow depths yielding a
total of 720 NVOs for each of the three soil types
(n = 2160 NVOs total). Adding the NVO estimates
to TSO values from the five vegetation cooling scen-
arios (e.g. figure 2(b)) resulted in a total of 10 800
estimates of SO (figure 3). Individual results for all
cooling scenarios and surficial types are presented

in the supplemental documentation (supplemental
S5–S9).

3.2. SO simulations for bedrock, mineral and
organic soil
SO simulations for bedrock, mineral and organic soil
produced median estimates above 0 ◦C for each of
the cooling scenarios meant to represent different
ranges of vegetation coverage (figure 3). Mean SOs
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Figure 4. Surface contour plot showing the simulated SOs (NVO+ TSO; ◦C) for (a) bedrock and (b) mineral soil as a function of
snow depth (m) and mean annual air temperature (◦C). SOs were simulated for the thawing season full cooling scenario where
no thawing degree days in the air reach the ground surface (nt= 0.0).

in all scenarios were also greater than 0 ◦C and in
most scenarios were statistically different across sur-
ficial material types (supplemental S10). SOs were
closer to 0 ◦C for bedrock under each cooling scenario
when compared to mineral and organic soil. SOs
were also always below +10 ◦C in bedrock simula-
tions, whereas mineral and organic soils produced
SOs exceeding+10 ◦C inmany cooling scenarios. The
large cooling (nt= 0.25), half-cooling (nt= 0.5), and

partial cooling (nt= 0.75) scenarios produced nearly
the same number of SO simulations above 10 ◦C
as those below 0 ◦C for both mineral and organic
soils. SOs for the maximum cooling scenario exhib-
ited the largest range of any scenario, though bed-
rock (∼−10 to +8 ◦C) showed a smaller range in
SOs than mineral (∼−10 to +13 ◦C) and organic
soil (∼−10 to +12 ◦C). The no cooling scenario
(nt = 1.0) resulted in the smallest range in SOs, with
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bedrock (∼0 to+10 ◦C) again having a smaller range
than mineral and organic soils (∼0 to +14 ◦C). The
partial cooling scenario (i.e. best-estimate of thawing
season cooling effects of upright vegetation; nt= 0.75;
table 1) produced only a limited number of simula-
tions that caused an overall cooling impact (i.e. neg-
ative SOs) (figure 3). Generally, decreasing the thaw-
ing season cooling effect (i.e. increasing nt) resulted in
three main outcomes for all surficial material types:
(a) an increased number of simulations with posit-
ive SOs; (b) a decreased total range of SOs, albeit less
pronounced for bedrock; and (c) more simulations
with positive SOs for mineral and organic soils than
bedrock.

3.3. SOs, late-winter snow depth andmean annual
air temperature
Simulated SOs for each scenario, as a function of
snow depth and mean annual air temperature, are
presented in supplemental S5–S9 with figures 4 and
5 depicting only the maximum (nt= 0.0) and partial
(nt = 0.75) cooling scenarios for bedrock and min-
eral soil. As a simplification, MAAT is discussed here
in the context of typical air temperature ranges used
for permafrost zonation: (a) continuous permafrost
associated with MAATs <−8 ◦C; (b) discontinuous
permafrost represented by MAATs between −8 ◦C
and 0 ◦C; and (c) mostly seasonal ground freezing for
MAATs >0 ◦C.

SOs for the complete cooling scenario (nt = 0.0;
figure 4) differed between bedrock and mineral soil,
with the mineral soil simulations producing lar-
ger SOs than bedrock (i.e. reaching +12 ◦C and
+8 ◦C, respectively) at deeper snowdepths and colder
MAATs. The largest positive SOs for bedrock (+6 ◦C
to+8 ◦C)were produced atMAATs typically found in
the continuous permafrost zone at late-winter snow
depths exceeding∼0.8m. Comparatively, for mineral
soil the largest SOs (+6 ◦C to+12 ◦C)were simulated
at snow depths exceeding ∼0.5 m and MAATs less
than−6 ◦C (i.e. within climates characteristic of con-
tinuous and discontinuous permafrost zones). Neg-
ative SOs were more frequently produced in the sea-
sonally frozen ground zone for both surficial types but
also at shallower snow depths (∼0.1 m to∼ 0.6 m) at
MAATs typical of the discontinuous permafrost zone
(e.g. 0 ◦C to −8 ◦C). Bedrock, however, typically
produced negative SOs in deeper snow depths than
mineral soil. For example, at ∼−5 ◦C, negative SOs
occurred at snow depths as high as ∼0.4 m for bed-
rock, while 0.1 m was sufficiently thick for warming
to exceed cooling in mineral soil. In the climatic zone
typical of discontinuous permafrost zone, TSO had a
stronger impact on bedrock at shallower snow depths
(e.g. between ∼0.2 m and 0.6 m); however, deeper
snow depths only produced negative SOs at MAATs
between∼−3 ◦C and 0 ◦C.

The partial cooling scenario (i.e. nt = 0.75;
figure 5) showed greater similarity in the SO patterns

for bedrock and mineral soil. NVO was greater than
the TSO atmost late-winter snow depths andMAATs,
with negative SOs constrained to a narrow range of
conditions for both surficial types. The largest pos-
itive SOs for bedrock and mineral soil (+8 ◦C and
+14 ◦C, respectively) occurred at deeper snow depths
and MAATs typical for the continuous permafrost
zone. Negative SOs were produced for both surfi-
cial types in climatic conditions characteristic of dis-
continuous permafrost, at late-winter snow depths
below 0.1 m. At MAATs usually in the zone of sea-
sonal ground freezing, negative SOs only occurred
where snow depth was less than 0.2 m and 0.4 m
for mineral soil and bedrock, respectively. However,
whereMAATs exceeded+5 ◦C, negative SOs occurred
at deeper snow depths. Overall, negative SOs were
generally simulated in warmer climates where snow
depths were shallow (i.e. ∼<0.1 m and ∼<0.2 m in
mineral soil and bedrock, respectively).

4. Discussion

4.1. Implications of vegetation growth impacts on
ground surface temperatures
Several implications can be drawn from the sim-
ulation results presented in this study. First, at
MAATs usually associated with continuous perma-
frost, it is exceedingly difficult, even under the largest
vegetation cover cooling scenarios (e.g. nt = 0.00,
nt = 0.25), to produce MAGSTs that are appre-
ciably colder than MAATs when the late-winter snow
depth exceeds 50 cm. The modelled warming effect
of thicker snow in the freezing season typically over-
whelms cooling effects during the thawing season
in most scenarios, including most simulations with
no thawing season temperatures reaching the ground
surface (nt = 0.0). This result aligns with a recent
northern hemisphere-wide observational study that
showed that cold-season effects on ground thermal
regimes are larger than warm-season effects in per-
mafrost environments (Kropp et al 2021). Second,
the situations where SOs can be negative are lim-
ited to those with sizable vegetation-induced cool-
ing, shallow snow cover and warmer MAATs. This
agrees with a variety of empirical andmodelling stud-
ies finding that local ground temperature variabil-
ity in northern environments is mostly controlled
by snow characteristics (Lawrence and Slater 2010,
Palmer et al 2012, Park et al 2014, Roy-Léveillée
et al 2014, Wang et al 2016, Zhang et al 2018,
Euskirchen et al 2016). Third, the real-world cool-
ing effects of upright vegetation in the thawing sea-
son are likely relatively small (e.g. nt= 0.75; table 1).
Nearly all studies with field data on thawing n-factors
provide ranges of 0.50–1.1 for shrubs and upright
vegetation suggesting modest reductions (or even
increases) in thawing degree days reaching the sur-
face (table 1). For example, Lewkowicz et al (2012)
reported thawing n-factors for 69 shrub and 66 forest
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Figure 5. Surface contour plot showing the simulated SOs (NVO+ TSO; ◦C) for (a) bedrock and (b) mineral soil as a function of
snow depth (m) and mean annual air temperature (◦C). SOs were simulated for the thawing season partial cooling scenario
where three quarters of the thawing degree days in the air reach the ground surface (nt= 0.75).

sites in northwestern Canada with median nt values
of 0.91 and 0.83, respectively. This agrees with Wang
et al (2019) who used a coupled land-atmosphere
model to show that the summer effect of Arctic
canopy shading only minimally cooled soil temper-
atures. In our study, the partial cooling scenario
(nt = 0.75) is the most similar to median literature
values for shrubs and trees, and this scenario showed
very few scenarios where TSO > NVO for bedrock,

mineral soil or organic soil (figures 5(a) and (b);
supplemental S8).

Further, our modelling scenarios likely under-
estimated the magnitude of shrubification- and
upright vegetation-induced ground surface temper-
ature warming by not including the impact that
enhanced upright vegetation growth would have on
snow accumulation or the thermal characteristics of
the snowpack. Amyriad of studies have demonstrated
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that taller vegetation is associated with greater snow
accumulation and extensive drifting around dense
patches (Nicholson and Granberg 1973, Nicholson
1979, Sturm et al 2001a,Marsh et al 2010, Palmer et al
2012, Lantz et al 2013, Myers-Smith and Hik 2013,
Jean and Payette 2014, Paradis et al 2016, Frost et al
2018, Pelletier et al 2019). Further, snow density in
areas of upright vegetation is typically lower than for
tundra snow (Sturm et al 2001a, Loranty et al 2018),
thus a transition to less dense snow would favor less
winter heat escape and enhanced air-surface temper-
ature differences in the freezing season. Finally, the
simulations that we present highlight the challenges
in deciphering short-term ground surface temperat-
ure data in the absence of a robust understanding
of local snow conditions and geomorphological con-
text. Snow cover can influence the ground thermal
regime, independent of the near surface air tem-
peratures (Stieglitz et al 2003) through a variety of
factors such as timing, duration, accumulation, dens-
ity and melting, in addition to interactions between
snow cover and other variables such as vegetation and
geographic location (Zhang 2005). Trend assessment
of ground surface temperature data under climate
change scenariosmay thus be susceptible to bias as cli-
mate driven reductions to snow cover could diminish
or even mask potential ground temperature warm-
ing that may otherwise be occurring (e.g. Zhang et al
2008).

Overall, our modelling scenarios suggest that
even a small change in late-winter snow depth (e.g.
10 cm) can be sufficient to overcome a large vegetat-
ive cooling effect or alternatively a summer warming
effect induced by climate change. Therefore, climate
driven reductions and increases to snow cover have
the potential to either dampen or amplify ground
surface warming over differing timescales, respect-
ively (Zhang 2005, Stieglitz et al 2003). These res-
ults highlight the need for enhanced deployment of
low-cost methods for monitoring snow depth and
snow thermal characteristics at remote field sites (e.g.
Danby and Hik 2007, Lewkowicz 2008, Staub and
Delaloye 2017, Tutton and Way 2021). Interactions
between soils, vegetation species, climate and the
chemical composition of litter can also affect the rate
of soil organic carbon sequestration and the quantity
of carbon stock in soils (Lal 2005). The soil micro-
meteorology results from our study may have implic-
ations for soil carbon cycling because changes in
soil temperature can: (a) stimulate microbial respir-
ation (Fuchslueger et al 2019); (b) impact the rate of
biogeochemical processes in soils, affecting the release
of carbon from the ground (Fenner et al 2005, Jones
et al 2005); (c) alter plant partitioning of carbon
(Vogel et al 2008); and (d) change greenhouse gas
fluxes (Treat et al 2015) as temperature andwater con-
tent are correlated with soil carbon (Bond-Lamberty
et al 2016).

5. Limitations

There are several drawbacks to the overall approach
used in this study warranting discussion. Most
importantly, we characterize total effects with a
process-based analytical model that, although guided
by numerical model simulations, was not explicitly
run using a fully-coupled atmospheric-land surface
energy balance scheme. The use of late-winter snow
depth as a single summary of snow cover effects on the
ground surface will not include the potential impacts
of short duration Goodrich 1982, 1978 winter warm-
ing events or early-onset fall snow accumulation (e.g.
Riseborough 2004, O’Neill and Burn 2017, Jan and
Painter 2020). However, late-winter snow thickness
is generally found to be amongst the strongest pre-
dictors of ground temperature variability in field and
model-based studies (Nicholson 1979, Ménard et al
1998, Zhang 2005, Gisnås et al 2014, Sannel et al 2016,
Fu et al 2017, Way et al 2018, Way and Lewkowcz
2018, Goncharova et al 2019, Pelletier et al 2019).
Application of our NVO estimation method to sim-
ulations using a surface energy balance approach
(Zhang et al 2003 showed that our SO simulations had
a mean absolute difference of 0.9 ◦C ± 0.6 ◦C across
595 model years (supplemental S11).

Another limitation is related to trade-offs
between the thermal conductivity and moisture con-
tents between bedrock, mineral and organic soils on
air-surface temperature differences. In our study, the
larger modelled negative SOs for bedrock are likely
due to lower unfrozen moisture contents and min-
imal latent heat release during active layer freeze up.
However, both thermal conductivity and moisture
contents can influence the ground thermal regime
(e.g. Jusak et al 2016) with thermal conductivity vary-
ing across soil textures, vegetation covers and organic
layers (Gray et al 1988). A lower thermal conductivity
of organic soils compared tomineral soils could result
in reduced vertical heat fluxes within the soil column
and greater insulation of the ground from warmer
summer air temperatures (O’Donnell et al 2009). In
turn, unfrozen moisture may mitigate ground sur-
face cooling in frozen ground, increase heat fluxes
originating from the ground and strengthen the insu-
lating effects of snow cover (Romanovsky and Oster-
kamp 2000). For example, snow can have a greater
influence on air and ground temperature relations
when moisture contents in the active-layer are high
(Throop et al 2012). While soil properties are a main
influence on the ground thermal regime, our method
did not allow to disaggregate between the specific
impacts of soil moisture content and thermal con-
ductivity and thus could not be used to investigate
the trade-offs between the two soil properties. Dis-
aggregating across different soil properties may be
important for future work as variations in veget-
ation structure and composition are the result of
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interactions between various parameters including,
climate, hydrology, thermal conditions, disturb-
ance factors and microbial conditions (Walvoord
and Kurylyk 2016). For example, changes in mois-
ture content and/or surface water conditions asso-
ciated with permafrost could change vegetation
composition by shifting from black spruce to bogs
(Baltzer et al 2014).

Additionally, the analytical model framework
we use (TTOP) is derived from a model that
assumes equilibrium rather than transient condi-
tions. Application of this model to real-world condi-
tions can be problematic in ice rich permafrost envir-
onments undergoing rapid environmental change
(Riseborough 2007, Riseborough et al 2008). In gen-
eral, colder MAATs will result in colder perma-
frost temperatures (Throop et al 2012), but various
factors can make the relationship less direct. Per-
mafrost temperatures are influenced by climate as
a first-order control while microclimate is a con-
trol on ground surface temperatures, with vegetation,
moisture contents, snowpack characteristics, topo-
graphy and earthmaterials impacting temperatures at
a local scale (Goodrich 1982, Judge 1973, Throop et al
2012). We mostly reconciled this issue by examining
ground surface temperatures rather than deeper sur-
ficial layers, but the effects of near-surface temperat-
ures on the active layer remain under parameterized
(Riseborough 2004).

Finally, the approach we use to characterize
vegetation-related cooling does not disaggregate
the vegetation-specific impacts on the local surface
energy balance. Aggregation could thus average out
opposing effects making it difficult to isolate spe-
cific processes, though the overall results would be
unchanged. For example, shrubs can reduce active
layer thickness (i.e. cool the ground) during the snow-
free season by shading while also advancing snowmelt
timing when their branches protrude through the
snow surface and subsequently allow for earlier act-
ive layer thaw (i.e. ground warming) in the spring
(Wilcox et al 2019). Here, the method will not disag-
gregate between both opposing processes. Rather, the
result will reflect the net yearly impact on the ground
surface temperature regime. It should be noted that
the range of thawing season cooling simulations we
use is not representative of the real-world ranges
observed in field studies (refer to table 1). We conser-
vatively decided to exclude scenarios where nt = >1
(common in empirical studies) and included those
where nt = <0.5 (uncommon in empirical studies)
(see table 1) which biases our results towards neg-
ative SOs (e.g. TSO > NVO) and overestimates the
cooling effect of upright vegetation in the thawing
season. Nevertheless, these extreme scenarios can
help provide constraints on the maximum effects
that could be (but are typically not) observed in the
field.

6. Conclusion

In this study, we presented a range of simulations that
explore air-surface temperature differences in thaw-
ing and freezing seasons for a range of theoretical sur-
ficial types and vegetation cooling scenarios. Signi-
ficant contrasts (related to unfrozen moisture con-
tent) were observed between the estimated temper-
ature effects of snow thickness for different surficial
types highlighting the importance of geomorpholo-
gical context for understanding thermal impacts of
vegetation and snow cover at the ground surface.
Most simulations were unable to produce a thaw-
ing season vegetation cooling effect large enough to
overcome the warming impact of snow cover; how-
ever, scenarios with near-surface bedrock had smal-
ler differences between snow and vegetation effects.
Under most scenarios, the impact of snow cover was
dominant at late-winter snow depths greater than
20 cm even with substantial thawing season cool-
ing assumptions. Using best estimates from the lit-
erature, our results overwhelmingly show net warm-
ing due to snow cover that exceeds cooling effects
induced by vegetation during the thawing season.
Scenarios where ground surface temperatures were
cooler than air temperatures often required unreal-
istic assumptions of a near total decoupling of air
and ground surface temperatures during the thawing
season.

We thus hypothesize that an annual cooling
impact of enhanced vegetation growth is most likely
to be observed where late-winter snow depths are
shallow with extensive summer shading, coarser
(drier) near-surface soils, and warmer mean annual
air temperatures. The insights gained from this mod-
elling experiment agree with prior empirical stud-
ies suggesting that the overall impact of taller veget-
ation will largely be long-term ground temperature
warming. The influence of winter snow thickness
on ground surface temperatures remains a consider-
able source of uncertainty in characterizing northern
environmental change and may mask subtle changes
in local temperature andmoisture regimes. These res-
ults further highlight the necessity of enhanced snow
and soil characteristic modelling and associated field
data collection at northern ecological field sites.
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Appendix 1

Permafrost-variant of the temperature at
the top of permafrost model

TTOP= (( ktkf )× nt× TDDα)− (nf× FDDα))÷ P.

Also re-expressed as:

TTOP = MAGST+TO
TTOP = (MAAT+ SO)+TO
TTOP = (MAAT + (NVO + TSO))+TO

where:
kt = Thermal conductivity of thawed ground
(Wm−1 K−1)
kf = Thermal conductivity of frozen ground
(Wm−1 K−1)
FDDa=Cumulative freezing degree days recorded in
the air (◦C days)
FDDs= Cumulative freezing degree days recorded at
the ground surface (◦C days)
MAGST=Mean annual ground surface temperature
(◦C)
MAAT=Mean annual air temperature (◦C)
nf= Freezing n - factor (unitless) calculated as FDDs
÷ FDDa
nt = Thawing n - factor (unitless) calculated as
TDDs÷ TDDa
NVO= Annual nival offset (◦C)
P= Period (days) calculated typically as 365

SO= Annual surface offset (◦C)
TDDa=Cumulative thawing degree days recorded in
the air (◦C days)
TDDs= Cumulative thawing degree days recorded at
the ground surface (◦C days)
TO= Thermal offset (◦C)
TSO= Annual thawing season offset (◦C).
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