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Abstract
Coastal areas have been affected by hazards such as floods and storms due to the impact of climate
change. As coastal systems continue to become more socially and environmentally complex, the
damage these hazards cause is expected to increase and intensify. To reduce such negative impacts,
vulnerable coastal areas and their associated risks must be identified and assessed. In this study, we
assessed the flooding risk to coastal areas of South Korea using multiple machine learning
algorithms. We predicted coastal areas with high flooding risks, as this aspect has not been
adequately addressed in previous studies. We forecasted hazards under different representative
concentration pathway climate change scenarios and regional climate models while considering
ratios of sea level rise. Based on the results, a risk probability map was developed using a
probability ranging from 0 to 1, where higher values of probability indicate areas at higher risk of
compound events such as high tides and heavy rainfall. The accuracy of the average receiver
operating characteristic curves was 0.946 using a k-Nearest Neighbor algorithm. The predicted risk
probability in 10 year increments from the 2030s to the 2080s showed that the risk probability for
southern coastal areas is higher than those of the eastern and western coastal areas. From this study,
we determined that a probabilistic approach to analyzing the future risk of coastal flooding would
be effective to support decision-making for integrated coastal zone management.

1. Introduction

Climate change is a severe threat to current and future
generations. Natural hazards have become more
unpredictable and occur more frequently and with
greater force due to climate change (Berz et al 2001,
Kundzewicz et al 2014). Coastal areas are threatened
by hazards such as flooding, erosion, and storms
(Klein et al 2003, Nicholls and Cazenave 2010, Saxena
et al 2013, Lilai et al 2016) and will be more vulner-
able in the future to predicted climate change impacts
such as sea level rise and extreme weather events
(Klein andNicholls 1999, Lilai et al 2016, Vousdoukas
et al 2018). Furthermore, the number of people living
in coastal areas globally is expected to increase from
1.8 to 5.2 billion by the 2080s (IPCC 2014, Bhable et al
2015, Neumann et al 2015). As coastal systems con-
tinue to become more socially and environmentally
complex, the cost of damage from coastal hazards due
to climate change impacts will also rise (Kleint et al

2001, IPCC 2007, Szlafsztein and Sterr 2007, Balica
et al 2012).

Natural disasters in Korea are mostly caused by
meteorological events (Yoon et al 2016, Azam et al
2017, Han et al 2018). The total damage caused by
disasters in the last 10 years is attributed mainly
to typhoons (49%) and heavy rain (40%) (Min-
istry of the Interior and Safety 2016). Since 1990,
the numbers of heavy rain advisories and warnings
have increased by 25% and 60%, respectively (Korea
Meteorological Administration 2011). Additionally,
South Korea is a peninsula with several large cities
situated along the coast and 27.5% of its total pop-
ulation lives in coastal areas (Oh et al 2020). Thus,
a series of hazard prevention plans and the identi-
fication of at-risk areas are crucial for these coastal
areas (Tran et al 2008, Kourgialas and Karatzas 2011).
In this study, the risk of coastal flood hazards was
analyzed, focusing on flooding caused by extreme
weather events and sea level rise.

© 2020 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/aba5b3
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aba5b3&domain=pdf&date_stamp=2020-08-25
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4240-5682
mailto:dklee7@snu.ac.kr


Environ. Res. Lett. 15 (2020) 094052 S-J Park and D-K Lee

Existing research on coastal flooding has primar-
ily used quantitative indices to characterize risks. The
index method expresses the vulnerability of an area
using arithmetic operations that incorporate classi-
fied factors affecting hazards. Several studies have
generated a coastal/composite vulnerability index for
calculating and assessing of coastal hazards in differ-
ent study areas by using different variables (Dwarak-
ish et al 2009, Sankari et al 2015, Pantusa et al 2018,
Sahana and Sajjad 2019). These index studies have
focused primarily on analyzing vulnerabilities that
may indicate the relative risks encountered by coastal
areas, but do not specifically calculate the actual risks.

These previous studies also only analyzed current
vulnerability or risk and did not analyze future risks;
however, several others have analyzed future risks.
They calculated the future risk of coastal hazards by
estimating water level heights (Wahl et al 2016, Vous-
doukas et al 2016). Unlike previous reports, this study
quantitatively calculated coastal hazard risks and pre-
dicted future risks by considering the occurrence of
compounding probabilistic events such as extreme
precipitation and the rising tidal ratio. Although they
analyzed the risk of coastal hazards using statistical
and physically-based methods, there are some factors
that could not be addressed. These studies did not
obtain a spatial distribution of risk (Wahl et al 2016)
and analyzed continental scales that are difficult to
apply to regional scales (Vousdoukas et al 2016). Also,
they did not consider uncertainty by comparing mul-
tiple models to predict future hazards. In addition,
rainfall is a very important factor in flooding but they
herein focus only on changes in water level.

In short, this study analyzed the actual risk prob-
ability, not a relative vulnerability, using a coastal
flooding risk analysis that considers rainfall events as
well as tidal levels, because the risk to coastal areas
of heavy rainfall depends on the tide (Van Den Hurk
et al 2015, Eilander et al 2020). Additionally, future
coastal flooding risks were estimated by consider-
ing the actual rising rate of the tide and the forecas-
ted rainfall according to different representative con-
centration pathway (RCP) climate change scenarios
and regional climatemodels.Multiplemachine learn-
ing (ML) algorithms that have been widely used in
recent studies as part of probabilistic approaches were
used to probabilistically calculate the coastal flood
risk. The results of this study identify future at-risk
areas and can support decision making for integrated
coastal zone management (ICZM) in South Korea
by identifying which areas require hazard prevention
plans.

2. Materials andmethod

2.1. Study area
In this study, the spatial coverage is South Korea (33–
38◦ N, 125–131◦ E). Summer in South Korea is gen-
erally hot andwet and typhoons that occur frequently

in July and August bring heavy rainfall to coastal
areas. The heaviest rainfall in this region was recor-
ded in mid-July and mid-August when the daily aver-
age rainfall ranged between 220 mm and 322 mm.
The maximum daily rainfall recorded for the period
of 1973–2010 was 870.5 mm in Gangneung, South
Korea, on August 31, 2002 (Korea Meteorological
Administration 2011).

The total length of the coastline of Korea is
14 962.8 km and the spatial scope of this research was
set up 1 km from the coastline, following the ‘coastal
management law’ in Korea. The coastline along the
East Sea is monotonous, and the water depth is gener-
ally deep. TheWest Sea has a shallow coastline with an
average depth of 44 m. The coastline of the South Sea
is complex and contains numerous islands and har-
bors. Figure 1 shows the locations of the 68 weather
observatories and 46 tide observatories in Korea.

2.2. ML algorithms
A coastal hazard risk analysis was implemented using
threeML algorithms: k-nearest neighbor (kNN), ran-
dom forest (RF), and support vectormachine (SVM).
Previous studies have frequently compared these
three machine learning techniques in their prediction
methods (Harefa and Pratiwi 2016, Potdar and Kin-
nerkar 2016; López-Serrano et al 2016, Danades et al
2017, Thanh Noi and Kappas 2017). The results of
these algorithms were subsequently compared.

The kNN, proposed by Cover and Hart (1967), is
an easy-to-implement supervised ML algorithm that
is as simple as the Naive-Bayes Classifier (Jadhav and
Channe 2016). The proximity of data points to one
another affects the results of the algorithm (Bhavsar
and Ganatra 2012, Kim et al 2012). In this study, the
analysis was performed by setting k as 5, 10, and 15.
The analysis was the best when k was set to 5. The
RF algorithm is an ensemble learning method oper-
ated by constructing multiple decision trees during a
training period, and it is frequently used in research
along with ML techniques such as SVM and neural
networks. More details related to RF are described
by Breiman (2001). Setting the number of trees and
depths is important; herein, these valueswere set to 10
and 3, respectively. The SVM algorithm, proposed by
Cortes and Vapnik (1995), is a versatile ML algorithm
in that it can be classified in unlabeled datasets.When
dividing two sets to create the classifier hyperplane
(Rebentrost et al 2014), various classifiers such as lin-
ear and non-linear forms can be generated accord-
ing to the characteristics of the data. Therefore, this
algorithm is a high-performing technique used to
analyze real-world data (Tong and Koller 2001). Set-
ting the kernel function is important in SVM since
it helps to overcome shortcomings related to linear
separability (López-Serrano et al 2016). In this study,
we used the radial basis function (RBF) kernel func-
tion, which makes non-linear classifiers.
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Figure 1. (a) Countries in East Asia, (b) South Korea and the study area (Coastal area: 1 km, Geodetic Datum: WGS84).

These ML algorithms were used in this study
to compensate for the shortfalls of each individual
algorithm (Hao et al 2019). Additionally, by usingML
algorithms, we could consider complex and diverse
influencing factors caused by climate change. The
results of the algorithms were compared through
approximately 700 iterations to reduce the uncer-
tainty of the model itself.

2.3. Method
2.3.1. Data
The variables used in the analysis (tide, rainfall, elev-
ation, slope, urban area, and grassland) were selected
based on previous literature reviews (Mahendra et al
2010; Sankari et al 2015, Ashraful Islam et al 2016,
Giardino et al 2018, Pantusa et al 2018), while rain-
fall, which was unaddressed in previous studies, was
used to consider compounding events in this study.
All data obtained for the risk analysis were trans-
formed into a 1 km2 grid because the raw data con-
sisted of different points and polygons. All of the
data were obtained fromOfficial KoreanGovernment
websites (table 1). They were organized into a data
table by day and grid. In addition, a map showing
data for coastal flooding traces was obtained and used
as the labeling data for classifying a machine learn-
ing algorithm. The grids on the map where coastal
flooding occurredwere labeled ‘1’, or ’0’ if no flooding
occurred.

2.3.2. Coastal risk analysis
The entire data table, in which all variables were
organized by day and grid, was undersampled for the
risk analysis due to imbalanced data that included

more cases of non-flooding than flooding. By under-
sampling the data, the risk analysis could be per-
formed (He and Garcia 2009). The undersampled
data were subsequently split into training (70%) and
test (30%) datasets, after which the risk analysis
was implemented using kNN, RF, and SVM. The
procedure from the undersampling to running the
algorithms was repeated 1200 times. After running
the three ML algorithms, the results were compared
using the receiver operating characteristic (ROC)
accuracy scores and curves. ROC curves are mainly
used to assess model accuracy, and the model is
judged by the relationship between the false positive
rate (1-Specificity) and the true positive rate. The risk
probability was calculated, and risk maps were con-
structed using the results obtained from the three ML
algorithms with the highest accuracy scores.

2.3.3. Prediction
The future risk probability was predicted using the
highest performance algorithm. To predict future
risks under the impacts of climate change, the con-
tinuous variables (rainfall and tidal level) were fore-
casted daily into the future. These were used to eval-
uate future coastal flooding risks.

Initially, the rainfall data used was the RCP
AR5 scenario (4.5, 8.5) precipitation data pro-
duced from five different regional climate mod-
els (RCMs): CCLM, HadGEM3-RA, RegCM4, SNU-
RCM, and WRF. These models were produced
by the Regional Climate Detailing Project in East
Asia (CORDEX-EA: Coordinated Regional Down-
scaling Experiment—East Asia, source: http://cordex-
ea.climate.go.kr/cordex). These were obtained from
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Table 1. List of variables.

Data (abbreviation)
Source
(abbreviation, Website) Type Period

Mean tide (T) Korea Hydrographic and Oceanographic Agency
(KHOA, www.khoa.go.kr/eng/)

Point 2002–2014

Daily maximum rainfall (R) Korea Meteorological Administration
(KMA, https://web.kma.go.kr/eng/index.jsp)

Elevation (E) Grid 2010
Slope (S)
Urban area (U)
Grassland (G)

Ministry of Environment
(ME, https://eng.me.go.kr/eng/web/main.do)

Coastal flood trace (CF) Korea Land and Geospatial
Informatrix Corporation
(LX, www.lx.or.kr/eng.do)

Polygon 2002–2014

RCP precipitation data KMA Climate Information Portal
(KMA, http://climate.go.kr)

Ascii 2026–2085

the KMA climate information Portal (table 1), and
KMA uses the HadGEM3-RA as its principal data.
Daily maximum rainfall amounts for the differ-
ent RCP scenarios of the RCMs were used, and
monthly average rainfall values were calculated. Next,
the tide was forecasted using real tidal range data
obtained from a number of tidal observation stations.
A Bayesian-influenced generalized additive model
(GAM) was used to accurately forecast the tidal data
as a sine-shaped curve with repetitive rising and fall-
ing trends. The Bayesian-influenced GAM, based on
Bayes’ theorem, performs regression while keeping
functions smooth as a non-linear regression (Wood
2020). The past tidal pattern for each tidal station was
analyzed and future tidal values were calculated and
organized by day. The monthly average tidal values
were then calculated from the daily tidal values.

Lastly, the calculated future tidal and rainfall data
were then used to predict future risk probabilities.
Future target periods ranged from the 2030s to the
2080s, with one division spanning 5 years (e.g. 2050:
January 1, 2046–December 31, 2055). The process of
running the model for prediction consisted of three
steps (figure 2). (1) The kNN classifier was created
similar to the manner in which it was created in the
coastal risk analysis, (2) tidal and rainfall variables
were each replaced by the predicted values, and (3)
the replaced data table was used for prediction. This
routine was repeated almost 1200 times to reduce
uncertainty.

3. Results

3.1. Comparison of ML algorithms
As a result of running the threeML algorithms for the
coastal risk analysis, the accuracy of the resulting aver-
age ROC curves of each algorithm were kNN (0.946),
RF (0.938), and SVM (0.940), as shown in figure 3(a).
The ROC curves of the other models did not appear

to be low either; however, the kNN model produced
relatively better results. Also, figure 3(a) shows that
the kurtosis at the density of the kNN ROC accur-
acy is slightly higher than the others, which means
that the accuracy of the kNN is not as biased com-
pared to the others. Therefore, the kNN was used
for the final risk probability mapping and future
prediction analysis. Figure 3(b) shows the trade-off
between the false positive rate (1-Specificity) and
the true positive rate. When the curves are closer
to the upper left corner, its classifier exhibits good
performance.

3.2. Risk probability map
A risk probabilitymapwith a gradational color distri-
bution was developed, as shown in figure 4(a), based
on the results of the model. The higher probabilities
indicate areas at a higher risk of compounding events
such as high tides and heavy rainfall. The blue dot on
the graph indicates where coastal flooding occurred
from 2002–2014. Comparing where the actual flood-
ing occurred and was estimated to occur, the risk
probability was relatively high in the area where the
actual flooding occurred. Figure 4(b) compares the
frequency in percentage by each class between the
actual coastal flooding point mentioned above and
the risk probability calculated by the kNN. Accord-
ing to this result, the value calculated by the kNN
model overestimated the risk class below 0.75; how-
ever, it was approximately 64.35% accurate in estim-
ating risk probabilities above 0.5. Even if the model
for calculating risk probabilities tends to overestimate
the risk, areas where risk probabilities of 0.5 or higher
have been derived could still be at risk in the near
future.

3.3. Future risk under climate change impacts
The predictionwas implemented usingmonthly aver-
age rainfall and tidal values as described. In the pro-
cess, rainfall predicted to occur in the future was used
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Figure 2. The sequence of the method from data collection to prediction.

Figure 3. (a) ROC curves of accuracy scores: comparison of results of 3 ML algorithms, and (b) plot of k-nearest neighbor ROC
curves.

as a density function to consider the uncertainty of
future rainfall. Tidal data was input into the kNN
classifier by month, the rainfall value was estimated
by substituting the kernel density in one month, and
the model was used to calculate the monthly pre-
dicted risk. Then, according to the comparison of
the monthly risk probability data, the risk probability
increased for the months of June, July, and August for
most of the RCP 4.5 and 8.5 scenarios. Based on these
data, the average risk probability for each scenario
(RCP 4.5/8.5; the 2030s to the 2080s) in June, July,
and August was calculated to create a maximum risk

probability map for the scenario. Figure 5 shows the
future risk probability changes in the 2030s, 2050s,
and 2080s for RCP 8.5, according to the five RCMs.
In general, risk increases from the 2030s to the 2080s
among the five RCMs, and in particular, from the
2050s to the 2080s for CCLM and HadGEM3-RA.
Although there were differences among the results
obtained using the five RCMs, the southern coastal
areas will generally be more vulnerable than the east-
ern and western areas. The reason for these regional
differences should be determined, as this could be sig-
nificant for coastal zone management.
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Figure 4. (a) Risk probability map (blue dots are the observed coastal flooding points, and the gradational color distribution
indicates the estimated result, which is the risk probability, from the kNN algorithm), (b) frequency of each class (a comparison
between the observed coastal flooding events and the estimated result of the kNN when the result is classified in five classes).

Figure 5. Risk probability changes in the future depending on regional climate model (RCMs: HadGEM3-RA, WRF, SNU-RCM,
RegCM4, CCLM) and target years in the RCP 8.5 scenario.
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Figure 6. Comparison of the future risks faced by the three coasts: risk probability change according to the RCP scenarios
(4.5/8.5) and target year (2030s–2080s) by using the result of the average regional climate models (RCMs).

Figure 7. Comparison of the relative influence of variables according to the conditions of an occurrence and a non-occurrence of
a coastal flood (0.0: not occurred, 1.0: occurred).

4. Discussion

4.1. Regional differences
The description of the impacts under different cli-
mate change scenarios in the Intergovernmental
Panel on Climate Change (IPCC) report states that, as
climate change progresses, the world will be affected
differently by region (IPCC 2007, 2014). In Korea,
which is surrounded by three seas, the geograph-
ical characteristics along the eastern, western, and

southern coasts are different (figure 1). Therefore, the
impacts of climate change are expected to differ, and
therefore the risks associated with coastal inundation
also differ.

Figure 6 displays the change in risk probability for
the three seas around South Korea from the present to
the future. In these graphs, the southern coast shows
slightly more risk than the other two coasts from the
2030s to the 2080s at both RCP scenarios (4.5, 8.5).
The risk level also exhibits an increase in the 2060s
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in the RCP 4.5 scenario, but the risk increases in the
2070s in the RCP 8.5 scenario. Although there is a dif-
ference in the time at which the risk increases, this
suggests that the risk probabilities will increase in any
scenario in the 2050s. Therefore, measures for long
term adaptation (30 or 40 years from now) should be
prepared.

4.2. Significance factor
The average tidal values for the three bordering seas
(west, south, and east) are 546.56 mm, 222.16 mm,
and 23.76 mm, respectively, in the 2050s. The average
elevations are 22.8 m, 50.9 m, and 43.1 m, respect-
ively. Theoretically, the western area should be the
most vulnerable since the ratio of tidal rise is higher
and the average elevation is lower than the others, as
shown in figure 1. However, both the southern and
western areas are also at risk, though the gap will
gradually increase in the future. In order to determ-
ine the reason why the risk along the southern coast
was estimated to be higher than that of the other two
coasts, we investigated which variable dominated the
results.

We divided the original data that was used for
the risk analysis into whether the coastal flood event
occurred or not. Then, each variable was normal-
ized from 0 to 1 and the results were compared. The
difference in rainfall between the normalized values
according to floods that occurred was higher than
the others. We inferred that rainfall is therefore a key
factor compared to other variables, such as altitude or
slope, in the risk analysis, as shown in figure 7 (Ward
et al 2018). This also demonstrates that the water level
does not fit the assumption that the western coastal
area is theoretically more at risk, as shown in figures
5 and 6. Furthermore, the fact that urban areas are
frequently flooded may suggest that coastal manage-
ment plans such as building facilities for protection
should account for the vulnerability of urban coastal
areas.

4.3. Methodological implications
This study compared coastal flood risk analyses using
three ML algorithms. As a result of the risk ana-
lyses, the results of the kNN analysis model exhib-
ited the highest reliability and accuracy. This sug-
gests a slightly different implication from that of other
studies. In other studies that used various ML tech-
niques, the accuracy of the algorithm was higher
when using a ML technique such as artificial neural
networks (ANN), SVM, or RF than those obtained
when using kNN (Potdar andKinnerkar 2016, López-
Serrano et al 2016, Thanh Noi and Kappas 2017). We
concluded that the performance of the kNN in this
study was slightly higher because it may have been
influenced by the difference in data quality. This study
used traces of actual flooding for the risk analysis,
and as a result of running the model with these data,

the accuracy was high. We infer that the risk ana-
lysis using kNN may be applied broadly as a quant-
itative technique, unlike studies with index methods,
according to the spatial distribution of the flooded
region data, regardless of region. In addition, the
data-driven statistical method using ML algorithms
as well as kNN is useful in terms of scalability, because
it can account for various influences such as com-
pounding events and can quickly adapt to the input of
new data. Therefore, this quantitative approach could
be effective for risk analysis.

Moreover, we attempted to consider uncertainty
by using an ensemble method such as comparing the
results from the five RCMs. The climate model itself
does have uncertainty, and that uncertainty increases
over time (Knutti and Sedláček 2013). Therefore,
many studies consider uncertainty regarding future
climate change using an ensemble approach that
compares multiple models (Parker 2013). This could
be the best way for decision-makers to communic-
ate about future risks. In this study, trends were con-
firmed by comparing several climate models rather
than one. We used a data-driven method instead of
a model-driven method because it is difficult to con-
firm the uncertainty of future risk in a model-driven
approach when using large amounts of data from the
regional climate models used in the study.

5. Conclusions

Six variables were used to evaluate the future prob-
ability of coastal flooding events based on three dif-
ferent ML algorithms, namely kNN, RF, and SVM.
All the data obtained for the model, such as tidal,
rainfall, and elevation data, were converted into data
in a 1 km2 grid since each raw data type consisted
of different points or polygons. Using the three ML
classifiers method, the risk probability was calculated
and the results of the ROC curves and their accur-
acy scores were compared. The average accuracy score
of the kNN was the highest (0.946), and a risk prob-
ability map was developed using the results estim-
ated by the kNN classifier. To evaluate future coastal
flood risks due to climate change, tidal and rainfall
data were used as a continuous value in prediction.
For the RCP (4.5/8.5), daily maximum rainfall data
for different RCMs from the 2030s to the 2080s (e.g.
2050s, 01.01.2046–12.31.2055) were used for model
prediction and the kernel density was used as the
input data for the prediction. In terms of the tidal
level, the rising values of future tides were calculated
by considering the rate of increase at each tidal station
and forecasted using a Bayesian-influenced GAM.We
estimated the future risk probability using forecasted
tidal and future rainfall. As a result, the risk prob-
ability increased over time and the risk probability
increased in the southern coastal areas more so than
in the eastern or western coastal areas.
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In this study, we argue that there are significant
implications. We initially found that the results of the
kNN were performed slightly better than the other
methods by comparing three ML algorithms. This
can be attributed to the characteristics of the kNN,
according to the quality of the original data. It also
infers that risk analysis using a simple ML algorithm
such as kNN could be applied widely, regardless of
region. Next, rainfall was identified as a significant
factor in this study. This means that the possibil-
ity of flooding can be increased due to the uncer-
tainty in forecasting future rainfall patterns due to cli-
mate change. Lastly, future coastal flood risk analysis
was analyzed using ensemble methods from differ-
ent RCMs. We considered future uncertainty, though
it might be helpful for decision-makers to commu-
nicate about future risks by providing variances and
trends from different results.

As in the previous claim, the ML technique used
in this analysis exerts a powerful force when reli-
able data is used, but the results are not as sophistic-
ated or deterministic as the results of a model-driven
analysis, such as a hydrodynamic model. As long as
there is uncertainty regarding climate change, a data-
driven approach using ML may be easy for predict-
ive analyses. Therefore, future studies could address
the idea that the future tide and surge heights are cal-
culated using a hydrodynamic model together, as in
the work of Hoch et al (2019) and Muis et al (2020)
to improve the quality of the results. This could also
be aligned with precipitation or rainfall to consider
compound flooding of discharge-tidal interactions
through statistical analysis, as in the work of Eilander
et al (2020). In addition, shoreline changes could be
included in the analysis of coastal hazard risks, mak-
ing the results more meaningful for ICZM. Further-
more, for the purposes of predicting future risk, it
was generally assumed that variables other than tide
and rainfall would not change over time. Geograph-
ical factors such as elevation and slope might not
vary with time, but land cover such as urban areas
and grasslands will change over time. Thus, according
to land cover changes, the future spatial distribution
of risk probability could be different. However, the
rainfall was a key factor in this analysis as described
previously, so the land cover change might not
affect strongly the prediction. Therefore, it would be
informative if a similar study could be conducted that
accounts for social and economic changes in the risk
analysis.
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