
     

LETTER • OPEN ACCESS

Seasonal prediction of Euro-Atlantic
teleconnections from multiple systems
To cite this article: Llorenç Lledó et al 2020 Environ. Res. Lett. 15 074009

 

View the article online for updates and enhancements.

You may also like
Projected ENSO teleconnection on the
Southeast Asian climate under global
warming
Dzung Nguyen–Le

-

Atmospheric teleconnection influence on
North American land surface phenology
Matthew P Dannenberg, Erika K Wise,
Mark Janko et al.

-

Distance decay and directional diffusion of
ecoclimate teleconnections driven by
regional-scale tree die-off
Xiao Feng, Abigail L S Swann, David D
Breshears et al.

-

This content was downloaded from IP address 3.144.252.201 on 05/05/2024 at 20:27

https://doi.org/10.1088/1748-9326/ab87d2
https://iopscience.iop.org/article/10.1088/1748-9326/ad0d3e
https://iopscience.iop.org/article/10.1088/1748-9326/ad0d3e
https://iopscience.iop.org/article/10.1088/1748-9326/ad0d3e
https://iopscience.iop.org/article/10.1088/1748-9326/aaa85a
https://iopscience.iop.org/article/10.1088/1748-9326/aaa85a
https://iopscience.iop.org/article/10.1088/1748-9326/acff0d
https://iopscience.iop.org/article/10.1088/1748-9326/acff0d
https://iopscience.iop.org/article/10.1088/1748-9326/acff0d
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsthJFHhY_A4YN3PYuAdBZMcDO5RiieDbaQlRAxhWqxhzoy602to55UYhpYY2cJGvJ5sdPLazk5cysjzPLrumuUOICJsiG-cElGh_mT26d5iXyMMQ3Utm53ONB6Xy8kdZt3RgIiZ4WplM2-g5-L0ffewUIxZ49-YvkA7gLTp97IJx1m1z7YA2iQIlvAv5H6yGvX4AVVtpsnaGh7QitSHN77sxm9yIOeCCqHT7ADPWBNkEn2t5viaFNIvjrUp_u6MyjsdZi49uEBHSoJOkWeKKK_wNmhdQLNpGxJIt1jiVLmibD_8OBPARcnkkRzzbKnh1Th34G0LJ8p5DGKHYUoHeFrKgqggRw&sig=Cg0ArKJSzPD-nx7rwFJv&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/breath-biopsy-complete-guide/%3Futm_source%3Djbr%26utm_medium%3Dad-b%26utm_campaign%3Dbb-guide-bb-guide%26utm_term%3Djbr


Environ. Res. Lett. 15 (2020) 074009 https://doi.org/10.1088/1748-9326/ab87d2

Environmental Research Letters

OPEN ACCESS

RECEIVED

16 December 2019

REVISED

23 March 2020

ACCEPTED FOR PUBLICATION

8 April 2020

PUBLISHED

22 June 2020

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Seasonal prediction of Euro-Atlantic teleconnections from
multiple systems
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Abstract
Seasonal mean atmospheric circulation in Europe can vary substantially from year to year. This
diversity of conditions impacts many socioeconomic sectors. Teleconnection indices can be used to
characterize this seasonal variability, while seasonal forecasts of those indices offer the opportunity
to take adaptation actions a few months in advance. For instance, the North Atlantic Oscillation
has proven useful as a proxy for atmospheric effects in several sectors, and dynamical forecasts of
its evolution in winter have been shown skillful. However the NAO only characterizes part of this
seasonal circulation anomalies, and other teleconnections such as the East Atlantic, the East
Atlantic Western Russia or the Scandinavian Pattern also play an important role in shaping
atmospheric conditions in the continent throughout the year. This paper explores the quality of
seasonal forecasts of these four teleconnection indices for the four seasons of the year, derived from
five different seasonal prediction systems. We find that several teleconnection indices can be
skillfully predicted in advance in winter, spring and summer. We also show that there is no single
prediction system that performs better than the others for all seasons and teleconnections, and that
a multi-system approach produces results that are as good as the best of the systems.

1. Introduction

Atmospheric circulation in Europe and the North
Atlantic has a strong seasonal cycle, but it can also
vary substantially from one year to another in the
same season. The year-to-year climate variability can
partly be attributed to the chaotic nature of the
atmosphere but also to external forcings exerted by
other components of the Earth system such as ocean
temperature, soil moisture or sea ice extent anom-
alies that modify the energy budget of the atmo-
sphere and ultimately modify the large-scale circu-
lation (Doblas-Reyes et al 2013, Heinze et al 2019,
Mariotti et al 2018). This interannual variability
has strong impacts on several socioeconomic sectors
such as energy, agriculture, tourism, insurance, water
management, health or civil protection among oth-
ers (Hewitt et al 2012, WMO 2014). Therefore sea-
sonal forecasts that provide climate information for
the next few months are very useful to take precau-
tionary actions and adapt to anomalous climate con-
ditions in advance (Soares et al 2018,White et al 2017,

Torralba et al 2017, Ceglar et al 2018, Walz et al 2018,
Turco et al 2018, Clark et al 2017).

Seasonal climate variability over Europe is often
analyzed through atmospheric teleconnections. The
rationale behind atmospheric teleconnections is to
find recurrent and persistent large-scale atmospheric
circulation patterns and corresponding temporally
varying indices that can be used to describe monthly
or seasonal climate variability and its surface impacts
in a simplified way. For instance, the North Atlantic
Oscillation (NAO) (Hurrell et al 2003, Wanner et al
2001), the most relevant Euro-Atlantic teleconnec-
tion, is known to affect surface temperature, precip-
itation and wind speed in almost all of Europe (Trigo
et al 2002, Brayshaw et al 2011). However the NAO
only represents around one third of the seasonal cir-
culation variability over Europe in winter, spring and
summer (in autumn represents only one sixth), while
other Euro-Atlantic Teleconnections (EATC) such as
the East Atlantic (EA) (Woollings et al 2010), the East
Atlantic/Western Russia (EAWR) (Lim 2014) and the
Scandinavian pattern (SCA) (Bueh and Nakamura
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2007) also play an important role in modulating sur-
face conditions (see for example Zubiate et al (2016),
Josey et al (2011) or Hall and Hanna (2018)).

Several authors have recently shown that the state
of the NAO during winter (DJF) can be skillfully
predicted months or even more than a year ahead
employing dynamical prediction systems that simu-
late the interactions between atmosphere, ocean, sea
ice and soil moisture conditions (Scaife et al 2014,
Smith et al 2014, Dunstone et al 2016, Johnson et al
2019). The use of multi-system prediction ensembles
can achieve even better results (Athanasiadis et al
2017, Baker et al 2018). However, the ability of state-
of-the-art seasonal forecast systems to simulate the
other EATC indices has not yet been systematically
explored in the literature. Only empirical predictions
of the EA index derived from sea surface temperature
in the preceding months have been proved useful in
summer (Ossó et al 2017, Iglesias et al 2014), while
a point-based sea level pressure index that resembles
the EA has been studied for winter in Baker et al
(2017). Therefore it would be highly beneficial to pro-
duce and analyse dynamical forecasts for the other
EATC indices (Hall and Hanna 2018). Also, the focus
of most of the previous studies has been on the winter
season, while forecasts for the other seasons can be
relevant as well for many seasonal climate service
users. Therefore a systematic approach that can be
employed throughout the year for all the EATCs and
for both observations and seasonal prediction systems
has been defined in this work.

Teleconnection patterns and indices can be com-
puted in many different ways. Essentially, point-
based, box-based or Empirical Orthogonal Function
analysis methods are used in the literature. A typical
method to define those teleconnections is through
Rotated EmpiricalOrthogonal Function (REOF) ana-
lysis (Barnston and Livezey 1987). REOF is a dimen-
sionality reduction technique that allows for approx-
imating circulation anomalies as a linear combination
of only a few spatial patterns:

Anom(t,x,y) =
nmodes∑
i=1

TCIi(t) ∗TCPi(x,y)+Residuals.

(1)

Teleconnection Patterns (TCP) and Indices (TCI)
–i.e. the weights in the linear combination—are
chosen so that the residual term is minimized. Over
the Euro-Atlantic region, when retaining four vari-
ability modes the aforementioned teleconnections
(NAO, EA, EAWR and SCA) are obtained. This meth-
odologymimics well-knownClimate PredictionCen-
ter patterns and indices as much as possible (Climate
Prediction Center 2012), and does not rely on identi-
fying the centers of action of the different teleconnec-
tions, which move from one season to another. Addi-
tionally, point-based indices are sensitive to model
biases and local skill at the centers of action. Indeed
Athanasiadis et al (2017) have already shown that the

highest skills for NAO forecasts are obtained when
using spatially-averaged indices.

The observed patterns and indices for these four
Euro-Atlantic Teleconnections (EATC) have been
obtained from ERA5 reanalysis, and forecasts of each
EATC index have been derived from multiple sea-
sonal prediction systems by projecting predicted cir-
culation anomalies onto the observed teleconnection
patterns. Employing this method, the skill of several
seasonal prediction systems from the Copernicus Cli-
mate Change Service (C3S) in simulating the year-to-
year variability of the NAO, EA, EAWR and SCA tele-
connection indices for the four seasons of the year,
and from zero to three months before the start of the
season has been analysed. Section 2 describes the data
and methods employed in detail, section 3 presents
the results and conclusions follow in section 4.

2. Datasets andmethodology

2.1. Datasets
2.1.1. Observational reference
The ERA5 reanalysis (Copernicus Climate Change
Service 2019, Copernicus Climate Change Ser-
vice (C3S) 2017) from the European Center for
Medium-Range Weather Forecasts (ECMWF) has
been employed as observational reference to define
the four Euro-Atlantic teleconnection patterns and
indices for the 1981–2018 period. More specifically,
seasonal anomalies of geopotential height at 500 hPa
with respect to the whole period have been obtained
separately for each of the four seasons (DJF, MAM,
JJA and SON). Although the ERA5 data has a spatial
resolution of∼0.28 degrees (or∼30 km), in order to
obtain teleconnection patterns that can be compared
with the seasonal prediction systems, the data has
been regrided to match the spatial resolution of the
forecasts (1 x 1◦, see table 1).

2.1.2. Seasonal prediction systems
Several European national meteorological centers
and institutions produce operational seasonal pre-
dictions. Those are made with coupled Earth system
models that simulate the evolution of atmosphere,
ocean, sea ice and land surface conditions in the
upcoming months. Five different seasonal prediction
systems have been employed in this study, from the
European Centre for Medium-Range Weather Fore-
casts (ECMWF), Deutscher Wetterdienst (DWD),
Météo France (MF), UK Met Office (UKMO) and
Centro Euro-Mediterraneo sui Cambiamenti Cli-
matici (CMCC). The latest operational prediction
systems (at the time of writing) from those cen-
ters have been employed: SEAS5 from ECMWF
(Johnson et al 2019), Seasonal Prediction System 3
fromCMCC (SPS3) (Sanna et al 2017), System6 from
MF (MF6) (Dorel et al 2017), GloSea5-GC2 from
UKMO (GS5GC2) (MacLachlan et al 2014, Willi-
ams et al 2015) and System2 from DWD (DWD2)
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(Deutscher Wetterdienst 2019). All of the predic-
tions have been obtained from the Climate Data
Store (CDS) of the Copernicus Climate Change Ser-
vice (C3S) initiative, which provides a unified access
point, and a common hindcast period and spatial res-
olution (ECMWF 2019). The most relevant details of
each one of the prediction systems employed here,
such as the number of ensemble members, the hind-
cast period analyzed or the spatial grid are specified
in table 1. Notice that the ECMWF SEAS5 predic-
tions have been additionally obtained for a longer
period and bigger ensemble from ECMWF MARS
service, and used in section 3.3 to test the sensitivity
of the results to the period length and the ensemble
size.

The configuration of those prediction sys-
tems is similar in terms of initialization, numer-
ical integration, parametrizations and coupling of
the different Earth system components modelled.
HoweverGS5GC2 andMF6have a lagged ensemble—
produced by accumulating several integrations ini-
tialized at different instants of time during the latest
month—while the other systems are initialized in
burst mode the first day of the month—perturbed
initial conditions and stochastic parametrizations are
used to initialize and run several ensemble members
in order to describe uncertainty—. TheMF6 hindcast
ensemble is built from 1 ensemblemember initialized
the first of the month plus 12 members initialized the
25th of the previous month and 12 members initial-
ized the 20th of the previous month. Similarly, the
GS5GC2 hindcast ensembles are built from 7 mem-
bers initialized the first of the month, plus 7 mem-
bers for the 9th, 17th and 25th of the previous month
respectively (see ECMWF (2019)). The hindcast for
GS5GC2 has been built by combining two versions of
this system: all the System13 hindcasts available in the
CDS with a few System14 runs for May to October
2016.

The 500 hPa geopotential height fields of these
systems were downloaded, formatted and quality
checked with an in-house developed python soft-
ware suite that automatically processes the data
to a common format (NetCDF). Quality controls
include file integrity, time and ensemble mem-
bers completeness and consistency, missing values,
and physical value checks. These checks detected
issues in 28 fields of 500 hPa geopotential height
of the SPS3, distributed across all the period and
ensemble. The issues were reported to C3S and con-
firmed by the data provider, and have been docu-
mented under known issue E5a in the C3S portal
(https://confluence.ecmwf.int/ display/ CKB/ C3S+
Seasonal+Forecasts+known+issues). The affected
members and months have been not included in
the analysis. Given the relatively low number of
erroneous fields (28 out of 80 640), this should not
produce noticeable effects on the results. However

keeping the erroneous fields would produce a signi-
ficant skill degradation.

2.2. Methods
2.2.1. Observed teleconnection patterns and indices
The four observed EATC patterns and indices have
been computed from ERA5 500 hPa geopotential
height seasonal anomalies through a Rotated Empir-
ical Orthogonal Function (REOF) analysis (Hannachi
et al 2007,Wilks 2019) over the Euro-Atlantic domain
(90◦W–60◦E and 20◦N–80◦N). First, seasonal anom-
alies for each season (DJF/MAM/JJA/SON) and for
the 1981–2018 period have been computed with
respect to the same period mean. Then an EOF ana-
lysis has been performed, and the first four variab-
ility modes have been retained. The anomalies have
been weighted by the cosine of the latitude prior to
the EOF analysis to account for differences in the areas
of the grid points. After that, a Varimax rotation has
been applied to the unit length eigenvectors (or load-
ing patterns), in order to simplify the spatial struc-
ture of the patterns but still preserve its orthogonal-
ity (Mestas-Nuñez 2000). Finally, the four obtained
REOF modes have been reordered and their sign has
been adjusted when needed so that the EATC patterns
resemble as much as possible the positive phases of
the NAO, EA, EAWR and SCA patterns as computed
by NCEP’s Climate Prediction Center (Climate Pre-
diction Center 2012, Barnston and Livezey 1987, Lim
2014). Figure 1 shows the four teleconnection pat-
terns (i.e. the rotated unit-vector loadings after read-
justing for the latitudinal weights) obtained for each
of the four seasons of the year. Due to the normaliza-
tion, the more localized patterns such as the EA have
strongest colors in the figure, while more widespread
patterns such as theNAOhave lighter colors. The per-
centage of variance that each of the EATC patterns
represents can be seen in figure 3 lower left panel for
each season. While NAO represents around one third
of the total variance in winter, spring and summer,
the other EATC patterns also contribute to describe
the atmospheric circulation variability with values of
up to 20% of explained variance. The residual vari-
ance that remains unexplained by the four EATCs in
each season (i.e. the variance of the residual term in
equation (1)) indicates the goodness of the approxim-
ation of the circulation anomalies by the four EATCs,
and expressed as a percentage of the total variance it is:
23% (DJF), 36% (MAM), 33% (JJA) and 36% (SON).
This is much less than when only using the first EOF
to compute the NAO (always above 60%).

2.2.2. Forecasts of EATC indices
To obtain retrospective forecasts of the EATC indices,
the 500 hPa geopotential height fields from the sea-
sonal prediction system hindcasts initialized in the
1993–2016 period have beenused (note that the ERA5
EATCs have been computed with a longer period
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Table 1. Summary of the seasonal prediction systems employed.

Producing
center

Prediction
system

Data
source

Analyzed
period

Ensemble
members

Ensemble
generation

Horizontal
grid

CMCC SPS3 CDS 1993-2016 40 burst Regular 360x180
DWD System2 CDS 1993-2016 30 burst Regular 360x180
UKMO GloSea5 GC2 CDS 1993-2016 28 lagged Regular 360x180
MF System6 CDS 1993-2016 25 lagged Regular 360x180
ECMWF SEAS5 CDS 1993-2016 25 burst Regular 360x180
ECMWF SEAS5 MARS 1981-2016 51 burst Regular Gaussian

F160 (640x320)

Figure 1. The loading patterns (i.e. of norm one) of the four Euro-Atlantic teleconnections obtained for each season from ERA5
geopotential height anomalies at 500 hPa in the 1981–2018 period.

to obtain more robust patterns). The seasonal mean
anomalies of each system (with respect to its own
climatology in the 1993–2016 period) and for each
season have been projected onto the observed pat-
terns, individually for each ensemble member. To do
so, first the anomalies are weighted by the cosine
of the latitude, and then the scalar product with
each teleconnection pattern is computed. The pro-
jected indices have not been normalized, so that the
explained variances can be computed by just doing
the scalar product of each projected EATC index by
itself. The total variance of each prediction system has
also been computed and normalized per number of
grid points, years and ensemble members, so that res-
ults can be compared with observed variance.

2.2.3. Multi-system ensemble predictions
Combining the information from several prediction
systems into a single forecast can be beneficial for the
forecast quality. Each prediction system represents
physical processes in slightly different ways. Hence,

it has been shown that the combination of all the
ensemble members from different systems tends to
compensate modelling errors and uncertainties from
different sources (DelSole et al 2014). The larger
ensemble size of the combination also contributes to
cancel noise in the individual members and extract
smaller forcing signals (Scaife et al 2014, Baker et al
2018). Two multi-system combinations have been
produced here (as in Doblas-Reyes et al (2003) and
Athanasiadis et al (2017)): first by pooling all the
ensemble members together (MSPool) and secondly
by weighting each prediction system by combining
the ensemble means computed separately in each sys-
tem so that all systems have equal weight in the final
results (MSEW).

2.2.4. Forecast quality assessment
The quality of the EATC forecasts has been assessed
employing both deterministic and probabilistic skill
metrics. First the ensemble mean correlation has
been used as a measure of association. The statistical

4
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Table 2. Summary of the forecast start months employed for
verification in each season and the corresponding valid periods.

Valid period Forecast start dates

JJA 1993–2016 MAMJ 1993–2016
SON 1993–2016 JJAS 1993–2016
DJF 1993/94–2016/17 SOND 1993–2016
MAM 1994–2016 D 1993–2015
JFM 1994–2016

significance of ensemble mean correlations has been
checked with a one-tailed Student’s t-test at a level
of 95% of confidence. Additionally, the Ranked
Probability Skill Score (RPSS) has been employed
(as in Doblas-Reyes et al (2003) for NAO forecasts)
to understand the improvement of tercile forecasts
of EATC indices over a climatological benchmark
(Jolliffe and Stephenson 2011). This score assesses the
quality of a probabilistic forecast that delivers prob-
abilities of having a below normal, normal or above
normal value of an EATC index. Those categories
are defined based on the 33rd and 66th percentiles
(i.e. terciles) of the historical distribution of fore-
cast values in the hindcast. The uncertainty affecting
the RPSS values has been explored in terms of the
Diebold-Mariano test (Diebold and Mariano 1995).
This test allows to identify if the differences between
a probabilistic forecast and the climatological forecast
(the reference here) are statistically significant at the
95%confidence level. TheDiebold-Mariano test from
the SpecsVerification R package has been employed.

The assessment has been performed for all sea-
sons, and employing the forecasts initialized at the
beginning of the season and also from 1 up to 3
months before. The elapsed time between the initial-
ization date and the start of the valid period of the
forecasts is the lead time, which has been referred to as
lead 0, 1, 2 and 3 to indicate the number of months of
lead time. For lagged ensembles, the latest initializa-
tion date in the ensemble is employed to compute the
lead (i.e. lead times are counted since the first day of
the month, when all the ensembles are built). All the
verifications correspond to the start dates in the 1993–
2016 period. Table 2 summarizes the start dates and
valid date periods employed for each season. Notice
that DJF forecasts initialized in the 1993–2016 period
correspond to 1993/94 to 2016/17 winters. TheMAM
season requires special attention: since predictions
initialized in December 1992 are not available in the
CDS, the 1993 start dates for January, February and
March (JFM) were also discarded in order to obtain
consistent results across all lead times. Therefore the
verification of forecasts for spring has one year less
than the other seasons. This fine-detail information
is essential for reproducibility in view of the sensit-
ivity of results to the hindcast period employed (see
section 3.3).

The focus of the verification is on assessing
the quality of the products as available to end

users. Therefore, no correction has been applied to
compensate for the differing number of ensemble
members across systems, nor for the longer lead times
of the older members in lagged systems.

3. Results

To illustrate how the seasonal prediction systems sim-
ulate the ERA5 EATC indices, figure 2 shows the sea-
sonal predictions of the four EATC indices issued in
November and valid for DJF (i.e. 1 month of lead
time) for each of the systems in the 2000 1993–
2016 period. All the systems agree in a negative NAO
phase for 2009/2010 winter (first panel), although the
actual observed value was well below the range of any
prediction. Less well-known events such as a strong
EA phase in 2013/2014 or a strong SCA phase in
2009/2010 can also be seen. As the forecasted telecon-
nection indices have not been normalized, a widest
range can be seen for theNAO than for the other three
EATCs.

3.1. Variance explained by each EATC in the
prediction systems
In order to understand how well the observed tele-
connection patterns describe the variability in each
of the prediction systems, the explained variance of
each EATC pattern as a percentage of the total vari-
ance in the system has been analysed for the 1993–
2016 period. The explained variance percentages have
also been computed for ERA5 in the same period. The
differences between explained variance percentages in
the prediction systems and in ERA5 is displayed in
figure 3 for each season, lead time and EATC pattern.
Additional analyses revealed that those differences are
not due to sampling variability (not shown). In gen-
eral, all prediction systems have less proportion of
NAO variability than observed in winter, spring, and
specially in summer. Something similar occurs with
the EAWR pattern in autumn or the EA in winter. On
the other hand the NAO has slightly more variability
than observed in most prediction systems in autumn
and the same occurs for the EAWR in winter and the
EA in spring. Most of these differences in variabil-
ity show up already from lead 0 forecasts, and do not
grow with higher lead times, indicating a small role of
model drift. In terms of absolute variance, all of the
systems have a good agreement with the ERA5 vari-
ance (not shown), i.e. the total amount of variability
in the prediction systems is comparable to that in the
observational reference for the four seasons.

These biases show that variability has a different
structure in the prediction systems than in the obser-
vations. This might be related to the internal variab-
ility modes of the prediction systems do not match
the observed ones, i.e. there are biases in location and
shape of the EATCpatterns directly obtained from the
prediction systems (e.g. see Walz et al (2018) for a
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Figure 2. Retrospective forecasts of the four EATC indices issued in November and valid for DJF (i.e. one month of lead time) for
each of the prediction systems in the 2000–2016 period. Each boxplot shows the maximum and minimum forecast value
(whiskers), the first and third quartiles (box) and the ensemble mean (color line). The black line denotes the observed value
according to ERA5. The year labels correspond to the forecast start date (i.e. November). The vertical axe represents geopotential
meters, so that when those non-normalized EATC indices are multiplied by the loadings, an approximation of the original
anomalies is obtained.

comparison of the internal variability modes of a sea-
sonal prediction system and a reanalysis in winter).

3.2. Forecast quality of EATC predictions
The ensemble mean correlation has been widely used
to verify ensemble predictions of the NAO. The pro-
cess of averaging the teleconnection index predic-
tions from several individual members produces the
effect of cancelling the noise present in each single

realization and allows extracting any forcing signal
that is common to the different members. Figure 4
summarizes the ensemble mean correlation results
for all systems, seasons, lead-times and teleconnec-
tions in a graphical way. A first sight reveals import-
ant differences between seasons, while there is a good
degree of agreement between different prediction sys-
tems on which teleconnections have a positive and
statistically significant correlation. In winter (top left)
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Figure 3. Biases in the percentage of the total variance explained by each EATC for each prediction system, lead time and season
with respect to the explained variance in ERA5 (bottom-left panel) for the same period (1993–2016).

all systems show positive correlations for the NAO
and SCA at the start of the season, while SEAS5
and MF6 systems still show significant correlations
in the forecasts issued in September (lead 3). The
EA also has positive and significant correlations for
some systems at lead 0. In spring (top right) and at
lead 0, all the teleconnections have positive correla-
tions in almost all of the systems. However, at longer
lead times the correlation values become weaker and
statistically non-significant. In summer (bottom left)
the NAO and SCA indices show very good correla-
tion levels for all lead times and almost all systems.
The EA and EAWR correlations are only statistically
significant at lead 0 for SEAS5 and DWD2 respect-
ively. Autumn shows the worst results overall. The EA
shows statistically significant correlations only in lead
0 but for almost all systems. Surprisingly, the SCA
shows also positive and significant correlation levels
at lead 3 for SPS3, SEAS5 and MF6 systems, but not
for any other smaller lead time.

Most of the non-significant correlations are still
positive. This might be a sign that although small,
those correlations are not just random outcomes
(which should be distributed evenly into positive and
negative values), but rather that the signal-to-noise
ratio is too low in those cases for the significance test
to be able to detect it. This is consistent with some
works that have shown the difficulties to provide skill-
ful seasonal climate predictions in the Euro-Atlantic
region as a consequence of the excessive role that
internal variability plays in prediction systems in that
region (Scaife and Smith 2018). This issue has been
further explored in the following section.

The results for winter NAO predictions are in line
with previous published research (Scaife et al 2014,
Baker et al 2018, Athanasiadis et al 2017, Johnson et al
2019), taking into account the different methodolo-
gies employed and also the high variability of verific-
ationmetrics due to the verification period employed
(see section 3.3 below).
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Figure 4. Correlation between the ensemble mean of the EATC forecasts and the corresponding observed (ERA5) values for each
system, lead time and season in the 1993–2016 hindcast period. Black dots indicate cases were the correlation is not found
statistically significant at the 95% of confidence level.

Multi-system predictions that combine the mem-
bers from several prediction systems (MSPool and
MSEW; see section 2.2.3) tend to perform very good
in terms of ensemble mean correlation. This is partly
due to an increase of the ensemble size by around
five times compared to the individual systems, but
also thanks to the cancelling of modelling errors from
different systems. Although many times there is a
single model that does better for a given telecon-
nection index, overall the multi-system shows more
stable results through the lead-times and indices and
is always very close or above the best system. The
twomulti-systemmethods produced almost identical
performance. For that reason and for simplicity,
the RPSS has been only computed for the MSPool
method.

The RPSS corresponding to the EATC indices for
all seasons, lead-times, and systems has been plot-
ted similarly in figure 5. The plot shows very similar
results to the ensemble mean correlations, in general
terms, although the absolute values of RPSS aremuch
lower than those of correlation. Some differences in
terms of statistical significance of the results can be

seen. For example, figure 5 (bottom-left) shows that
the NAO RPSS in JJA is not significant in SEAS5 and
MF6 beyond lead 0, however, correlation values were
statistically significant in all the lead times and sea-
sons (figure 4). On the other hand, RPSS for the EA
index in DJF (lead 0) in the MF6 system is significant
while correlation is not.

Both employed metrics analyze different aspects
of the predictions and therefore cannot be numeric-
ally compared. The RPSS is in general a more restrict-
ive quality measure than ensemble mean correlation.
For instance, Kumar (2009) showed that randomly-
generated forecasts with similar levels of signal-to-
noise ratio reach higher ensemble mean correlations
than RPSS values. Also, ensemble calibration tech-
niques such as variance inflation (Doblas-Reyes et al
2005, Torralba et al 2017) could be employed to adjust
the EATC forecasts and obtain more reliable predic-
tions. This would translate in better RPSS values,
although the ensemble mean correlation would not
change. These considerations show that it is necessary
to consider more than one metric to derive meaning-
ful conclusions.
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Figure 5. Ranked probability skill score of EATC tercile forecasts for each system, lead time and season in the 1993–2016 hindcast
period. Black dots indicate cases were the RPSS is not found statistically significant at the 95% of confidence level.

3.3. Sensitivity of ensemble mean correlation to
hindcast period and number of members
Previous research has found that ensemble mean cor-
relation of NAO is sensitive to hindcast length and
ensemble size (Baker et al 2018, Siegert et al 2016,
Kumar 2009). To further verify this for the other
EATCs, the ECMWF SEAS5 hindcast from MARS
have been employed. This hindcast has a longer
period (1981–2018) than the C3S hindcast, and for
the November initialization it has 51 ensemble mem-
bers. By subsetting the number of years and the num-
ber of members included in the verification, we can
evaluate the sensitivity of the correlation and RPSS
results to the ensemble size and the hindcast length.
For each EATC index, a collection of 10 000 random
subsets of 25members out of the 51 available are used
to draw a distribution of verification results. In the
sameway, a collection of 10 000 subsets of 25 years out
of the 38 available is used to produce one distribution
of verification values for each EATC. Figure 6 shows
the results in violin plots (which enhance typical box-
plots with information from the whole distribution).
The variability is very large both for correlations (top

panels) and for RPSS (bottom panels), with ranges of
values of more than 0.5 points in correlation, and 0.2
points in RPSS. The spread of the distributions is very
similar among different EATCs, indicating that this
uncertainty is not intrinsically related to NAO vari-
ability but is a general issue of seasonal predictabil-
ity over Europe. The variability when subsetting the
period (right panels) is a bit larger than the variab-
ility when subsetting the members (left panels), for
all the EATCs. The mean value of the distributions
(not shown) is slightly higher when the period is sub-
setted. The effect of adding more years is to get a
more reliable estimate of skill, but addingmoremem-
bers will tend to produce higher skill scores due to
a higher cancellation of noise in bigger ensembles.
From this analysis it is clear that the verification of
both deterministic and probabilistic EATC forecasts
requires large ensembles and large hindcast periods.
As a consequence, all the results presented in pre-
vious sections, although very useful to characterize
the EATC prediction skill in the current operational
seasonal prediction systems, have to be cautiously
interpreted.
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Figure 6. Sensitivity of ensemble mean correlation and RPSS for each EATC to the hindcast years and the number of ensemble
members included in the verification. The SEAS5 hindcast for MARS (covering 1981–2018 with 51 members) has been subsetted
10 000 times to produce a distribution of values.

4. Conclusions

A method to produce seasonal forecasts of NAO, EA,
EAWR and SCA indices for the four seasons and from
five different seasonal prediction systems available in
the C3S CDS has been developed. Retrospective pre-
dictions of those indices for the 1993–2016 period
have been verified. A few conclusions can be drawn
from the results:

• Prediction skill is not limited to NAO: atmo-
spheric variability shaped like EA, EAWR and SCA

patterns can also be simulated by the seasonal
prediction systems.

• Prediction skill is not limited to winter: spring and
summer have also similar levels of skill for some
teleconnections, while autumn shows only mod-
est scores (probably due to a lower signal-to-noise
ratio).

• There is a good degree of agreement between sys-
tems inwhich EATCs can be predicted for each sea-
son with different lead times. This might highlight
inherent predictability of the teleconnections.

• Multi-system predictions of EATC perform almost
as well or sometimes even better than the best

10
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system. There is not a single system that produces
the best forecasts for all the teleconnections, lead
times and seasons. Therefore a multi-system sim-
plifies the application of the method in order to
implement an operational climate service.

• Initiatives such as C3S are very helpful to produce
such multi-system predictions.

• Both deterministic and probabilistic verification
metrics show a strong sensitivity to the ensemble
size and hindcast length.

These results open the door to produce an opera-
tional climate service that provides forecasts of those
teleconnection indices all year round. The forecasts
could be used directly as proxies or also be employed
to derive forecasts of sectorial indicators or to produce
downscaled predictions as in Baker et al (2017).
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