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Abstract
Nonlinear increases inwarm season temperatures are projected formany regions, a phenomenonwe
show to be associatedwith relative surface drying. However, negative humanhealth impacts are
physiologically linked to combinations of high temperatures and high humidity. Since the amplified
warming and drying are concurrent, the net effect on humid-heat, asmeasured by thewet bulb
temperature (TW), is uncertain.We demonstrate that globally, on the hottest days of the year, the
positive effect of amplifiedwarming onTW is counterbalanced by a larger negative effect resulting
fromdrying. As a result, the largest increases inTWandTx do not occur on the same days. Compared
to aworldwith linear temperature change, the drying associatedwith nonlinear warming dampens
mid-latitudeTW increases by up to 0.5 °C, and also dampens the rise in frequency of dangerous
humid-heat (TW>27 °C) by up to 5 d per year in parts ofNorthAmerica and Europe. Our results
highlight the opposing interactions among temperature and humidity changes and their effects on
TW, and point to the importance of constraining uncertainty in hydrological andwarm season
humidity changes to best position themanagement of future humid-heat risks.

Introduction

Humid-heat extremes pose a severe risk to human
health [1, 2], and temperature extremes more broadly
can reduce economic performance [3, 4], damage
crops and ecosystems [5–7], and harm infrastructure
[8–10]. Climate change is increasing global mean
temperature by altering the surface radiative balance,
raising the chances of extreme heat events across the
world [11–14]. At regional scales, land-atmosphere
interactions among soil moisture and vegetation
control the partitioning of energy into sensible and
latent heat fluxes, playing a significant role in control-
ling extreme temperatures, drought, and heat wave
statistics in the observational record and in climate
models [15–22]. Further, recent research has identified
soil drying and associated changes in surface energy
partitioning to be a crucial driver of nonlinear temper-
ature changes relative to the warm season mean [23].

In some regions, climate models project that extreme
temperatures will increase an additional 1 °C–2 °C
beyond warm season mean temperatures—indicating
that mean changes alone cannot account for changes
in the tails. This amplified warming of temperature
extremes has been linked to declines in the fraction of
total surface energy fluxes from latent heat, so that in
regions where the surface is projected to dry, tempera-
tures are projected to warm more rapidly as more
energy is partitioned to sensible heating of the air [23].

While high temperatures have diverse and serious
impacts on economies and ecosystems, human health
is most tightly linked to the physiological con-
sequences of extreme humid-heat [1]. Constraining
uncertainty in the response of humid-heat to climate
warming is an urgent task, as recent research has sug-
gested that a critical threshold for human humid-heat
tolerance could be approached or exceeded in parts of
the world during the 21st century [24–28]. This
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threshold is defined using the wet bulb temperature
(TW), the saturation temperature of an air parcel.
When TW exceeds the human skin temperature,
approximately 35 °C, evaporative cooling is no longer
effective as a means of shedding body heat. Prolonged
exposure to such conditions causes heat illness and
eventually death [29]. In addition, much lower TW
values between 27 °C and 32 °C have routinely caused
tens of thousands of deaths and serious heat-related
illnesses in recent decades [2], particularly among the
world’s most vulnerable populations. Uncertainty of a
few degrees Celsius at the warm tail of theTWdistribu-
tion is therefore essential to constrain, as the mortality
risks it poses to people are considerable.

Recent research has shown that anomalously high
specific humidity, rather than temperature, is often
the dominant driver of present-day extreme humid-
heat events [30], while a dry land surface often accom-
panies the extreme temperature events projected in
climate models [31, 32]. Because TW is nonlinearly
dependent on both temperature and humidity, it is not
evident how the competing effects of temperature
(and its associated surface drying) will combine with
specific humidity to alter future risks of extreme
humid-heat. Simultaneous changes in these quantities
complicate estimates of the TW response, as temper-
ature and specific humidity not only influence TW
individually, but are also themselves interactive,
responding in opposite directions to surface drying
(temperature increases more, specific humidity
increases less). These direct and indirect effects of
temperature and humidity on TW suggest that surface
drying could either increase or decrease humid-heat,
depending on the balance of the two changes.

We use daily maximum temperature (Tx) amplifi-
cation, the nonlinear change in temperature that
results in the top half of the Tx distribution warming
more than the warm season average (or median) Tx,

which appear to be driven largely by land-atmosphere
interactions, to assess whether they lead to nonlinear
TW changes in a suite of global climate models. We
investigate the relationships between Tx amplification
and its associated specific humidity change in the con-
text of land-surface drying, and demonstrate the
dependence of the magnitude and frequency of
extreme TW on each at global and regional scales. We
then illustrate how Tx amplification-driven changes in
TW affect the frequency of and population exposure to
humid-heat extremes.

Data andmethods

We utilize climate projections from a suite of 16 global
climate models (GCMs) from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) [33]. All
models that provide the requisite variables for com-
puting daily TW (daily maximum temperature (Tas-
max), specific humidity (Huss), and sea level pressure
(Psl)), as well as daily sensible (Hfss) and latent heat
fluxes (Hfls), are used (supplementary material table
1). Sea level pressure is used as opposed to true surface
pressure due to its greater availability in the CMIP5
ensemble; the difference in pressure is found to have a
less than 0.2 °C effect on global TW estimates, and a
still smaller effect for TW extremes which occur almost
exclusively in regions near sea-level. All model projec-
tions are made in the period 2061–2085 and are
compared with historical simulations spanning
1981–2005. The Representative Concentration Path-
way (RCP) 8.5 [34] emissions scenario is used to
maximize the climate change signal. Allmodel data are
regridded using a linear interpolation procedure to a
2°×2° resolution to facilitate inter-model spatial
comparison. This resolution is generally in the middle
of the native CMIP5 model resolutions (see table 1)

Table 1. Selected CMIP5models.

Model Organization Native Resolution

ACCESS1-0 Commonwealth Scientific and Industrial ResearchOrganisation 1.25°×1.875°
ACCESS1-3 Commonwealth Scientific and Industrial ResearchOrganisation 1.25°×1.875°
BCC-CSM1-1-M BeijingClimate Center 2.7906°×2.8125°
BNU-ESM College ofGlobal Change and Earth SystemScience, Beijing, NormalUniversity 2.7906°×2.8125°
CANESM-2 CanadianCentre for ClimateModelling andAnalysis 2.7906°×2.8125°
CSIRO-MK3-6-0 Commonwealth Scientific and Industrial ResearchOrganisation 1.8653°×1.875°
CNRM-CM5 CentreNational de RecherchesMeteorologiques/Centre Europeen deRecherche et Forma-

tionAvancee enCalcul Scientifique

1.4008°×1.40625°

FGOALS-G2 State Key Laboratory forNumericalModeling for Atmospheric Science andGeophysical

FluidDynamics

2.7906°×2.8125°

GFDL-ESM2G NOAAGeophysical FluidDynamics Laboratory 2.0225°×2.0°
GFDL-ESM2M NOAAGeophysical FluidDynamics Laboratory 2.0225°×2.5°
HADGEM2-CC MetOfficeHadley Center 1.25°×1.875°
HADGEM2-ES MetOfficeHadley Center 1.25°×1.875°
IPSL-CM5A-MR Institut Pierre Simon Laplace 1.25°×2.5°
MIROC5 International Centre for Earth Simulation 1.4008°×1.40625°
MRI-CGCM3 Meteorological Research Institute 1.12148°×1.125°
NORESM1-M NorwegianClimate Centre 1.8947°×2.5°
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and ensures that the models are not all being
unphysically downscaled. All analysis is conducted on
the locally-defined warm season, estimated for each
model and each grid cell as all uniquemonths in which
the annual maximum air temperature (TXx) has
occurred during the historical period. The regridding
procedure has minimal effect on the model-estimated
timing of the warm season (see supplementary mat-
erial figure S1, which is available online at stacks.iop.
org/ERL/14/084003/mmedia).

Daily TW at the time of maximum air temperature
is calculated between 60 °S and 60 °N using the algo-
rithm presented in Davies-Jones, 2008 [35], imple-
mented in HumanIndexMod [36], and ported to
Matlab [37]. Estimating TW at the time of maximum
air temperature rather than the true daily maximum
TWcreates a negligible downward bias inTW [24].

Changes in Tx and TW decile thresholds are calcu-
lated for each grid cell and for each model. The result-
ing changes are averaged over all land grid cells
between 60 °S and 60 °N. Tx amplification is calcu-
lated for different percentiles. For example,Tx amplifi-
cation on the TXx (annual maximum daily
temperature) day is calculated for each model and
each grid cell as the projected change in TXx (averaged
across all years) minus the projected change in the
warm season 50th percentile Tx (also averaged across
all years). We denote this amplification using the fol-
lowing notation:

D - DTTX 50,x x

where ΔTXx is the average change in TXx (i.e. 100th
percentile of the annual Tx distribution) andΔTx50 is
the average change in the 50th percentile of the Tx
distribution. TW amplification on the TWw day is
calculated similarly as the change in the annual
maximum TW minus the change in the warm season
50th percentile daily maximum TW. We similarly
denote this amplification as:

D - DT T 50.Ww W

We note that our results are robust to the choice of
defining amplification (ΔTXx−ΔTx50 or
ΔTWw−ΔTW50) as relative to the warm season 50th
percentile or to thewarm seasonmean.

Tx amplification on the TWw day is calculated as
the projected change in Tx on the day of the annual
maximum TW minus the projected change in warm
season 50th percentile Tx. We denote this amplifica-
tion as:

D - D( ∣ )T T T 50.x Ww x

Similarly, TW amplification on the TXx day is cal-
culated as the projected change in TW on the TXx day
minus the projected change in the warm season 50th
percentileTW, denoted as:

D - D( ∣ )T TTX 50W x W

Tx amplification across the TW distribution is cal-
culated as the mean projected change in Tx on all days

in each warm season TW decile (TWD, where D is the
decile in which the calculation is being performed)
minus thewarm season 50th percentile change inTx:

D - D( ∣ )T T D T 50.x W x

Similarly, TW amplification across the Tx distribu-
tion is calculated as the mean projected change in TW
on all days in each warm season Tx decile minus the
warm season 50th percentile change inTW:

D - D( ∣ )T T D T 50.W x W

We also assess specific humidity (Huss) and eva-
porative fraction (EF) amplification across the Tx and
TW distributions. The EF is the ratio of the latent heat
flux to the total heatflux, defined as:

=
+
Q

Q Q
EF ,E

E H

whereQE is the latent heat flux, and QH is the sensible
heat flux. As above, we denote these specific humidity
and EF amplifications as:

The specific humidity amplification across the Tx
distribution:

D - D( ∣ ) ( ∣ )T D THuss Huss 50 .x x

The specific humidity amplification across the TW
distribution:

D - D( ∣ ) ( ∣ )T D THuss Huss 50 .W W

The EF amplification across theTx distribution:

D - D( ∣ ) ( ∣ )T D TEF EF 50 .x x

The EF amplification across theTWdistribution

D - D( ∣ ) ( ∣ )T D TEF EF 50 .W W

To estimate the effect of Tx amplification’s temp-
erature component on TW, for each model and for
each grid cell, we calculate the TW change on days in
each decile of the Tx distribution using the decile’s
projected Tx change and the specific humidity change
at the Tx median. To estimate the effect of Tx amplifi-
cation’s specific humidity component on TW, we
repeat the calculation using each Tx decile’s projected
specific humidity change and median Tx change. The
total effect of Tx amplification on TW change is esti-
mated by repeating the calculation for each Tx decile’s
projected specific humidity change and each decile’s
projected Tx change. The components of TW change
due to temperature and specific humidity change are
calculated by subtracting the median TW change from
the mean of the TW change across the top five Tx
deciles.

The number of days per warm season that exceed
TW thresholds is estimated using our calculations ofTx
amplification-driven changes in TW. Model bias in
absoluteTW is removed via a percentile-matching pro-
cedure using the ERA-Interim reanalysis. For each
selected TW threshold, the corresponding TW percen-
tile is found for each grid cell in ERA-Interim TW data.
The number of days per warm season that exceed this
TW percentile is then calculated for each model and
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each grid cell in historical climate simulations. Next,
future TW values including the effects of Tx amplifica-
tion are calculated for each model, grid cell, and decile
by adding the decile-mean change to the model’s his-
torical decile-mean TW value, and the number of days
exceeding the same TW percentile is calculated using
this future TW distribution. Future TW values not
including the effects of Tx amplification are calculated
for each model, grid cell, and decile by adding the
50th-decile-mean TW change to the model’s historical
decile-mean TW values in each decile, and the number
of days exceeding the same TWpercentile is calculated.
Finally, the number of additional days exceeding the
TW threshold due to Tx amplification is calculated by
subtracting the number of exceedances calculated
without the effects of Tx amplification from the num-
ber of exceedances calculated with the effects of Tx
amplification.

Population exposure to each TW threshold is esti-
mated using spatially explicit population projections
from the Shared Socioeconomic Pathways Project
[38, 39]. Results are shown using the SSP3 population
trajectory, which is consistent with the RCP 8.5 emis-
sions scenario. For each model and each grid cell, the
population change averaged over 2060–2090 as com-
pared to 2010 is multiplied by the change in the num-
ber of extreme TW exceedances at each TW threshold
between 27 °C and 31 °C, giving humid-heat exposure
in the units of person-days per year. These exposure
totals are summed for all global grid cells.

Results and discussion

We define an amplification to be the projected change
in Tx, TW, or other climate variables at a particular
point in the distribution relative to the projected
change in that variable at the 50th percentile across the
local warm season. Positive (negative) amplification is
when the magnitude of the local warm season change
in percentiles above the 50th percentile is greater (less)
than the magnitude of change at the 50th percentile.
Positive (negative) amplification implies that there is
not simply a mean shift in the distribution, but also an
increase (decrease) in the variance of the right tail.

Global-scale nonlinear increases in warm tem-
peratures are apparent by 2061–2085 across the 16
CMIP5models forced with RCP 8.5 (see Methods). Tx
changes are negatively amplified for percentiles below
the local warm season’s 50th Tx percentile and posi-
tively amplified for percentiles above it (figure 1(a)). In
contrast, warm season TW changes show less variation
across the TW distribution, suggesting a mean shift in
response to forcing. The multi-model median glob-
ally-averaged Tx amplification on the TXx day (the
100th Tx percentile in each year; ΔTXx−ΔTx50) is
0.34 °C, bringing the total TXx change to over 4.5 °C,
but shows wide spatial variation, with parts of the east-
ern and southwestern US, northern Europe, and

China exhibiting well over a degree of amplification
(figure 1(b)). This positively-amplified warming of
high Tx values at both global and regional scales has
been linked to land-atmosphere coupling and land
surface drying [23], which allows energy to be pre-
ferentially partitioned into sensible rather than latent
heat flux. TW, despite having temperature as a con-
tributing factor (alongwith humidity and atmospheric
pressure), exhibits less amplification thanTx across the
globally-averaged distribution: the multi-model med-
ian annual maximum TWw day (the 100th Tw percen-
tile in each year;ΔTWw−ΔTW50) rises 0.24 °Cmore
than the warm season 50th percentile TW (figure 1(c)).
Parts of North Africa and the Middle East have ampli-
fied TW of just under a degree Celsius, though the
magnitudes and ubiquity of TW amplification
(figure 1(c)) is less than that for Tx amplification
(figure 1(b)).

As global temperatures rise, themulti-modelmed-
ian projects that Tx on the TWw day (ΔTx | TWw) and
TW on the TXx day (ΔTW | TXx)will increase by 3 °C–
6 °C and 2 °C–4 °C, respectively, as both heat and
humidity intensify for the most extreme temperatures
(figures 2(a), (b)). Because Tx influences TW, changes
in both variables interact across their distributions.
For example, Tx and TW are negatively amplified on
the TWw and TXx days, respectively, robustly showing
less to no warming (−1 °C to −0.5 °C) as compared
with their respective seasonal 50th percentile changes
in parts of the subtropics and mid-latitudes
(figures 2(c), (d)). This means that on the future days
that have the year’s hottest temperatures, the increase
in humid-heat intensity is projected to be less than the
median increase across the warm season. Thus the
nonlinear increase in Tx does not to appear drive a
nonlinear increase in TW. Globally, this interactive
negative amplification occurs across the top quartile of
both theTx andTWdistributions (figures 2(e), (f)).

Our above analysis highlights that conditions asso-
ciated with Tx amplification dampen increases in TW
on days at high Tx percentiles (figures 2(d), (f)), while
conditions associated with TW amplification dampen
increases in Tx on days at high TW percentiles
(figures 2(c), (e)). These results suggest that nonlinear
increases in extreme temperatures alone are insuffi-
cient to cause nonlinear increases in humid-heat
extremes. We explore this result by demonstrating
how interactions between Tx and TW are mediated by
changes in the evaporative fraction (EF), defined as the
ratio of the latent heat flux to the total heat flux, and
specific humidity. Prior work has linked Tx amplifica-
tion to land surface drying and associated declines in
EF [23]. We confirm this result, showing that EF has a
more negative change (drying) on days above the 50th
Tx percentile, and a more positive change on days
below it (figures 3(a); S2(a)). In addition, relative EF
change across the TW distribution is generally more
positive on days above the 50th TW percentile
(figures 3(b); S2(b)). Together, these results suggest
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that the highest Tx days will become relatively drier
while the highest TW days will become relatively wet-
ter, and highlight the fact that the hottest days often
are not the same as those with the highest TW
values [30].

Specific humidity responds directly to warming
due to the ability of warmer air to holdmoremoisture.
At the same time, however, humidity is shaped by the
surface drying that is tightly associated with Tx ampli-
fication. Concurrent with the relative changes in EF
across the Tx and TWdistributions described above are
corresponding changes in specific humidity: when EF
change is more positive, specific humidity change is
also more positive, a direct result of increased moist-
ure available for evaporation. Accordingly, across the
Tx distribution, specific humidity change is more
negative on days above the 50th Tx percentile and
more positive on days below it (figure 3(c)). In con-
trast, across the TW distribution, specific humidity
change is more positive on days above the 50th TW
percentile and more negative on days below it
(figure 3(d)). Thus within the confines of local land-
atmosphere coupling, the linkages betweenTx amplifi-
cation and TW change center around land surface dry-
ing, as indicated by declines in EF. As the surface dries,
EF declines, energy is preferentially partitioned to sen-
sible rather than latent heat flux, and temperatures rise
more. At the same time, the lack of surface moisture
for evaporation dampens the increase in specific
humidity, creating a drier but hotter environment on
days in the top half of theTx distribution. The opposite

effect occurs on days in the top half of the TW
distribution.

Figure 4 shows the total effect of Tx amplification
on TW change on days above the 50th Tx percentile
relative toTW change at the 50thTx percentile, encom-
passing the combined effects of temperature and
humidity. There is model agreement on the negative
amplification ofTW change associatedwithTx amplifi-
cation in North America, Europe, and Central Asia,
regions where the specific humidity component of Tx
amplification is projected to strongly dampen TW
(figure S5(b)), and its temperature component is pro-
jected to have weak effects on TW (figure S5(a)). Here,
TW increases are projected to be less than they would
be in a world with only linear temperature and specific
humidity changes. In much of the rest of the world,
there is not model agreement on the direction of TW
change associated with Tx amplification. In these
regions, the generally positive effect of the temper-
ature component and the negative effect of the specific
humidity component on TW balance out, making the
magnitude of TW amplification small and its sign
uncertain. However, the individual effects of the
temperature and specific humidity components of Tx
amplification on TW change are large, meaning that
small differences in either component could strongly
affectTWchange (figure S5).

Because Tx amplification can contribute to the
magnitude of TW increases in some regions, we seek to
clarify the implications of Tx amplification-induced
TW changes on people. We do this by examining how

Figure 1.Amplified changes inTx andTW. (a)Projected changes in 2061–2085 versus 1981–2005 under RCP 8.5 for globally averaged
dailymaximum temperature (red;Tx) and estimated dailymaximumwet bulb temperature (blue;TW) across each variable’s
distribution. Boxplots show the 10th–90th percentile range across themulti-model ensemble.Horizontal red and blue lines show the
multi-modelmedianwarm season 50th percentile change inTx andTW, respectively. (b)Tx amplification on the TXx day
(ΔTXx−ΔTx50), defined as themulti-modelmedian projected change in TXxminus the projected change in thewarm season 50th
percentileTx. Globally averagedTx amplification is 0.34 °C. (c)TWamplification on theTWwday (ΔTWw−ΔTW50), defined as the
multi-modelmedian change inTWon theTWwdayminus the projected change in thewarm season 50th percentileTW.Globally
averagedTWamplification is 0.24 °C.Hatching in (b) and (c) indicates less than 2/3model agreement on the sign of the amplification.
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Tx amplification contributes to changes in the fre-
quency of TW days above critical wet bulb thresholds.
TW proxies the effectiveness of evaporative cooling for
people, and globalmean climate warmingwill increase
the frequency of extreme humid-heat events every-
where. The number of days with a TW above 27 °C, a
level above which mortality is observed to rise in cities
across the United States (figure S6), is projected to
increase by 5–50 or more days per year in much of the
tropics andmid-latitudes, irrespective of Tx amplifica-
tion (figure 5(a)). Such a response causes increases in
global population exposure to TW thresholds from
27 °C to 31 °C of 25 to 150 billion person days per
year, respectively (figure 5(b)) under a scenario of
population growth consistent with RCP 8.5 (see Data
andmethods).

The TW change due to Tx amplification generally
reduces the occurrence of extreme humid-heat events
above a TW of 27 °C in eastern North America and
Europe (−2 to −4 d per year) and has little effect on

their occurrence in the tropics (figure 5(c)). These
reductions in occurrence as compared to a world with
linear temperature and specific humidity changemake
a substantial contribution (−10 to−50%; figure S7) to
the overall changes in the frequency of humid-heat
extremes in Europe and easternNorth America shown
in figure 5(a). Because most of the highest TW values
occur in the tropics where Tx amplification has uncer-
tain and near zero effect on TW change, the globally-
averaged effect of Tx amplification is to slightly reduce
the number of extreme TW days exceeding thresholds
ranging from 27 °C to 31 °C by 0.1 to 1 day per year,
respectively (figure 5(d)). Additionally, because many
of the regions where the effect of Tx amplification on
TW change is uncertain are also densely populated, Tx
amplification is projected to result in −3 to +2.5 bil-
lion more annual person-days per year of exposure to
TWvalues above 27 °C.

Figure 2. Interactions betweenTx andTWchange. (a)Multi-modelmedian projected change inTx on theTWwday (Δ(Tx |TWw)). (b)
Multi-modelmedian projected change inTWon the TXx day (Δ(TW |TXx)). (c)Tx amplification on theTWwday, defined as themulti-
modelmedian projected change inTx on theTWwdayminus the projected change inwarm season 50th percentileTx (Δ(Tx |TWw)
−ΔTx50). (d)TWamplification on the TXx day, defined as themulti-modelmedian projected change inTWon the TXx dayminus the
projected change inwarm season 50th percentileTW (Δ(TW |TXx)−ΔTW50). Hatching in (c) and (d) indicates less than 2/3model
agreement on the sign of the amplification. (e)Multi-modelmedian globalmeanTx amplification across theTWdistribution (Δ(Tx |
TWD)−ΔTx50). (f)Multi-modelmedian globalmeanTWamplification across theTx distribution. Boxplots show the 10th–90th
percentile range across themodel ensemble.
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Discussion and conclusions

Our results show that in the global mean, nonlinear Tx
increases are counterbalanced by the dampened
increases in specific humidity associated with Tx

amplification, resulting in near-linear changes in the
TW distribution (figures 1(a), 3(c), (d)). This global-
scale linearity, however, belies important variations in
Tx-amplified TW changes at the regional scale: Tx
amplification generally dampens the warm season
meanTW increase inmid-latitudeswherewarm season
moisture is limited (figure 4), and has little or
uncertain effect on TW change in the tropics. This
response of TW is tightly coupled to the specific
humidity change that is projected on hot days
(figure 3(c)). Globally averaged, Tx amplification
serves to slightly reduce the frequency of extreme TW
values of 27 °C or higher as compared to a world with
only linear temperature and specific humidity change,
a result dominated by eastern North America and
Europe where robust warm season mean drying is
projected. Because models suggest that declines in
surface moisture (proxied by the evaporative fraction)
are associated with amplified warming of the hottest
temperatures, our results show that more warming of
hot extremes can paradoxically reduce the occurrence
of humid-heat extremes in somemid-latitude regions.

Land-atmosphere feedbacks play a role in control-
ling temperature extremes [23, 40], and our results
demonstrate that such feedbacks also exert an impor-
tant influence over the change in TW extremes. On

extreme TW days, specific humidity is the primary dri-
ver of TW change, while temperature is the primary
driver of TW change on extreme Tx days (figure S8).
Accordingly, within the context of land-atmosphere
feedbacks, the extent to which Tx amplification modi-
fies extreme TW change largely depends on how
strongly specific humidity responds to surface drying.
At the same time, we note that recent work [41] has
detailed the importance of atmospheric dynamics and
moisture advection in controlling continental humid-
ity; such processes will also influence the changes in
humid-heat.

These results emphasize the need for more
research investigating the interactions among pre-
cipitation, soil moisture, vegetation, and surface heat
fluxes, along with their representations in climate
models [22]. In particular, the most extreme TW
events often occur along coastlines, making the model
parameterizations of sub-grid scale and coastal pro-
cesses of particular interest. Future increases in model
resolution may enable study of these coastal regions
with strong temperature and humidity gradients. In
this work, we focus on the thermodynamic drivers of
nonlinear temperature and TW change. However,
changes in atmospheric circulation patterns have been
shown to influence the occurrence frequency of
extreme temperature events in the historical record
[42], and it is likely that dynamical changes may influ-
enceTWextremes aswell.

We have estimated this relationship between Tx
amplification and its associated specific humidity

Figure 3.Evaporative fraction and specific humidity changes across theTx andTWdistributions. (a)EF amplification, defined as the
change in EF on days in eachTx decile, relative to the change at the 50th percentile (denoted asΔ(EF |TxD)−Δ(EF |Tx50)). (b)EF
amplification, defined as the change in EF on days in eachTWdecile, relative to the change at the 50th percentile (denoted asΔ(EF |
TWD)−Δ(EF |TW50)). (c) Specific humidity amplification, defined as the change in specific humidity on days in eachTx decile,
relative to the change at the 50th percentile (denoted asΔ(Huss |TxD)−Δ(Huss |Tx50)). (d) Specific humidity amplification,
defined as the change in specific humidity on days in eachTWdecile, relative to the change at the 50th percentile (denoted asΔ(Huss |
TWD)−Δ(huss |TW50)). Boxplots show the 10th–90th percentile range acrossmodels.
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change in 16 global climate models and four climate
regions, but the extent towhichTx changes vary within
and across simulationsmay have a substantial effect on
TW change. There is evidence that models may mis-
represent the strength of land-atmosphere coupling in
some contexts [32], and thus also misrepresent the
relationships among evaporative fraction, temper-
ature, and specific humidity that drive Tx amplifica-
tion. Further, because of the dynamical processes that
determine moisture advection from the ocean to the
land, uncertainty in both ensemble and model repre-
sentations of internal variability and surface processes
will shape uncertainty in how humid such heat
extremes become. Because Tx amplification generally
has a negative influence on TW, an overestimation of
the strength of this amplification could result in real-
worldTWvalues increasingmore than projected.

Such structural and dynamical uncertainties, how-
ever, are crucial to preserve in the diagnosis of the risks
posed by humid-heat events. While the magnitude of
projected extreme TW increases across the CMIP5
model ensemble are smaller than for Tx due to the
countervailing effects of temperature and humidity
change [43], human physiology and health is far more
sensitive to small changes in the tails of TW than in
temperature alone. This suggests that small uncertain-
ties in TW projections can translate into large uncer-
tainties in the risks of health impacts from humid-heat
extremes. Accordingly, it is important that impacts-
focused research recognize and present the wide range
of projected extreme heat and humid-heat outcomes
to best position effective climate risk management
[44]. It is equally important to consider the spatial het-
erogeneity of extreme humid-heat and humanmortal-
ity across the world. In the United States, where air
conditioning is widely accessible and most people do
not work outdoors, daily mortality begins to sharply
increase above TW values of approximately 27 °C
(figure S6). While there may be variation in the mor-
tality response to humid-heat in regions in the tropics

and subtropics that regularly experience heat stress,
human tolerance to high TW values is constrained by
physiology [1, 29]. Additionally, in regions where
baseline health is lower, air conditioning is more
expensive or unavailable, and a higher fraction of peo-
ple perform outdoor physical labor, mortality could
respondmore sharply to humid-heat than in theUS. A
more detailed understanding of the regional variation
inmortality responses to humid-heat is constrained by
health data availability. Given the potential for TW
values to approach the theoretical limits of human tol-
erance (35 °C), more research is urgently needed to
bound the health risks posed by frequent, unprece-
dented humid-heat in densely populated parts of the
world.
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