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Abstract
The carbon balance of the Amazon depends on a complex interplay between climate, soil and tree
behaviour. Land surface models have difficulty in reproducing the observed biomass distribution and
relationships between net productivity and biomass. A new model representing in more detail the
effect of different succession stages is capable of observing this relationship (Rödig et al 2018 Environ.
Res. Lett. 1–40). The key question for future models is how to incorporate more realistically the
nutrient influences on growth and that of a future climate enriched with carbon dioxide.

The Amazon basin contains the largest contiguous
tropical humid forest on the planet. It stretches from
the Atlantic to the Andes and it spans more than
five and a half million square kilometres. The for-
est harbours most of the world’s biodiversity while its
river systems contribute 20% of the global fresh water
resources (Davidson et al 2012). The carbon that is
stored in biomass equals roughly ten times the cur-
rent annual fossil fuel emissions (Davidson et al 2012).
Groundobservations suggest that, through tree growth,
the Amazon forest acts as a net carbon sink to the
atmosphere (Brienen et al 2015), which is confirmed
by atmospheric studies (Gatti et al 2015). However,
the sink strength appears to have been declining since
the 1990s and recent drought events in 2005, 2010
and 2015 might have temporarily reversed the Ama-
zon carbon sink into a source (Feldpausch et al 2016,
Gatti et al 2015).

Land surface models (LSMs) generally experience
difficulties in reproducing the observed spatial variabil-
ity in above-ground biomass (AGB) across the Amazon
basin (Johnson et al 2016). This is highly relevant, as
we expect standing biomass, forest productivity and
biomass turnover todrive thefluxesofwaterandcarbon
from the biosphere to the atmosphere. Importantly, in
LSMs,biomassgain throughabove-groundnetprimary
productivity (ANPP) and biomass turnover tend to fol-
low the climatological moisture gradient in the basin,
creating a gradient that runs counter to the observed
biomass gradient. (Johnson et al 2016) showed that
the models consistently overestimate ANPP and fail to
represent the spatial patterns of both AGB and ANPP

when compared to inventory data from 167 plots in the
Amazon forest.

So, what is happening in the Amazon? Quesada
et al (2012) show that edaphic conditions related to
soil chemical composition and physical structure drive
a basin-wide gradient of forest productivity, tree mor-
tality and AGB. In the geologically younger western
Amazon, the soils are still rich innutrients,most impor-
tantly phosphorus, which results in relatively fast forest
growth (figure 1). Furthermore, the soils are also shal-
low and limited rooting depth likely contributes to a
high tree mortality and fast biomass turnover in the
west of the basin. In the east, the forest grows on very
deep but less fertile soils and shows a relatively low
growth and a low mortality rate, resulting in a less
dynamic forest with a higher AGB. To our knowledge,
no LSM is currently able to model this curious feature.

While Quesada et al (2012) showed the importance
of soil phosphorus as a control on spatial variations
in AGB, it is worth emphasizing that this contributes
to about 20% of the observed variability in AGB.
In their multiple regression, that took into account
spatial correlation between observations, almost 50%
of the variance remained unexplained with the other
30% was linked to several correlated environmen-
tal factors, such as precipitation and temperature.
These findings suggest that the Amazon carbon bal-
ance emerges fromthe subtle interplaybetweenclimate,
soil characteristics and the response of individual trees,
with the importance of each contribution relatively
unknown. Resolving how these interactions work out
will require incorporating tree demography, forest
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Figure 1. Two perpendicular environmental gradients in the Amazon basin drive the spatial variations in above-ground biomass,
forest productivity and tree mortality. Above-ground biomass (AGB, Mg C ha−1), above-ground net primary productivity (ANPP,
Mg C ha−1 yr−1) and tree mortality (% yr−1) are retrieved from Johnson et al (2016). Change in AGB (ΔAGB, Mg C ha−1 yr−1) and
tree mortality (Δ Mortality, percentage point, % yr−1) for episodic droughts from Feldpausch et al (2016), Williamson et al (2000)
and Phillips et al (2009) and for fires from Brando et al (2014). Dynamic and highly productive forests are found on fertile and shallow
soils in the west of the basin. Seasonally dry forests are found on the Brazilian shield in the south-east of the basin where seasonal
drought and recurrent fires limit forest growth and enhance tree mortality resulting in relatively low AGB. In the wet east-central part
of the basin, soils are deep and low in phosphorus resulting in relatively low productivity and mortality and high AGB.

structure and plant functional traits into LSMs (John-
son et al 2016). Furthermore, other mechanisms that
influence tree growth and survival such as soil phos-
phorus acquisition, storm damage, droughts, fires and
deforestation, all deserve a place in future LSMs but
have also proven to be notoriously difficult to incorpo-
rate into predictive models.

This is the point where Rödig et al (2018) enter
the stage. The authors incorporated a LIDAR derived
canopy height map of the entire Amazon basin into
a numerical model that simulates individual tree
growth. This allows the model to capture basin-wide
differences in forest structure and successional stages
at a very high spatial resolution (40 m). Furthermore,
the model is able to simulate dynamic forest gaps
and individual tree mortality rates, instead of biomass
turnover, to estimate standing biomass and carbon
fluxes. The major advantage of using an individual
tree-based model is that it allows for a dynamic inter-
action between the environment, forest structure and
tree demography. As a consequence, their results differ
from previous LSM simulations in one key aspect: the
relationship between AGB and NPP. In most existing
LSMs, a strong positive linear relation between NPP
and AGB emerges in the forest of the Amazon basin
that is not observed in the inventory plots (Johnson
et al 2016). Rödig et al (2018) show that when suc-
cessional stages and individual tree mortality from, for
example self-thinning, are incorporated, the model is
able to simulate a bell-shaped relation between ANPP
and AGB with an optimum of potential ANPP at an
AGB of 250 Mg C ha−1, similar to what is observed in
inventory plots.

The future of the Amazon basin as a carbon sink
is highly uncertain, as the forest remains under threat
of expected climate warming and drying, deforestation
and a likely increase of episodic drought frequency.
Due to its peculiar structure, bounded by the Atlantic
Ocean on one side and the Andes mountain range
at the other, several amplifying effects and feedbacks
operate that can strengthen initial disturbances, shift-
ing precipitation regimes and forest loss far downwind
of the original disturbance area (Zemp et al 2017). It is
therefore essential that LSMs accurately represent the
Amazon forest sensitivity to climatic changes, including
responses of growth and mortality.

However, in the model of Rödig et al (2018), as in
other models (Johnson et al 2016), ANPP is overesti-
mated. This is especially the case in the slow growing
forest of the east-central Amazon (4.3 Mg C ha−1 yr−1

vs. 2.41 Mg C ha−1 yr−1 for modelled and observed
plot data respectively) and the seasonally dry
forests on the Brazilian shield (4.6 Mg C ha−1 yr−1 vs.
2.40 Mg C ha−1 yr−1 for modelled and observed plot
data respectively)). This suggests that factors limiting
forest growth in the east-central Amazon (phospho-
rus availability) and on the Brazilian shield (seasonal
drought) are still not accurately incorporated in cur-
rent models, leading to overestimations of ANNP and
the forest carbon sink. Progress in our understanding
of the key mechanisms that drive forest productiv-
ity and tree mortality in the Amazon basin under
future climate must therefore come from a variety
of disciplines. These should include both modellers
and experimentalist, that focus on the interactions
between edaphic conditions, water availability, forest
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structure and plant functional traits. The planned
Amazon FACE experiment will provide the first
testbed for such research (e.g. Hofhansl et al 2016).
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