
     

LETTER • OPEN ACCESS

Evaluating the accuracy of climate change pattern
emulation for low warming targets
To cite this article: Claudia Tebaldi and Reto Knutti 2018 Environ. Res. Lett. 13 055006

 

View the article online for updates and enhancements.

You may also like
Large-scale emulation of spatio-temporal
variation in temperature under climate
change
Xiao-Chen Yuan, Nan Zhang, Wei-Zheng
Wang et al.

-

Heat wave exposure in India in current,
1.5 °C, and 2.0 °C worlds
Vimal Mishra, Sourav Mukherjee, Rohini
Kumar et al.

-

Extreme precipitation over East Asia under
1.5 °C and 2 °C global warming targets: a
comparison of stabilized and overshoot
projections
Donghuan Li, Tianjun Zhou and Wenxia
Zhang

-

This content was downloaded from IP address 3.147.66.178 on 28/04/2024 at 17:22

https://doi.org/10.1088/1748-9326/aabef2
https://iopscience.iop.org/article/10.1088/1748-9326/abd213
https://iopscience.iop.org/article/10.1088/1748-9326/abd213
https://iopscience.iop.org/article/10.1088/1748-9326/abd213
https://iopscience.iop.org/article/10.1088/1748-9326/aa9388
https://iopscience.iop.org/article/10.1088/1748-9326/aa9388
https://iopscience.iop.org/article/10.1088/2515-7620/ab3971
https://iopscience.iop.org/article/10.1088/2515-7620/ab3971
https://iopscience.iop.org/article/10.1088/2515-7620/ab3971
https://iopscience.iop.org/article/10.1088/2515-7620/ab3971
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssISQnAuiUtDt3T_SjYg5mO7birNSSsd4FK9lsVvhLoZ-gDx6dHBr2dawoTtNR5Qy8tumLNKlmHUgQ2xTfYLlzBMeECzmJpe60FJRfc7ypODQzaVYYg2JIj1iDB5mAbvLWDmyEgJK-mQDkL-nSe4lUyz8dVIjpkPylqQJyniM_D57QXoNCBUBDc1ZoEWI5KbJ6Bas05zFGm1-LJH_0hl-F9tPSlAVVqNFzlXJCJz_CaHiMOHOM6QpcucFsjOVHE1ttG2raCOUhafIu_WoTOIH2B9SLfToWgsuupdDJnA7iJZ4vjG4cdYu3NVtzHLoY-8XwLznHJSUrAiOmi6gc4UHGM3nM38w&sig=Cg0ArKJSzIBDUSuHZfX4&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/breath-biopsy-complete-guide/%3Futm_source%3Djbr%26utm_medium%3Dad-b%26utm_campaign%3Dbb-guide-bb-guide%26utm_term%3Djbr


Environ. Res. Lett. 13 (2018) 055006 https://doi.org/10.1088/1748-9326/aabef2

LETTER

Evaluating the accuracy of climate change pattern
emulation for low warming targets

Claudia Tebaldi1,3 and Reto Knutti1,2

1 National Center for Atmospheric Research, Boulder, CO, United States of America
2 Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich, Switzerland
3 Author to whom any correspondence should be addressed.

OPEN ACCESS

RECEIVED

30 October 2017

REVISED

10 April 2018

ACCEPTED FOR PUBLICATION

18 April 2018

PUBLISHED

3 May 2018

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 3.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

E-mail: tebaldi@ucar.edu

Keywords: BRACE1.5, Paris agreement, benefits of mitigation, pattern scaling, low-warming scenarios, climate model emulation

Supplementary material for this article is available online

Abstract
Global climate policy is increasingly debating the value of very low warming targets, yet not many
experiments conducted with global climate models in their fully coupled versions are currently
available to help inform studies of the corresponding impacts. This raises the question whether a map
of warming or precipitation change in a world 1.5 ◦C warmer than preindustrial can be emulated
from existing simulations that reach higher warming targets, or whether entirely new simulations are
required. Here we show that also for this type of low warming in strong mitigation scenarios, climate
change signals are quite linear as a function of global temperature. Therefore, emulation techniques
amounting to linear rescaling on the basis of global temperature change ratios (like simple pattern
scaling) provide a viable way forward. The errors introduced are small relative to the spread in the
forced response to a given scenario that we can assess from a multi-model ensemble. They are also
small relative to the noise introduced into the estimates of the forced response by internal variability
within a single model, which we can assess from either control simulations or initial condition
ensembles. Challenges arise when scaling inadvertently reduces the inter-model spread or suppresses
the internal variability, both important sources of uncertainty for impact assessment, or when the
scenarios have very different characteristics in the composition of the forcings. Taking advantage of
an available suite of coupled model simulations under low-warming and intermediate scenarios, we
evaluate the accuracy of these emulation techniques and show that they are unlikely to represent a
substantial contribution to the total uncertainty.

Introduction

The Paris Agreement resulting from the 21st Con-
ference Of the Parties (COP21) and the upcoming
Special Report ‘Global Warming of 1.5 ◦C’ of the Inter-
governmental Panel on Climate Change (IPCC) are
stimulating research towards characterizing impacts in
a world abiding by such low warming targets com-
pared to impacts under future global warming levels
of 2 ◦C or higher. However, very few global climate
projections consistent with the low targets agreed in
Paris exist (Sanderson et al 2017, Mitchell et al 2017).
The impact research community could find valuable
and expedient use of surrogate climate projections

approximating climate change in a 1.5 ◦C and 2 ◦C
world on the basis of currently available model sim-
ulations under higher scenarios, if their accuracy was
demonstrated. Established emulation techniques like
simple pattern scaling (Santer et al 1990, Tebaldi and
Arblaster 2014) have long been used to provide inputs
to impact studies.Analternativeapproachrecentlydoc-
umented in Herger et al (2015) and King et al (2017)
consists of using transient simulations at the time
when they reach a given warming target on their way
to higher warming levels (from now on referred to as
‘time-shift’ approach). The accuracy of these methods,
however, has seldom been quantified. More impor-
tantly, they have not been tested specifically on very
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low warming/strong mitigation scenarios, and with
regard to their accuracy in representing both natural
variability and inter-model spread in a multi-model
context.

In this study we take advantage of a set of simu-
lations newly performed with the National Center for
Atmospheric Research-Department of Energy Com-
munity Earth System Model, version 1 (CESM1)
documented by Sanderson et al (2017). These simu-
lations have been specifically designed to stabilize by
the end of the century at a global warming of 1.5 ◦C
and 2 ◦C relative to preindustrial. We use existing
simulations by the same model configuration under
a higher scenario from the Representative Concen-
tration Pathway set (Moss et al 2010), specifically
RCP4.5 (Sanderson et al 2018), to construct the
pattern-scaling and time-shift approximations; we
then test their validity in a ‘perfect model’ setup,
i.e. a case where the true target is known. However,
we believe that the multi-model ensemble paradigm
should furnish the backdrop against which single
model exercises take place. Thus, we first ask more
generally how well a strong mitigation scenario, whose
global temperature trajectory stabilizes during the last
decades of the century at a low level of warming,
can be approximated by available, more moder-
ately mitigated trajectories. We approach this more
general question within the multi-model framework
provided by the simulations available from the Cou-
pled Model Intercomparison Project phase 5 (CMIP5,
Taylor et al 2012). From this set of simulations, we
use the strongly mitigated, lowest scenario, RCP2.6
(which can be viewed as a stand-in for a low warm-
ing/high mitigation scenario of the ‘Paris kind’)
and the next higher scenario RCP4.5. Therefore, we
will apply the two emulation techniques to a set of
models that provide simulations under both RCP4.5
and RCP2.6; we will then assess the accuracy of the
emulation by comparing its error to the spread of
model responses under the target scenario, RCP2.6.
We also employ simulations of pre-industrial con-
trol climate (where no changes in greenhouse gases
or other external forcings are imposed) to gauge the
portion of the error in the estimates of the forced
response to a given concentration pathway that is
introduced by internal variability within each model.
Similarly,whenwe focusontheemulationperformance
within CESM1, we can rely on multiple initial condi-
tion ensemble members under each scenario to assess
the role of internal variability.

We focus on the two key variables of mean
near-surface temperature and precipitation, aver-
aged annually. We analyze the emulation techniques’
performance for geographic patterns of multi-decadal
change, indicative of the model response to external
forcings, and for the interannual variability that is
superimposed on it.

Methods

As background to the approach and results presented
here, we performed a thorough exploratory analysis of
the value of using more than simply the closest sce-
nario available for emulating our target. For example,
we tried to include patterns from a stabilized scenario
(the long-term extension of RCP4.5 producing a sta-
tionary climate over the 22nd and 23rd centuries); we
also utilized results from an idealized 1%/yr increas-
ing CO2 scenario, providing single-forcing patterns in
addition to those resulting from the mixed-forcings
(CO2, aerosols, land-use change) that characterize
RCPs. We also tested the performance of rescaling
RCP8.5 rather than RCP4.5. We concluded that the
simple rescaling or time-shift of RCP4.5 provided
the most accurate emulation of the lower scenarios,
RCP2.6. Therefore, we focus the description of the data
and methods on this simple approach, but the read-
ers may be interested in knowing that those attempts
were made, resulting in no significant improve-
ment in the metrics of performance described below.
Detailed results are available from the first author
upon request.

We use 23 models from the CMIP5 archive pro-
viding pre-industrial control (piControl), historical,
RCP2.6 and RCP4.5 simulations (one ensemble mem-
ber per model, see table S1 for a list of the models
and their affiliations). All models’ temperature and
precipitation output is regridded to a common rect-
angular grid, whose gridboxes are approximately 2.5◦

in longitude/latitude (equivalent to about 250 km at
the equator). In this CMIP5 context we targeted the
emulation of RCP2.6 temperature and precipitation
changes at the end of the 21st century (2081–2100)
by the use of RCP4.5 simulations, model by model.
We use differences across the multi-model ensem-
ble and within each model’s piControl experiments as
measures of unavoidable uncertainty in the emulated
quantities (either from model structural uncertainty
or internal variability, respectively, assuming the lat-
ter is not significantly different between the piControl
and the future simulations). Similarly, when using
CESM1 experiments, we use RCP4.5 (a 10 member
initial condition ensemble) to approximate tempera-
ture and precipitation changes under either the 1.5 ◦C
or 2.0 ◦C simulations, which were conducted using the
same set of 10 initial condition ensemble members (i.e.
the three experiments share the same 10 historical runs,
up to 2005 when the different scenario forcings start
being applied). For these CESM1 experiments the role
of internal variability is directly quantifiable by com-
puting the spread around the forced response (20 year
average changes aggregated over all members) from the
individual ensemble members. These members differ
from each other only by small perturbations in their
initial conditions, and therefore give a direct measure

2



Environ. Res. Lett. 13 (2018) 055006

of the variability in the outcome only due to the natural
noise in the system.

The two methods of emulations whose per-
formance we evaluate, simple pattern scaling and
time-shift, have been identified for example by James
et al (2017) as methods to approximate low-warming
climate scenarios. In simple pattern scaling, a geo-
graphical snapshot of change per degree of global mean
warming is derived from an available scenario simu-
lation: a 20 year mean of the pattern of change at the
end of the century (2081–2100 minus 1986–2005 mean
change, grid-point by grid-point) is computed and is
normalized by dividing it by the corresponding global
average temperature change during the same period.
The pattern of change under the target scenario is then
emulated by multiplying the normalized pattern by the
global average temperature change under the target sce-
nario. We do so model by model for the CMIP5 case, or
ensemble member by ensemble member in the CESM1
case, using the actual global temperature change pro-
duced by each model under the target scenario. Most
pattern scaling applications have to approximate also
the global mean warming of the target scenario, and
they usually do so using a simple climate model that can
be run at low computational cost, like an energy balance
model (Meinshausen et al 2011). Here we assume that
the emulated global mean has a small error compared
to the approximation of the regional outcomes, and we
exploit the availability of the true global warming signal
from the target scenarios.

For the time shift approach applied to the CMIP5
models, we identify the times in their simulations
of RCP4.5 when global average temperature reaches
the same value as the end of the century (2081–2100
average) global average temperature from the corre-
sponding simulations under RCP2.6. We then consider
a 20 year window around that time as our surro-
gate twenty-year’s worth of simulated climate under
RCP2.6. Similarly, we take the 20 year window centered
around the times at which the RCP4.5 simulations in
the CESM1 ensemble reach the same anomaly as the
1.5 ◦C and 2 ◦C simulations do by the end of the 21st
century.

To assess the accuracy of the emulation, geographic
patterns of twenty-year average temperature and per-
cent precipitation change from the emulated output
are compared to the ‘true’ patterns computed from
the target experiments. We use root mean squared
errors (RMSEs), where the mean is performed by area-
weighting each grid point by the cosine of its latitude,
in order not to over-weight the grid-point errors at
high latitudes. In order to assess the resulting val-
ues of these error metrics, we compare them to the
structural model differences. We quantify the latter
by computing RMSEs between each possible pair of
true RCP2.6 patterns from the multi-model ensem-
ble. Further, we want to compare the emulation error
to the variations introduced by internal variability.
We therefore compute RMSEs from pairs of 20 year

patterns computed along the multi-century piControl
runs for the CMIP5 models (since they do not pro-
vide large ensembles of future simulations). In the
case of CESM1, we simply compute RMSEs between
each pair of true target patterns (either from the
1.5 ◦C or from the 2.0 ◦C experiment) among the 10
ensemble members available. The distributions of val-
ues of RMSEs from the different sources (emulation
error, model differences,internal variability) are shown
through their histograms plotted on a common axis,
by which the size of the error in mean and range are
easily compared.

Next, we consider the behavior of a 20 year series
of fields of change, in order to assess how our emu-
lations replicate interannual (year-to-year) variability.
For simple pattern scaling, we take the pattern of forced
change that the method delivers and we superimpose
an estimate of interannual variability. Our estimate of
year-to-year variability is obtained by considering the
20 year time series of fields of change from RCP4.5
after subtracting the 20 year average change, used to
derive the emulation. We are therefore assuming that
inter-annual variability around the pattern of forced
change is similar across the scenarios. In the case of
the time-shift method, we have a time series of 20 year
fields of change by construction, since we are simply
isolating a twenty-year window during the simulations
whose global average temperature change is the same
as the target scenarios.

To evaluate the behavior of these annual fields,
we compute their global averages and examine the
characteristics of the variability of the time series, com-
pared to the target, in terms of the magnitude of the
interannual standard deviation and the presence or
absence of a trend. Visual inspection of the time series
characteristics is supplemented by quantitative assess-
ment of the size of the interannual variability (true
and emulated) through histograms and scatterplots.

Results

Emulation of RCP2.6
We use the multi-model spread as the standard against
which to measure the magnitude of the emulation
errors. Thus, we assess if the error introduced by the
approximation is significant compared to the currently
unavoidable uncertainty in the true target patterns
attributable to the CMIP5 models’ structural differ-
ences.

The top half of figure 1 for temperature change
patterns, and its bottom half for percent precipitation
patterns show that the variation in geographic features
along rows (same scenario, three different models) is
much larger than the variation along columns (same
model, two scenarios). We therefore expect that errors
from approximating scenarios within the same model
will be of smaller magnitude than the variation of
outcomes across the multi-model ensemble for a given
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Figure 1. Patterns of temperature (top 6 panels) and percent precipitation changes (bottom 6 panels) per degree of global warming
estimated from three different models (along the three columns) and two different scenarios (along each of the two pairs of rows).

scenario. This is likely going to be the case when keep-
ing a global perspective and summarizing errors across
the spatial domain, rather than focusing on specific,
regional, fine scale feature. Previous work has shown
that there exist indeed preferential errors introduced by
approximations in certain regions. For example, errors
have been shown to be relatively larger over regions
sensitive to polar amplification, i.e. located at high
latitudes and therefore sensitive to the positive warm-
ing feedback induced by melting ice caps. Other types
of local feedbacks may amplify the response to forc-
ing in a non-linear way. Tebaldi and Arblaster 2014,
Seneviratne et al 2006.

Note that all the models and simulations consid-
ered here are concentration driven, use fixed ice-sheets
and prescribed land use and land cover changes. On
the one hand, these aspects reduce the potential for dif-
ferences in patterns across models and scenarios. On
the other hand, they may be the source of inaccurate

representation of the spatial response. Expectations for
how these different feedbacks may or may not affect the
methods’ performance are as follows. There is no obvi-
ous way by which the carbon cycle could change the
pattern of warming (as opposed to the global mean), as
CO2 is well-mixed. Ice sheet feedbacks are unlikely to
be large by 2100, since the volume of ice may change
but the area of the ice sheets will hardly change by
2100, so the largest effect should be on sea level, with
no effect on the pattern of warming. For vegetation,
the forcing by land use and land use change is pre-
scribed by the individual RCPs’ specifications in the
models, and interact in terms of surface feedbacks
from snow and ice and other land surface character-
istics. Questions arise only for interactive vegetation
that is missing from the models. Only if interactive
vegetation changed the pattern differently in different
models, or differently across scenarios, then that would
lead to poorer performance of the presented methods.
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Figure 2. Histograms of root mean square errors between temperature (top) and percent precipitation (bottom) change fields estimated
from CMIP5 models. Compared are the errors produced when, for any given model, changes under RCP2.6 are approximated by
simple pattern scaling of the same model’s changes under RCP4.5 (yellow histogram, left panels) or by the time shift method applied
to the same model (red histogram, right panels). For comparison, errors from 20 year mean fields within the same model along its
preindustrial Control simulation are shown with grey bars outlined in light blue, and errors from the comparison of RCP2.6 changes
between all pairs of CMIP5 models are shown in black.

Which of the two methods presented would be more
strongly affected is not clear, as vegetation feedbacks
may depend both on the rate and on the magnitude of
warming. However, such potential nonlinear changes
(e.g. an Amazon dieback) are most relevant for very
high warming levels, and since we are considering pat-
tern emulations for low levels of warming we expect
these effects to be very likely small. Specifically, we
expect them to be small relative to the uncertainty
that arises through the large differences in simulated
physical feedbacks across models.

The visual impression from figure 1 is confirmed
by the quantitative performance metric, RMSEs. Figure
2 presents histograms of RMSE values collected from
the 23 models: the error introduced by simple pat-
tern scaling when approximating the RCP2.6 response
of a model by rescaling its response in RCP4.5 (left

panels, yellow histogram) or by using the time-shift
approach within each model (right panels, red his-
togram) is here compared to two other histograms. The
black bar plots in each panel, with a wide range cov-
ering larger values compared to the other histograms,
show RMSEs from all possible pairs of RCP 2.6 patterns
from the CMIP5 ensemble, thus measuring structural
model uncertainty. The narrower grey histograms out-
lined in light blue, almost exactly overlaying the yellow
and red bars, show the RMSEs obtained from differ-
ences in piControl patterns, giving an indication of the
uncertainty introduced by internal variability. The sig-
nificantly narrower and lower ranges of the histograms
of emulation errors (red and yellow) compared to the
histograms measuring inter-model variability (black)
suggest that the inaccuracy of the approximation pales
in comparison to the differences introduced in the
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response to forcing by the models’ structural uncer-
tainty. At the same time, the similarity between the
former and the histograms representing errors from
internal variability suggests that the emulation inaccu-
racy is rather similar to the error due to the imperfect
sampling of the forced component in any single model
run. The comparison of RMSEs from precipitation
emulation delivers very similar results. It has been
established by recent work that 20 year averages at indi-
vidual grid-points from a single model run can only
start to identify the forced component in temperature
changes (Deser et al 2012). Uncertainties only grow for
other variables.

Next, we address the need of providing yearly out-
put in the form of time series of temperature and
precipitation changes for impact modeling, rather than
20 year averages. Scaling the 20 years individually
would result in scaled (and therefore biased) internal
variability. Some recent work has proposed sophisti-
cated emulations of spatial variability in the context
of pattern scaling (Alexeeff et al 2018). Here we sim-
ply reconstruct a 20 year time series taking the higher
scenarios sequence of years and swapping out and in
the forced component estimated by the pattern scaling
method. Alternatively, we simply consider the 20 year
window around the time-shifted target, as explained
in the methods section. Rather than embarking on a
complex evaluation and comparison of spatial vari-
ability of annual patterns between emulated and target
scenarios, we simply ask how the globally averaged
emulated annual patterns compare to the globally aver-
aged target annual patterns. Figure 3 shows that the
behavior of interannual variability emulated around
pattern scaling is very similar to the behavior of true
interannual variability, as inspection by eye of the
time series of global means suggests. A quantitative
comparison of the size of interannual standard devi-
ations (collecting values from the different CMIP5
models) through histograms and scatter plots con-
firm the qualitative assessment. These results are to
be expected, as many studies have shown that it is rare
to detect significant and pervasive changes in variabil-
ity for different levels of warming, even under high
emission scenarios.

When we evaluate the time-shift approach the
stronger trend present in the transient scenario (which
at the time the1.5 and2.0 ◦Cwarming levels are reached
is still subject to increasing CO2 concentrations) and
absent in the stabilized target scenarios introduces a
spurious behavior in the emulated time series, enhanc-
ing interannual variability. This is true for temperature
but much less for precipitation, whose trend in annual
means under RCP4.5 is not significant. The removal of
a simple linear fit in the case of temperature corrects
the interannual variability of the emulation and draws it
better in line with the target. In the case of precipitation,
a trend removal appears to overcompensate.

Even if not the focus of this analysis, we call
attention to the wide range of inter-annual variability

values that is present across the multi-model ensem-
ble, as indicated by the range along the x-axis under
the histograms. Models differ by factors of 2, 3, even
4 in the size of the simulated inter-annual fluctuations
of global mean values of temperature and precipita-
tion. Any study that depends on using this type of time
series as input for climate impact models should care-
fully evaluate the climate models’ internal variability,
as the biases in the magnitude and patterns of variabil-
ity are evidently significant. For example, we expect
changes in indices defined as exceedances of abso-
lute or relative thresholds, like spells of hot extremes,
to be particularly sensitive to the size of the model
internal variability.

Emulation of 1.5 ◦C and 2.0 ◦C scenarios
In addition to exploring the performance of these two
emulation techniques in the multi-model framework
of CMIP5, where our target was RCP2.6, we pro-
vide results of the same emulation methods applied
in the single-model, initial condition ensemble frame-
work, where we can target specifically the two scenarios
motivated by the Paris agreement.

For this applicationof themethods the standardwill
be the distribution of RMSEs expected solely because
of internal variability. Specifically, we compute these
RMSEs by considering differences between every pos-
sible pair of target patterns obtained from the 10 initial
condition ensemble members available under each sce-
nario.

We summarize results in the form of RMSEs his-
tograms as before. Figure 4 demonstrates that even
when focusing on the single-model behavior the two
emulation techniques (yellow and red histograms) pro-
duce, across the board, RMSEs of the same range
of magnitudes as the presence of internal variabil-
ity does (grey histograms). This is the case for both
quantities (temperature and precipitation), both sce-
narios (1.5 ◦C and 2.0 ◦C), both methods (simple
pattern scaling and time-shift). We show maps of the
true and error fields for temperature and precipita-
tion, the two scenarios and the two emulations in
the supplementary material (figures S1–S6 available at
stacks.iop.org/ERL/13/055006/mmedia). The similar-
ity of the target and emulated patterns and the absence
of systematic errorpatterns (with thepossible exception
of a wet bias for the emulation of precipitation changes
in the high variability region of the western Pacific
region for the 1.5 ◦C scenario) can be appreciated from
these maps.

Also the analysis of inter-annual variability pro-
duces similar results to what we described for RCP2.6,
as figure 5 shows: pattern scaling performs accurately in
this exercise, while the time series of annual quantities
identified through the time-shiftmethodare affectedby
the presence of an overall trend that needs correcting,
in the case of these scenarios more substantially than
before. Here, since we are considering a single model,
the size of interannual variability is not significantly
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Figure 3. Comparison of interannual variability of global means of temperature and percent precipitation change for CMIP5 during the last 20 years of the 21st century under RCP2.6 and by approximating them by pattern scaling
and time shift (see plot titles). Time series are shown along the left columns of the two sets, while histograms of the interannual variability across models are shown in the middle column (with y-axis showing the number of cases
(models). The last histogram shows the interannual variability from the time shift approximation after linearly detrending the trajectories. Scatter plots along the right columns compare true values and values from approximations
of the interannual variability. Units are the same on both axes for the scatter plots.
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Figure 4. Histograms of RMSE similar to those shown in figure 2, for the errors produced by approximating the 1.5 ◦C and 2.0 ◦C
scenarios’ temperature and percent precipitation change fields by RCP4.5 pattern scaled (yellow), or using the time shift approach
(red). Results are for 10 ensemble members of the CESM simulations. The black histograms show the size of the RMSEs when
comparing patterns from the true scenario simulations across the ensemble members, as a measure of internal variability.

different across the ensemble members, as opposed to
what was noted for the multi-model ensemble results.
The questionhowever remains whether the interannual
variability simulated by CESM1 compares favorably to
the observed, and, if a discrepancy is assessed, what
the impact model’s tolerance is, in order to still pro-
duce meaningful projections, once other sources of
uncertainties are accounted for.

Discussion and conclusions

This study was motivated by the need for evaluating
the differential impacts of alternative low warming sce-
narios in the wake of the Paris agreement. We take
advantage of the availability of simulations conducted
with NCAR-DOE CESM1 to test the accuracy of emu-
lation approaches that can approximate such scenarios
based on available CMIP5 type scenarios. In fact, we
cast the net wide at first, asking if the highly mitigated
RCP2.6 can be approximated by RCP4.5 in the context
of a multi-model ensemble. In that case, the accuracy
of the emulation is judged by comparing emulation
errors to the uncertainty introduced by the diversity
of responses to the same forcing pathway that the
multi-model ensemble produces.

We investigate the accuracy of two emulation
methods, simple pattern scaling and time-shift, for
two target quantities: annual average temperature and
precipitation. We find that both methods produce
emulated patterns of temperature and precipitation
change that approximate the forced response (a 20
year average change by the end of the century) well
within the CMIP5 models’ structural uncertainty. The
same is true even when comparing approximation
errors to the errors introduced by the presence of
model internal variability. After we reconstruct inter-
annual variability and superimpose it on the forced
pattern, we find that doing so on the basis of pattern
scaling performs better than using the annual time
series from the time-shift approach, because of the
presence of a trend within the time window used in
the RCP4.5 simulation to approximate the low warm-
ing scenarios. This could be remedied by subtracting
a linear trend.

For impact analysis that can build on these basic
quantities, this study implies that existing simulations
under the CMIP5 protocol could be used to approxi-
mate the outcomes of the new low-warming scenarios,
as most changes appear to be linear in global average
temperature. For these type of applications, therefore,
the lack of specific simulations approximating 1.5 ◦C
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Figure 5. Comparison of interannual variability of global means of temperature and percent precipitation change from CESM during the last 20 years of the 21st century under the 1.5 ◦C scenario and by approximating them by
pattern scaling and time shift (see plot titles). Time series are shown along the left columns of the two sets, while histograms of the interannual variability across models are shown in the middle column (with y-axis showing the
number of cases, i.e. ensemble members). The last histogram shows the interannual variability from the time shift approximation after linearly detrending the trajectories. Scatter plots along the right columns compare true and
approximations. Units are the same on both axes for the scatter plots. Figure S7 shows analogous results for the emulation of the 2.0 ◦C scenario.
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and 2.0 ◦C by global climate models is unlikely to be
a limiting factor, and approximations through scaling
of climate model output should not make a substan-
tial contribution to the overall uncertainty, starting
from that introduced by considering multiple climate
models.

While assessing the behavior of these emulation
techniques, the reality of the large discrepancies of the
multi-model ensembles (with regard to both patterns
of change and the size of internal variability) surfaces
starkly and calls for attention: model diversity con-
tinues to be necessary input to any robust impact
analysis. Inter-annual variability should be easier to
diagnose and evaluate on the basis of observations than
patterns of change. We therefore suggest that if the
impact model is sensitive to it, it should be beneficial to
pay attention to this aspect and possibly select models
on its basis.

This has been a rather basic exploration, and we
are aware of other compelling needs when thinking
of drivers of impacts, such as the joint behavior of
multiple variables, or their tail behavior through met-
rics of extremes. Their emulation should be tackled
and tested too, in order to provide a more complete
suite of climate drivers to the impact research com-
munity in the quest for assessing the benefit of slight
differences in global warming levels.
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