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Abstract
Understanding how continuing increases in global mean temperature will exacerbate societal
exposure to extreme weather events is a question of profound importance. However, determining
population exposure to the impacts of heat extremes at 1.5 ◦C and 2 ◦C of global mean warming
requires not only (1) a robust understanding of the physical climate system response, but also
consideration of (2) projected changes to overall population size, as well as (3) changes to where
people will live in the future. This analysis introduces a new framework, adapted from studies of
probabilistic event attribution, to disentangle the relative importance of regional climate emergence
and changing population dynamics in the exposure to future heat extremes across multiple densely
populated regions in Southern Asia and Eastern Africa (SAEA). Our results reveal that, when
population is kept at 2015 levels, exposure to heat considered severe in the present decade across
SAEA will increase by a factor of 4.1 (2.4–9.6) and 15.8 (5.0–135) under a 1.5◦- and 2.0◦-warmer
world, respectively. Furthermore, projected population changes by the end of the century under an
SSP1 and SSP2 scenario can further exacerbate these changes by a factor of 1.2 (1.0–1.3) and 1.5
(1.3–1.7), respectively. However, a large fraction of this additional risk increase is not related to
absolute increases in population, but instead attributed to changes in which regions exhibit continued
population growth into the future. Further, this added impact of population redistribution will be
twice as significant after 2.0 ◦C of warming, relative to stabilisation at 1.5 ◦C, due to the non-linearity
of increases in heat exposure. Irrespective of the population scenario considered, continued African
population expansion will place more people in locations where emergent changes to future heat
extremes are exceptionally severe.

1. Introduction

There is significant societal interest in understanding
how changes to climate extremes will proliferate in a
warming climate (Seneviratne et al 2016, Stott 2016,
Stott et al 2016). Following the successful signing of
the Paris Agreement in December 2015 (Schleussner
et al 2016b, Rogelj and Knutti 2016), a targeted focus
has emerged within the scientific community to better
understand how changes to the global climate system
will evolve in response to specific thresholds of future
global mean warming, such as 1.5 ◦C or 2 ◦C above

‘pre-industrial levels’ (Mitchell et al 2016b, Hawkins
et al 2017, King et al 2017, Kraaijenbrink et al 2017).

Multiple recent studies have evaluated the changes
to climate extremes expected to occur in response to
limiting global mean warming to 1.5 ◦C and 2 ◦C, with
several different modelling frameworks and comple-
mentary methodologies being used to provide these
estimates (Fischer and Knutti 2015, Schleussner et al
2016a, Ciavarella et al 2017, Sanderson et al 2017,
Schleussner et al 2017, Lewis et al 2017, Henley
and King 2017, Mitchell et al 2017, King et al
2017, King and Karoly 2017, Perkins-Kirkpatrick and
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Gibson 2017, Russo et al 2017). This variety in analyt-
ical approaches is particularly important, recognising
estimates of future risk may differ depending on poten-
tially subjective framing choices (James et al 2017).
These include, but are not limited to: (1) the treat-
ment of ‘pre-industrial’ baseline periods (Hawkins
et al 2017, Schurer et al 2017); (2) what timescales
are used to measure 1.5 ◦C and 2 ◦C (Henley and King
2017, Rogelj et al 2017); (3) whether or not temporary
exceedances in a given temperature target are per-
mitted before stabilisation (Knutti et al 2016, Rogelj
and Knutti 2016, Schleussner et al 2016b); and (4)
the specific combination of forcing pathways selected,
recognising that different combinations of greenhouse
gas and aerosol emissions, for example, can produce
stabilisation at the same level of global mean warm-
ing (Millar et al 2017, Wang et al 2017). The analysis
presented here only utilises a modelling framework
specifically designed to understand changes to high-
impact extreme weather events under 1.5 ◦C and 2 ◦C
of warming (Mitchell et al 2016b, 2017), so should
therefore be interpreted in the context of other stud-
ies using different but complementary methods of
analysis.

Recognising that more-frequent and more-intense
climate extremes will often lead to substantially higher
impacts when they occur in highly populated areas,
recent research has focused on the implications of
future changes to heat extremes for specific regions
of interest (Im et al 2017, Mishra et al 2017, Russo
et al 2017, Liu et al 2017, Jones et al 2015, Pal and
Eltahir 2016). However, multiple lines of evidence
also demonstrate that different regions of the world
can experience substantially different rates of emer-
gent climate change given the same amount of global
mean warming (Mahlstein et al 2011, Diffenbaugh and
Scherer 2011, Hawkins and Sutton 2012, Harrington
et al 2016, Diffenbaugh and Charland 2016, Davis and
Diffenbaugh 2016, Herold et al 2017, Frame et al 2017,
Harrington et al2017,Mora et al2017).Therefore, con-
sideration must be given as to how changes to where
people live, as well as changes to overall population
size, will influence collective exposure to future heat
extremes. By combining very large ensembles of high-
resolution climate model simulations with spatially
explicit projections of future population change (Jones
and O’Neill 2016), this study will quantify the rela-
tive contributions of (1) emergent temperature change,
(2) projected changes in total population size and (3)
changes to where people live in exacerbating exposure
to future heat extremes.

2. Data and methods

2.1. Model framework
This analysis employs atmosphere-only model simu-
lations using an experimental framework developed
under the ‘Half a degree Additional warming,

Prognosis and Projected Impacts’ (HAPPI) project
(Mitchell et al 2016b). The HAPPI model framework
prescribes sea surface temperatures and other bound-
ary conditions (sea ice, greenhouse gases, aerosols)
that would be consistent with the current climate, as
well as for future worlds under 1.5 ◦C and 2 ◦C of
global mean warming (see Mitchell et al (2017) for
further details of the experimental setup). We apply
these boundary conditions, via the Weather@Home
(W@H) distributed computing framework, to pro-
duce thousands of atmosphere-only regional climate
model simulations over a spatial domain encompass-
ing a large region of Asia, the Middle East and Eastern
Africa (hereafter SAEA region, figure 1). The W@H
project utilises the spare computing power of volun-
teers to run thousands of simulations of the global
atmosphere-only model HadAM3P (horizontal res-
olution of 1.875◦ × 1.25◦), with a nested regional
model (HadRM3P) operating over SAEA at a hori-
zontal resolution of approximately 50 kilometres (see
Guillod et al (2017) for further details of the W@H
modelling framework). This combination of very large
model ensembles (between 1500 and 2500 model years
per experiment, see table S1) with high-resolution cli-
mate data provides a unique opportunity to accurately
characterise population exposure to exceptionally
severe heat events under future warming.

2.2. Quantifying changes to extreme heat after 1.5 ◦C
and 2.0 ◦C of warming
To quantify changes in extreme heat across the SAEA
region under future warming scenarios, we first calcu-
late five-day running mean values of daily maximum
temperatures at each grid point in the region, and then
extract the maximum value found across the period
spanningApril to September for each model year (here-
afterTx5DX).This yields 2692, 1785and1863estimates
of Tx5DX at each grid point for model simulations of
the present-decade climate, 1.5 ◦C and 2 ◦C worlds,
respectively (see supplementary table S1 available at
stacks.iop.org/ERL/13/034011/mmedia).Thechoiceof
a five-day window is subjective, but is intended to
reflect the approximate length of heat events for which
severe impacts manifest themselves across the regions
of interest.

The threshold of Tx5DX which occurs for one-in-
ten model years under each of the future scenarios is
then identified for each grid cell, and we then quantify
the probability of this same threshold being exceeded
in the present-decade runs. We then calculate the ratio
of the probability of occurrence in the future (one
in ten, by definition) relative to the probability of
occurrence today, and denote this term the risk ratio
(or RR10). Hence, this metric represents the increase
in frequency of future extreme heat, relative to the
present-day climate.

While previous studies provide confidence in the
capability of HadAM3P to faithfully simulate high-
temperature extremes (Uhe et al 2016, Guillod et al
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(a) 1.5K minus Present Decade (b) 2.0K minus Present Decade

(c) 1.5K minus Present Decade, S/N ratio (d) 2.0K minus Present Decade, S/N ratio

(e) 1.5K minus Present Decade, Risk ratio (f) 2.0K minus Present Decade, Risk ratio
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Figure 1. Ensemble-mean projected increase in maximum five-daily maximum temperatures (Tx5DX), for the (a) 1.5 ◦C and (b)
2.0 ◦C HAPPI simulations, relative to the ‘present-decade’ simulations. Calculations for each model year have been made for the
period April to September and results are presented for the full SAEA domain (14◦S–47◦N, 20◦E–114◦E). Panels (c) and (d) are the
same as for (a) and (b), but this time in units of 𝜎, where 𝜎 is calculated for each grid point as the standard deviation of all Tx5DX
estimates in the ‘present-decade’ ensemble. Bottom panels show RR10 estimates for the (e) 1.5 ◦C- and (f) 2.0 ◦C-warmer worlds.
Black regions denote regions where a one-in-ten year event under a 2.0 ◦C-warmer world is unprecedented in the ‘present-decade’
ensemble.

2017), the decision to present changes between warm-
ing levels in a relative framework (rather than in terms
of absolute temperatures) ensures raw model output
can be used directly, and avoids the need to make sub-
jective decisions about what bias correction techniques
might be most appropriate (Sippel et al 2016).

Finally, while the risk ratio metric applied here
remains consistent with the approach employed by
many previous studies (Stott et al 2016, NAS 2016),
it is noted that our method differs by defining an
event threshold with respect to the future world, rather
than the present-day world. This choice was made to
ensure that estimates of very small probabilities will be

calculated with the experiment which has the largest
ensemble size. Further, it is noted that the choice of
a one-in-ten year event in the future is an arbitrary
threshold, but enables consideration of the most severe
heat extremes which could occur in the future.

2.3. Patterns of extreme heat under a 1.5◦- and
2◦-warmer world
Figures 1(a) and (b) present ensemble-mean increases
in Tx5DX across the SAEA region under the 1.5 ◦C
and 2 ◦C experiments, relative to the present-decade
experiment. Both results show regions of faster-than-
average warming in higher latitudes and in continental
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Figure 2. Observed population count over the SAEA region for the year 2015. Data is presented at 0.25◦ × 0.25◦ horizontal resolution,
and provided by the Gridded Population of the World version 4 (GPWv4) dataset, administered by the NASA Socioeconomic
Data and Applications Center (SEDAC) and hosted by the Center for International Earth System Information Network (CIESIN,
doi: https://dx.doi.org/10.7927/H4X63JVC).

interiors, while less rapid signals are found in coastal
regions and at lower latitudes—such patterns are con-
sistent with expected changes to absolute temperature
under future warming (Joshi et al 2008, Collins et al
2013).

To interpret the relative significance of these future
changes in extreme heat, figures 1 (c) and (d) show
the same results as for panels a and b, but this time
normalised by the variability in Tx5DX experienced
in the current climate (taken as the standard devia-
tion across all ‘present-decade’ model runs, calculated
separately for each individual grid box). When warm-
ing is kept to 1.5 ◦C, changes remain relatively modest
across the full region, with most places experiencing
changes in Tx5DX of less than 1𝜎 (with the excep-
tion of parts of the Middle East). But after 2.0 ◦C of
warming, changes exceeding 2 standard deviations can
be found across large regions of equatorial Africa, as
well as large sections of Indonesia, the Middle East
and Iran. Such changes are all the more striking when
ensemble-mean estimates of RR10 are considered (fig-
ures 1(e) and (f)): while under 1.5 ◦C of warming, most
regions experience risk ratios less than ten, increases
in the frequency of severe local Tx5DX escalate to well
beyond 50 f old for many regions in the 2.0 ◦C-warmer
world. In fact, the regions in black denote those loca-
tions for which the threshold of temperature seen every
ten years in the future was never seen to occur across
more than 2600 model years in the present-day climate.
Such results corroborate previous studies, which found
significant changes to the frequency of heat extremes
are possible after only 2.0 ◦C of warming, though such
dramatic increases could be minimised if global mean
warming is kept to 1.5 ◦C (Perkins-Kirkpatrick and
Gibson 2017, Russo et al 2017, Lewis et al 2017).

2.4. Quantifying probabilistic changes to heat expo-
sure
Previous research has shown that the signal of changes
to extreme heat emerges first when assessed as an aver-
age over large spatial scales (Angélil et al 2014), while
higher variability at smaller scales may suppress any
detectable signal of change (King et al 2015). However,
multiple studies have also demonstrated how robust
changes in extremes can in fact be found at small spa-
tial scales when the results of many individual locations
are aggregated together (Fischer et al 2013, Westra et al
2013, Fischer et al 2014, Schleussner et al 2017). An
adapted version of this framework is applied here to
quantify levelsofpopulationexposure to futurechanges
in extreme heat, as found in figure 1, using gridded
population data for the year 2015 (figure 2, CIESIN
2016).

Following equation (1), the average heat exposure
for a given region is calculated across all ensemble
members, N, by summing the risk ratio (RR10) esti-
mates across all grid cells (spanning latitudes 𝜙1 and
𝜙2, and longitudes 𝜆1 and 𝜆2) with a weighting pro-
portional to the fraction of people living in that grid
cell, P/PTOT. More generally, this approach produces
a probability distribution which characterises popula-
tion exposure to different risk ratios after 1.5 ◦C and
2 ◦C of warming. This framework therefore empha-
sises the importanceof changingextremeswherepeople
live (Frame et al 2017), and will take into account not
only future changes to distributions of temperature, but
also changes to the number of people living in various
locations.

Exposure = 1
𝑁

𝜙2∑
𝑖=𝜙1

𝜆2∑
𝑗=𝜆1

𝑁∑
𝑛=1

(
RR10ijn ×

𝑃ijn

𝑃TOT

)
(1)
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2.5. Population changes consistent with a 1.5◦- and
2◦-warmer world
Of course, when considering changes in population
exposure to heat extremes under warming targets con-
sistent with the Paris Agreement, a key determinant
concerns the range of population scenarios which
would be consistent with such a future. The Shared
Socioeconomic Pathways (SSPs) provide a range of
plausible future pathways of population and socioe-
conomic changes, and encompass the full spread of
corresponding climate change scenarios from the Rep-
resentative Concentration Pathway (RCP) database
(KC and Lutz 2017, O’Neill et al 2016, Jones and
O’Neill 2016). In addition to present-day population
observations, this study also examines population pro-
jections for the year 2090 under an SSP1 and SSP2
scenario: these two were selected as ‘baseline’ scenarios
most closely aligned, respectively, with the RCP2.6 and
RCP4.5 climate scenario (O’Neill et al 2016). Since lin-
ear combinations of model simulations from both these
RCPs were also used to produce the 1.5 ◦C and 2.0 ◦C
HAPPI experiments (Mitchell et al 2017), we hereafter
consider both SSP scenarios as feasible to occur in a
future world where temperatures stabilise at 1.5 ◦C.

Figure 3 shows changes in absolute population
between 2015 and 2090 under the two SSP scenarios
considered. Both population data sets were first inter-
polated to a common 0.25◦ × 0.25◦ resolution before
calculationsweremade.Underboth scenarios, there are
two large-scale patterns of population change which
emerge: (1) widespread decreases in population over
many mid-latitude regions, including Central Asia and
China, as well as large regions of South-east Asia; and
(2) robust increases inpopulationover the Middle East,
parts of Pakistan and Afghanistan, and most notably
over widespread areas of Eastern Africa, including
already densely-populated regions in Ethiopia, Kenya,
Tanzania and Uganda. Whilst more obvious under
SSP2, smallerbutmoreconcentratedpatternsof growth
also exist under SSP1 over parts of East Africa, Turkey
and even India—a feature likely indicative of continued
urban intensification (Jiang and O’Neill 2017). Inter-
estingly, population projections across India are more
divergent than other regions: negligible changes in total
population between 2015 and 2090 are found under
an SSP1 scenario, while at least another 400 million
people will inhabit the region under an SSP2 scenario
(KC and Lutz 2017). Such large variations in trajecto-
ries between the scenarios for different regions can be
primarily linked to (a) differences in present-day pop-
ulation age structures, and (b) the differing prospects
of changing education rates for younger adult females
(aged 20–39, KC and Lutz 2017).

To better understand how the SAEA-wide changes
in exposure to extreme heat will translate down to
smaller spatial scales with differingprojections of future
population, two sub-regions have been selected for
further analysis: one encompassing the East African
(11◦S–15◦N, 25◦E–40◦E; hereafter ‘EAF’) domain

exhibiting strong growth irrespective of SSP; the other
encompassing an area over India, Bangladesh and Sri
Lanka (5◦N–28◦N, 70◦E–93◦E; hereafter ‘IND’) which
displays scenario-dependent population growth char-
acteristics.

3. Results

Table 1 presents results of population exposure to RR10
for the three regions of interest, under the multiple
combinations of population and climate scenarios of
relevance in this study. To represent the variability
in exposure implicit in looking over a large population
grouping, we hereafter quantify the ensemble-median
level of exposure to RR10, as well as the RR10 which
will be very likely and very unlikely (90% and 10% like-
lihood) exceeded by a given person across the SAEA,
EAF and IND regions.

3.1. Aggregate changes to future heat exposure
For the full SAEA region, median exposure to severe
Tx5DX increases by a factor of 4.1 (2.4–9.6) under
1.5 ◦C of warming and when population is kept fixed
to 2015 levels, while this number rises to 15.8 (5.0–135)
after 2.0 ◦C of warming. When population changes are
also accounted for, SAEA-wide exposure increases by
a further 50% under the SSP2 population scenario,
while increases are also seen, though less significant,
in the lower-population SSP1 scenario. Interestingly,
median RR10 increases by a factor of four (2.1–25)
if temperatures reach 2.0 ◦C of warming, instead of
stabilising at 1.5 ◦C, irrespective of the population data
set chosen. Such results are even more dramatic than
previous-reported estimates of a doubling in extreme
heatbetween1.5 ◦Cand2.0 ◦C—however, those results
were found using coarser-resolution models and with
respect to the entire globe (Fischer and Knutti 2015).

Results for the sub-region encompassing India,
Bangladesh and Sri Lanka (IND) qualitatively follow
the same patterns of absolute exposure as for the wider
SAEA region—such an outcome is unsurprising, given
about one-third of the population across the entire
SAEA domain is concentrated within the smaller IND
region (table s2).

Across the East African (EAF) sub-region, increases
in extreme heat are found to become 5.7 (2.1–12.2)
times more likely after 1.5 ◦C warming if population
remains fixed at 2015 levels, while risk ratios reach
9.4 (4.1–22.2) and 13.0 (5.7–30.7) if future population
changes follow an SSP1 or SSP2 scenario respectively.
Interestingly, there is a robust change in the frequency
of extremes between the lower- and higher-warming
scenarios: an estimated 5.2 fold (2.5–22) increase in
extremes is expected between the 1.5- and 2 degree
worlds irrespective of population scenario. These larger
increases in RR overall for EAF (relative to the entire
SAEA region) are indicative of the faster emergence
in extreme temperatures found in figure 1, and also
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Figure 3. Projected population changes for the year 2090 under an (a) SSP1 and (b) SSP2 scenario, relative to observations for the
year 2015. Both SSP scenarios and observations have been regridded to a common 0.25◦ × 0.25◦ horizontal resolution before the
calculations have been performed. The full spatial domain corresponds to the SAEA domain; the smaller purple and orange rectangles
correspond, respectively, to the EAF (11◦S–15◦N, 25◦E–40◦E) and IND (5◦N–28◦N, 70◦E–93◦E) sub-regions selected for further
analysis.

agree with many other studies focusing on the rela-
tive rapidity of changes in heat extremes across the
African continent (Mahlstein et al 2011, Russo et al
2016, Harrington et al 2016).

3.2. Quantifying the relative impact of changes in
climate versus population dynamics
While absolute changes in the frequency of heat
extremes are highly informative for regional stakehold-
ers, the methods chosen in this study enable us to
further interrogate the changes in population exposure
to RR10, by quantifying the relative importance of three
factors: (1) changes attributable to increases in global
mean temperatures (RRCLIM); (2) changes attributable

to differences in total population size (RRΔPOPN); and
(3) changes attributable to the spatial reorganisation
of the population exposed (RRREDISTRIBUTION). Com-
bined, we find

RR10 = RRCLIM × RRΔPOPN × RRREDISTRIBUTION
(2)

where RRCLIM is found by keeping population levels
fixed at 2015 observations (first column of table 1) and
RRΔPOPN simply equals the percentage increase in total
population for the region of interest under the different
SSP scenarios considered (relative to 2015 observa-
tions). To calculate RRREDISTRIBUTION, we repeat the
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Table 1. Projected changes in population exposure to extreme
Tx5DX for three regions under a range of future climate scenarios
and population scenarios. Main answers denote the risk ratio which
the median (50th percentile) person would experience; the answers
in brackets respectively denote the risk ratios experienced by at least
90% and 10% of the relevant population grouping.

(a) SAEA 2015 population SSP1–2090 SSP2–2090

RR10 at 1.5 ◦C 4.1 (2.4/9.6) 4.4 (2.3/10.6) 5.9 (3.0/13.8)
RR10 at 2.0 ◦C 15.8 (5.0/135) 18.9 (4.9/264) 26.6 (6.5/346)
RR2.0 / RR1.5 3.9 (2.1/14) 4.3 (2.1/25) 4.5 (2.2/25)

(b) EAF

RR10 at 1.5 ◦C 5.7 (2.3/12.2) 9.4 (4.1/22.2) 13.0 (5.7/30.7)
RR10 at 2.0 ◦C 29.9 (5.9/269) 48.8 (10.0/488) 67.5 (13.8/675)
RR2.0 / RR1.5 5.2 (2.5/22) 5.2 (2.4/22) 5.2 (2.4/22)

(c) IND

RR10 at 1.5 ◦C 4.3 (2.0/10.0) 4.3 (2.0/9.9) 5.7 (2.6/13.1)
RR10 at 2.0 ◦C 17.9 (4.1/269) 17.9 (4.0/268) 25.3 (5.4/354)
RR2.0 / RR1.5 4.1 (2.0/27) 4.1 (2.0/27) 4.4 (2.0/27)

process of spatially aggregating risk ratios weighted
according to where people live, but first normalise the
maps of population for all three scenarios, so individual
grid cells contain information about what percentage
of the region’s people live there, rather than what is
the total number of people living there. By removing
the effect of changes in total population size, the frac-
tional difference in risk ratiobetween these results using
2015 populations, and those using SSP scenarios, will
equal the percentage increase in risk of extreme heat
attributable to changes in where people live (and thus
RRREDISTRIBUTION).

Table 2 presents the range of estimates of
RRREDISTRIBUTION and RRΔPOPN for the various
regions of interest. Results reveal that statistically signif-
icant increases in exposure to heat extremes occurs for
the SAEA region as a whole, with best-guess (ensemble
median) estimates of RRREDISTRIBUTION of 1.09 (1.03–
1.12) after 1.5 ◦C of warming, and best-guess estimates
exceeding 1.2 for a 2.0 ◦C-warmer world. This result
can be explained by the fact that those locations where
future population growth (decline) is most significant
(figure 3) also preferentially align with the regions of
substantially higher (lower) risk ratios in the future
(figures 1(e)–(f)). Estimates of RRREDISTRIBUTION
are also robust irrespective of whether an SSP1 or
SSP2 scenario is considered—a result which is sur-
prising given some of the large regional differences
in population change. The approximate doubling in
RRREDISTRIBUTION after 2.0 ◦C of warming relative to
the 1.5 ◦C experiment reflects the non-linear changes
in heat extremes which occur at the higher warming
level—this acceleration of risk ratios in fast-emerging
locations will further exacerbate the relative impact of
a higher population fraction living there in the future.

When considering the smaller sub-regions, we find
negligible changes in risk ratios over India associ-
ated with the redistribution of where people live—this
is unsurprising however, since population density is
extremelyhighacross the entirety of the region. Instead,
the added increases in risk ratio in table 1 under SSP2

are the direct result of increases in total population
size (RRΔPOPN). By contrast, there is actually a robust
decrease in population exposure to heat extremes asso-
ciated with changes to where people live for the EAF
region, with best-guess estimates of an 8% and 17%
reduction in heat exposure after 1.5 ◦C and 2.0 ◦C of
warming, respectively. This effect therefore helps to
mitigate some of the impact of 80% and 150% pop-
ulation increases expected for the region under SSP1
and SSP2 scenarios (respectively). However, as table 1
reveals, the net effect is still that of exposure to higher-
than-average risk ratios being observed for the EAF
region.

4. Discussion and limitations

While certainly not the only manifestation of climate
change under a 1.5 ◦C and 2.0 ◦C scenario (Schleuss-
ner et al 2016a), heat extremes are the events where
we see the strongest impact of climate change, are the
key determinant in changing rates of heat stress inci-
dence (Pal and Eltahir 2016, Mora et al 2017, Li et al
2018), and the only extreme where climate change is
making previously rare events more likely by orders of
magnitude (Christidis and Stott 2013, King and Karoly
2017, King et al 2017, Lewis et al 2017). Though the
patterns of change to heat extremes are not the same
worldwide, all regions do show the same first-order
response, with monotonic increases in both frequency
and severity occurring everywhere under future warm-
ing scenarios (figure 1). However, future population
changes can be dramatically different depending on
the location considered (figure 3): for the densely pop-
ulated SAEA region, there are widespread decreases
in population predicted over China, South-east and
Central Asia, while regions across Eastern Africa con-
tinue to witness as much as a doubling in population
over the same period. These regional patterns of
population decrease and increase happen to align,
respectively, with regions which experience slower-
than-average and faster-than-average changes in the
emergence of heat extremes.

As a direct consequence of this redistribution
effect, population exposure to worsening heat extremes
can increase by as much as 30% under 2.0 ◦C of
global-mean warming, with non-trivial impacts also
detectable for smaller sub-regions. The effect of chang-
ing population dynamics further compounds the
already-significant increases in extreme heat expo-
sure expected due to warming only. Therefore, while
restricting global-mean warming to 1.5 ◦C instead of
2.0 ◦C can reduce the exposure by a factor of five over
some of the most vulnerable regions, regional decision
makers would further benefit from policies to ensure
future population changes are compatible with an SSP1
scenario. Further research is also needed to understand
how these patterns of heat exposure are com-
pounded by the anticipated increases in urbanisation
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Table 2. Same as for table 1, but instead of showing absolute risk ratios, answers have been separated to show the increase in risk of extreme
heat attributable to changes in where people live (RRREDISTRIBUTION) and to changes in the overall size of the relevant population grouping
(RRΔPOPN). See main text for details of the relevant methodology.

SSP1–2090 SSP2–2090

(a) SAEA RRREDISTRIBUTION RRΔPOPN RRREDISTRIBUTION RRΔPOPN

1.5 ◦C world 1.08 (1.03/1.11) 0.981 1.10 (1.04/1.12) 1.283
2.0 ◦C world 1.20 (1.06/1.30) 1.25 (1.12/1.34)

(b) EAF

1.5 ◦C world 0.92 (0.87/0.96) 1.814 0.92 (0.89/0.94) 2.509
2.0 ◦C world 0.83 (0.75/0.96) 0.83 (0.75/0.93)

(c) IND

1.5 ◦C world 1.00 (0.98/1.02) 0.995 1.01 (1.00/1.03) 1.313
2.0 ◦C world 1.00 (1.00/1.06) 1.06 (1.00/1.10)

rates worldwide (Jiang and O’Neill 2017), particularly
in terms of urban heat island impacts.

This analysis uses a very large ensemble of
atmosphere-only model simulations, thereby enabling
a more complete characterisation of internal cli-
mate variability and hence more accurate estimates
of temperature distribution tails. However, there are
limitations implicit with employing only a single type
of climate model, and the uncertainty bounds pre-
sented in this analysis may therefore underestimate
the ‘true’ range of uncertainty (Bellprat and Doblas-
Reyes 2016). It is worth noting though that the spatial
aggregation techniques applied in this study should
render such discrepancies to be less relevant to the
overall results, particularly when compared to stud-
ies on specific regions. Further, compared to other
large-ensemble GCM simulations, HadAM3P exhibits
a climate response to warming that is on the lower
end of the spectrum (e.g. Philip et al 2017, van Olden-
borgh et al 2018) so estimates given here are likely
conservative. Nevertheless, future work will benefit
from replicating these results using super-ensembles
of multiple other high-resolution regional climate
models.

5. Summary

Stakeholders and policy makers require information
on changing risks today and in the future. Under-
standing changes in the severity of extreme heat in
response to 1.5 ◦C and 2.0 ◦C of warming is an impor-
tant part of future risk assessments, both for global
and regional decision makers—however, the hazard
is only one of three drivers of risk (Pachauri et al
2014). Exposure, and thus the role of future changes
to population, often remains overlooked or assessed
independently of the hazard on different scales, pre-
venting risk estimation on the scales that decisions are
made on.

The results presented in this analysis disaggre-
gates large-scale patterns of change in the climate
system from changes in patterns of population growth.
This study also improves upon previous methods
of quantifying population exposure to future heat

(Jones et al 2015, Liu et al 2017), by combining
techniques previously developed to (1) quantify prob-
abilistic changes to climatic extremes (Stott et al 2004,
Otto 2016, Stott 2016) and (2) better characterise
localised changes across multiple regions, through the
use of spatial aggregation (Fischer et al2013). The com-
bination of changes in the hazard (extreme heat) with
changes in exposure allow for a more comprehensive
assessment of future risks. By understanding what dif-
ferences in heat exposure may emerge in a 1.5 ◦C or
2.0 ◦C world, and the influence of different population
scenarios compatible with the Paris Agreement targets,
decision makers can begin to resolve the minimum
adaptation measures which will be necessary even in
the case of successful mitigation policies.

While local adaptation planners might be primar-
ily be interested in how the patterns of heat extremes
align with changes in population over their immediate
community, it is equally important for decision makers
to recognise the broader implications of heat expo-
sure increases driven by future changes in where people
live. Such patterns may lead to higher-than-anticipated
impacts fromextremeheat, includinggreater food inse-
curity for vulnerable countries (Lobell et al 2011, Liu
et al 2016, Asseng et al 2015, Zhao et al 2017, Lobell
and Asseng 2017), increases in excess-heat mortality
rates (Mitchell et al 2016a, Gasparrini et al 2015, 2017,
Mora et al 2017, Watts et al 2017a, 2017b), and the
potential for higher rates of emigration from the most
severely-affected regions (Reuveny 2007, Black et al
2011b, 2011a, Gemenne et al 2014, Lister 2014, Watts
et al 2017a, 2017b).
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