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Abstract
The fate of live forest biomass is largely controlled by growth and disturbance processes, both natural
and anthropogenic. Thus, biomass monitoring strategies must characterize both the biomass of the
forests at a given point in time and the dynamic processes that change it. Here, we describe and test an
empirical monitoring system designed to meet those needs. Our system uses a mix of field data,
statistical modeling, remotely-sensed time-series imagery, and small-footprint lidar data to build and
evaluate maps of forest biomass. It ascribes biomass change to specific change agents, and attempts to
capture the impact of uncertainty in methodology. We find that:

• A common image framework for biomass estimation and for change detection allows for consistent
comparison of both state and change processes controlling biomass dynamics.

• Regional estimates of total biomass agree well with those from plot data alone.

• The system tracks biomass densities up to 450–500 Mg ha−1 with little bias, but begins underesti-
mating true biomass as densities increase further.

• Scale considerations are important. Estimates at the 30 m grain size are noisy, but agreement at
broad scales is good. Further investigation to determine the appropriate scales is underway.

• Uncertainty from methodological choices is evident, but much smaller than uncertainty based on
choice of allometric equation used to estimate biomass from tree data.

• In this forest-dominated study area, growth and loss processes largely balance in most years, with
loss processes dominated by human removal through harvest. In years with substantial fire activity,
however, overall biomass loss greatly outpaces growth.

Taken together, our methods represent a unique combination of elements foundational to an
operational landscape-scale forest biomass monitoring program.

© 2018 The Author(s). Published by IOP Publishing Ltd
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1. Introduction

Predicting the fate of carbon in forests under future
climates is a fundamental scientific and management
challenge, as these systems contain large reservoirs of
carbon, provide many essential ecosystem services, and
represent a potentially critical feedback in global cli-
mate change (Birdsey et al 2007). Yet carbon storage in
forested ecosystems can be highly dynamic, affected
by diverse anthropogenic and natural disturbance
processes that canradically change the carbon trajectory
of a landscape (Chambers et al 2007, Environment-
Canada 2006, Williams et al 2016). Models and
decision support tools that cannot realistically incorpo-
rate the full range of disturbance and growth processes
can only provide a snapshot of the carbon dynamics,
and may not fulfill the needs of the public or of policy
makers (Joyce et al 2009). Moreover, neither mod-
els nor management plans can exist in an historical
vacuum: both must consider how the potential future
conditions relate to past and current trends and status
(Birdsey 2006).

Ourunderstandingofpossible forest carbonfutures
is hampered by our sparse observations of the recent
carbon past. In the United States, the core tool used
for national and international reporting of forest car-
bon fluxes (EPA 2016) has traditionally been the field
measurements collected by the Forest Inventory and
Analysis (FIA) program (Goodale et al 2002, Wood-
bury et al 2007). Though FIA measurements are now
recorded consistently, cover the contiguous US, and are
statistically defensible, the goal of any such inventory
program is an estimate of growing stock or volume for
large areas (McRoberts et al 2014). This result may not
be sufficient for managers and modelers who need spa-
tially explicit maps of carbon and carbon change at the
scale of management (Sannier et al 2016). Additionally,
the decadal repeat period of FIA plot measurements (in
the western US) is longer than that needed to capture
anthropogenic and natural processes that significantly
alter carbon pools every year (Houghton 2005).

Other tools have the potential to complement FIA
plot information in capturing actual forest carbon con-
ditions, but none can fully address carbon dynamics
alone. Maps based on small-footprint lidar (light detec-
tion and ranging) data have been shown to provide
excellent estimates of live aboveground forest biomass
and hence carbon (Hudak et al 2002, Kim et al 2009,
Naesset 2002, Pflugmacher et al 2014), but these data
are generally available for relatively small areas, and
even in the future are unlikely to be repeated fre-
quently enough over large areas to capture disturbance
processes in a monitoring framework. Maps of forest
disturbance from Landsat satellite imagery have fine
enough spatial resolution to capture individual patches
of disturbance and growth (i.e. 30 × 30 m), and also
to meet the criterion of covering large areas (Hansen
and Loveland 2012, Huang et al 2010). Landsat-
based maps of forest dynamics have traditionally had

greatest success focusing on high-severity, abrupt dis-
turbances such as clearcuts and fires (Cohen et al 2002,
Masek et al 2013).

While characterizing abrupt disturbance processes
is critical for understanding biomass dynamics, maps
showing the timing of such disturbance processes alone
are insufficient for biomass monitoring. They omit
key lower-severity anthropogenic disturbances such
as mechanical thinning, subtle or long-lasting natu-
ral disturbances caused by insects and drought (Cohen
et al 2016, McDowell et al 2015), and slow aggradation
processes such as forest growth. Additionally, maps of
disturbance timing alone provide no indication of the
biomass status before the disturbance, nor of the agent
that caused it—both of which can substantially alter the
biomass consequences of a given change (Williams et al
2016). Other efforts to map biomass or disturbance at
broad spatial extents from satellite-based data (optical,
radar, and lidar) have generally focused on single-date
estimates of biomass stock (Goetz et al 2009, Kellndor-
fer et al 2000, Swatantran et al 2011, Zheng et al 2004)
or have spatial grains too large to adequately capture
change caused by management (Blackard et al 2008,
Wilson et al 2013). Uncertainties introduced through-
out the modeling process are rarely imparted to users,
despite the recognized need for such estimates (Saatchi
et al 2011, Sexton et al 2015, Williams et al 2016).

Here,wedescribe anempirical forest biomassmon-
itoring system that meets many of these challenges. We
link FIA plot data with time-series analysis of satel-
lite imagery to create yearly maps of forest biomass at
the regional scale, and link changes in those biomass
maps to disturbance and growth dynamics. In the pro-
cess, we examine methodological uncertainties, and
utilize high-quality, lidar-based local-scale maps of
biomass to understand robustness of our regional esti-
mates. Taken together, the yearly estimates of biomass,
biomass uncertainty, and cause of change delivered by
our monitoring system can provide a nuanced under-
standing of the spatial and temporal patterns of forest
biomass dynamics at a regional scale.

2. Methods

2.1. Overview
The biomass monitoring system is built from three
methodological components (figure 1): (1) regional-
scale time-series image analysis using LandTrendr
(Kennedy et al 2010, 2015); (2) statistical linkage of
that imagery with field plot data using the gradi-
ent nearest neighbor (GNN) methodology (Ohmann
et al 2012); and (3) local-scale assessment using air-
borne lidar data (Kane et al 2010).

Methodological uncertainty is explicitly incorpo-
rated into the system. Rather than providing only a
single solution for biomass estimation at any given
location, we create a suite of scenarios of the biomass
landscape for each pixel and year, yielding both the
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Figure 1. An observation-based, empirical carbon monitoring system. From left, satellite-data are analyzed through a time-series
algorithm (LandTrendr; Kennedy et al 2010) to create disturbance maps, change agent maps, and temporally-stabilized yearly image
time-series. Those images are linked via statistical algorithms (GNN: gradient nearest neighbor imputation (Ohmann and Gregory
2002)) with plot data (FIA: forest inventory analysis) and other geospatial data to create yearly maps of plot-like information. That
information includes tree-level species and height information, which can be used in allometric equations to create yearly biomass
maps at at 30 m grain size. These maps can be used to characterize biomass status in a consistent manner across large or small
ownerships, or to examine how change in biomass is affected by anthropogenic or natural agents of change. Where available, these
regional-scale biomass maps can be compared to small-area maps of biomass derived from small-footprint lidar acquisitions.

central tendency and an estimate of methodological
uncertainty. We then characterize trends in biomass
according to the timing and type of agents causing
change, including both human and natural processes.

2.2. Study area and datasets
We prototyped our biomass monitoring system in the
Western Cascades province of Oregon and a small part
of California (see section S1 for details). This study
area contains some of the most carbon-rich conifer-
dominated forests in the world (Smithwick et al 2002,
Waring and Franklin 1979), with a wide range of dis-
turbance and recovery dynamics (Kennedy et al 2012,
Moeur et al 2011).

The monitoring system is built from four broad
classes of data. Forest inventory data measured in the
field by US federal agencies provide the foundational
measurements of individual trees at a sample of loca-
tions across the study area. Imagery from the Landsat
satellites provide the spatial and temporal descriptions
of the landscape as it changes over time. Ancillary
geospatial data describe the broad environmental con-
ditions, including soil, elevation, and climate. Finally,
airborne lidar (laser range-finding) data are used
opportunistically to assess performance of the system
at focal areas.

2.3. Analysis
2.3.1. Image analysis with LandTrendr
Applying simple statistical tools to spectral data, the
LandTrendr algorithms distill the dominant distur-
bance and recovery processes for each pixel in a Landsat

Thematic Mapper time-series (Kennedy et al 2010).
LandTrendr image analysis fills two roles. First, it
provides stabilized imagery on which the later GNN
mapping is based. By removing factors that introduce
year-to-year spectral noise, this ‘temporally stabilized’
imagery allows development of a single, consistent
GNN model across time. These stabilized images not
only capture the state of the landscape in a given year,
but also whether that state is changing from one year
to the next or is stable. Second, data derived from
LandTrendr can be used to label the agents that cause
abrupt and subtle changes, including clearcuts, partial
harvests, fires, and insect attack. For both stabilized
imagery and change agents, the ultimate analytical
products were 30 m resolution raster images for every
year from 1990–2012. While the LandTrendr algo-
rithms have been well-described elsewhere (Kennedy
et al 2010, Kennedy et al 2012), we highlight in section
S2.1 the changes and key steps in processing that apply
to the biomass monitoring system, as well as the tools
used to evaluate effectiveness.

2.3.2. Gradient nearest neighbor imputation
The GNN method links forest inventory plot data
with a suite of geospatial predictor variables to pro-
duce regional estimates of forest characteristics from
which biomass can be calculated. Also described else-
where (Ohmann and Gregory 2002, Ohmann et al
2012, Ohmann et al 2014), the GNN method
uses canonical correspondence analysis (ter Braak
1986) to develop a multivariate gradient space in
which spatial predictor datasets (climate, topography,
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Figure 2. Estimates of the relationship between aboveground live-tree biomass (CRM allometrics) predicted from the LandTrendr +
GNN imputation approach versus that observed at > 6000 plots across the study area. Shown are mean values from GNN Scenarios
1 biomass shows little bias up through 500 Mg ha−1 (see inset), but slowly becomes underpredicted as biomass increases beyond that
value (main graph).

spectral data) and forest inventory plot observations
are linked. In section S2.2, we highlight innovations
of the method specific to the biomass monitoring
system presented in this contribution. At the end of
the GNN modeling, each pixel on the landscape is
assigned tree measurements from an inventory plot,
from which any derivative metrics (including biomass)
can be determined and mapped.

2.3.3. Uncertainty scenarios
LandTrendr and GNN are imperfect models affected
by the parameters used to constrain them. To capture
the uncertainty in these parameter choices, we ran both
LandTrendr andGNNunder threeparameter scenarios
each (labeled LT1, 2 and 3 for LandTrendr scenarios,
and GNN 1, 2, and 3 for GNN), resulting in a com-
bination of nine ‘uncertainty scenario’ predictions for
each pixel and year. Details of these scenarios are given
in sections S2.1.4 and S2.2.4.

Additionally, the translation from tree measure-
ments to biomass through allometric equations is itself
uncertain (Duncanson et al 2015). We used two differ-
ent families of allometric scaling to estimate biomass
from tree measurements in each pixel: those based on
Jenkins et al (2003) and those using the component
ratio method (CRM; (Heath et al 2008)).

2.3.4. Lidar-based mapping
Airborne lidar data provide insight into the three-
dimensional structure of forest stands (Lefsky et al
2002), and, when combined with reliable concurrent
field measurements, can yield highly reliable estimates
of forest biomass at apoint in time (DubayahandDrake
2000). For one of the two lidar acquisitions in our study
domain with appropriate field data, we calculated esti-
mates of aboveground forest biomass. For the second
site, we utilized an existing forest biomass map. Details
of analysis are provided in section S2.3.

3. Results

3.1. Detection and attribution of change
Results of detection and attribution of change are
detailed in section S3, and were accomplished at rates
consistent with our prior published work (Kennedy
et al 2015, Kennedy et al 2012). Confidence in detec-
tionand labelingarehighest for abrupt, high magnitude
events, such as fires and clearcuts, and lower for sub-
tle and long-duration events, such as insect attack or
general decline in vigor (sensu (Cohen et al 2016)).

3.2. Forest biomass estimation with GNN
For the 6108 forest inventory plot measurements in the
entire study area, agreement between measured and
mean imputed biomass (using GNN scenarios 1 and 2
(section 2.2.4) for all LandTrendr scenarios) was rel-
atively unbiased and 1:1 for biomass densities up to
500 Mg ha−1 (figure 2 inset), and then showed signs
of slight underprediction at biomass densities greater
than 500 Mg ha−1 (figure 2, main). To understand
how these relationships would affect estimates of total
biomass for the whole region, we used scaling factors
on observed plot values to estimate the proportion of
the landscape in different biomass categories, calcu-
lated total regional biomass within those categories,
and compared the total regional biomass to that derived
from the nine variants of our biomass maps grouped in
the same biomass categories (figure 3). Mapped total
biomass agreed well with estimated biomass from sam-
pled plots, both in terms of totals and in terms of the
distribution of biomass across biomass categories, but
under-represented the very highest biomass categories
(greater than 830 Mg ha−1). Underrepresentation of
high biomass conditions was accentuated for GNN
Scenario 3 runs. Although it is impossible to know
biomass of unsampled plots, the conservative approach
of assigning biomass in proportion to all sampled plots
suggests that our mapped values underpredict biomass
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Figure 3. Total aboveground live biomass (using CRM allometry) in the study region, estimated both from plot data expansion
factors (‘Plot Estimate’) and from nine biomass maps derived using the biomass monitoring system described herein. Colors represent
the proportion of the total estimated biomass contributed by forests in different biomass densities, shown next to the Plot Estimate
bar. Note that all biomass maps underestimate the proportion of biomass in forests above biomass density of 830 Mg ha−1, with
GNN 3 scenarios showing the greatest underestimation. Unsampled plots are those not acceesible; they have unknown biomass. As a
conservative estimate, we assume they have the same distribution of biomass values as the rest of the measured dataset.

across all scenarios. Regardless of LandTrendr or
GNN-scenario, Jenkins-based biomass was ∼16%
higher than CRM-based biomass (figure 3 vs
figure S5), consistent with findings of others (Zhou
and Hemstrom 2009). The standard deviation among
LandTrendr & GNN scenarios, however, was << 1%
of the mean, for either CRM or Jenkins based maps.
When reporting the remainder of our results, we
report only on the CRM-based estimates, as this is
the approach currently employed by FIA to estimate
nation-wide biomass stocks.

Imputed maps of aboveground live forest biomass
showed spatial patterns consistent with expecta-
tions for the managed landscapes of this study
area (figure 4). For example, for the CRM-based
biomass estimation using LandTrendr scenario 1
(LT1) and GNN scenario 1 (GNN 1) figures
4(a) and (b), old-growth conifer forest shows high
live tree biomass (>600 Mg ha−1), while recently-
disturbed areas show low biomass (0−50 Mg ha−1).
Taking the mean value of biomass from all nine
scenarios retains the same landscape-scale pattern
(figure 4(c)), but reduces the pixel-scale spatial vari-
ability resulting from the nearest-neighbor approach.
A map of the variability of biomass across scenar-
ios shows considerable spatial noise (figure 4(d)), but
retains some coherent spatial patterns. Generally, vari-
ability peaks in the middle of the range of values (figure
4(e)), but for the majority of the study area, vari-
ability in estimates is below 25% of the mean values

(figure 4(e) inset). Because all LandTrendr and GNN
scenarios are methodologically defensible, this suggests
that no single scenario could be used to represent the
others. Rather, a user should be aware of both a central
tendency (such as the mean value, figure 4(c)) and the
standard deviation image (figure 4(d)), consistent with
Bell et al (2015).

3.3. Comparison with lidar-derived estimates
We examined the relationship between biomass esti-
mated from lidar and from LandTrendr +GNN at two
forest sites. At the 30 m pixel scale, the relationship was
noisy, but it improved with spatial aggregation (section
S5,figureS6). For theHJA, the relationship trackedwell
up until approximately 450 Mg ha−1, and then abruptly
plateaued (figure S6), while biomass values remained
less than 450 Mg ha−1 at the Deschutes site. Maps of
disagreement confirm that discrepancies were greatest
in high-biomass stands at the HJ Andrews.

3.4. Change in biomass
By creating yearly biomass maps from 1990–2012, the
monitoring system allows comparison at a range of
temporal aggregation scales, from the whole period
to yearly. At any given point or for any given patch
or area, the biomass trajectory over the entire period
can be tracked, showing the impacts on biomass of
both disturbance and regrowth (figure 5) and how dif-
ferent modeling scenarios affect estimates. Notably, it
is unlikely that any single modeling scenario is best
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Figure 4. Example biomass products from the monitoring system. (a) Biomass density (Mg biomass ha−1) for a single scenario (LT 1,
GNN 1, GRM) of the system for the year 2005. (b) Detail of (a) as indiciated by black box and arrow. (c) Mean biomass density across
all nine scenarios for the CRM allometric family for the same year. (d) Standard deviation of the nine scenario estimates. (e) Density
plot of uncertainty, as represented by standard deviation of biomass vs. mean biomass for the entire area shown in (a). Although
uncertainty exceeded mean biomass in some cases, more than 50% and 75% of the landscape had uncertainty ratios less than 25%
and 50% respectively (inset).
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(see table S1 for LandTrendr scenarios; section S2.2.4 for GNN scenarios) for selected years. (b) Trajectory of biomass for the clearcut
indicated by the lower polygon in (a). Charted values are mean across pixels within the clearcut patch for each combination of
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which illustrates regrowth from a clearcut that occured before the observation period. Note that the y-axis scale is changed to highlight
regrowth variability among LT and GNN scenarios.
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under all conditions, as illustrated by the variability
in representation of both pre-disturbance condition
and post-disturbance recovery rate among scenarios
(figures 5(b) and (c)).

For a monitoring system, it is important to doc-
ument not just how much biomass is changing over
time, but why. By linking maps of change agent with
maps of mean biomass change, we can ascribe biomass
loss and gain to specific agents over time (figure 6). For
this study area, we found that anthropogenic changes
(clearcuts and partial harvests) were a consistent loss
signal over the entire time period, with occasional
large loss from fire. Net change recorded by our sys-
tem switched from general uptake in the 1990s to
loss in the 2000s.

Because our system produces multiple estimates of
biomass change for each time period, it allows assess-
ment of the uncertainty of the impact of each agent
(figure 7). Uncertainty in biomass loss due to clearcuts
and partial harvests is low relative to the mean esti-
mated loss, andgenerally consistent across time (figures
7(a) and (b)). Uncertainty in loss due to fire scales
with overall loss rate, which itself is quite variable
from year to year (figure 7(c)). Both of these find-
ings emphasize that estimates of biomass immediately
after abrupt disturbances can be relatively uncertain,
making the estimates of loss span a wider range
than the pre-disturbance biomass. Uncertainties asso-
ciated with long, slow disturbance and with regrowth
(figures 7(e) and (f)) were greater than for the other
agents, but were relatively consistent over time. Even
considering the uncertainty in estimates, loss from
long, slow disturbance, which is often associated with
pests and other stressors (Cohen et al 2016), exceeds
loss from the two insect agents that were explicitly

modeled (bark beetle and western spruce budworm,
Meigs et al 2015).

4. Discussion

Forests occupy an important component of any carbon
monitoring program. They have the capacity to store
substantial amounts of carbon in live aboveground
biomass, but they are also subject to disturbances that
remove it. For carbon accounting and risk analysis, a
carbon monitoring system must track forest biomass
consistently across space and time, and must track
how natural and anthropogenic processes change it.
Below, we highlight strategies, strengths and weak-
nesses, and findings of our system. Substantially more
detail can be found in supplemental section S6 available
at stacks.iop.org/ERL/13/025004/mmedia.

Our monitoring strategy used advanced algorith-
mic approaches to leverage strengthsof complementary
datasets. Spectral information from satellite data are
ubiquitous and can track change over time, but sat-
urate in high biomass systems. Plot data are the gold
standard in biomass estimation, but are sparse in space
in time. In our system, temporal segmentation pro-
vided the stability of optical data needed to build large
plot databases, and the nearest neighbor imputation
approach allowed high biomass data to be included in
mapped outputs. Although our estimates of biomass
show signs of saturation, they did so at relatively
high densities (450 or 500 Mg ha−1, figures 2 and
3), suggesting utility in many forested systems. Spa-
tial scale matters, however. At pixel scales, noise vastly
swamps signal (figure S6), meaning our system’s esti-
mates of absolute biomass at one point in time are not
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Figure 7. Mean biomass loss or gain attributable to individual agents of change (a) clearcuts, (b) partial harvest, (c) fire, (d) known
insect, (e) unknown slow disturbance, and (f) recovery. Black line indicates mean change in biomass across all nine LT and GNN
scenarios for all cases of a given agent per year, and grey shading shows variability in biomass estimation across the nine modeling
scenarios.

appropriate at the pixel scale; ongoing work explores
this scale effect (Bell et al in preparation). However,
tracking relative change in biomass over time appears
possible even at the scale of individual forest stands
(figure 5).

Because our system relied on temporal segmenta-
tion of Landsat imagery, it was possible to explicitly tie
change in biomass to disturbance and growth changes.
While thedetectionof disturbance fromremote sensing
contained error (tables S2 and 3), such tight coupling
allowed comparison of the carbon impacts of different
change agents (figure 6). Importantly, labeling agents
of change depended heavily on scaling local knowledge
of disturbance through machine learning algorithms.

Ourensembleapproach toestimatinguncertainty is
imperfect and incomplete, but provides a first approx-
imation of the spatial and temporal pattern of the
unknown. Not strictly error, our uncertainty maps
essentially point to places and times where the system
behaved poorly. This can provide insight into where
and how the information content or the assumptions
of the empirical system break down.

Althoughour results in ahighbiomass forest system
are encouraging, some caution is needed when consid-
ering application of our monitoring system in other
forest types. The availability and quality of our core
datasets may represent a best-case scenario compared
toother areas.Historical Landsat data in the continental
US are temporally dense, and the climate of our study
region allowed high probability of obtaining cloud-free
observations. Similarly, the FIA plot network is unusu-
ally robust inquality,design, and temporaldepth.These
conditions would not be easily met in many tropical
systems, for example, where cloud cover and image

availability limit spectral information, and access and
cost constraints make direct measurement challenging.
Additionally, the strength of the relationships between
spectral data and forest type data may differ in forest
types unlike those tested here, which were dominated
by evergreen conifer types. In sparse forests, shrub-
lands, or broadleaf deciduous systems, robustness of
prediction would need to be tested explicitly before
implementing our system.

Nevertheless, by providing a consistent monitor-
ing framework across which different agents of change
can be compared, our system yields several compelling
insights in our forest-dominated study area. Human
activities control the biomass removal in most years.
Fire is sporadic, but when it occurs shifts the system
strongly into carbon loss. Note that while our system
simply measures removal from the landscape and does
not track the fate of that biomass (or carbon), the tight
coupling of agent and biomass loss could be used to
estimate differential fates of carbon in fires, harvests,
and other processes. Interestingly, loss of carbon from
known insects was not as great as loss due to other
slow degradation processes. The challenge in inter-
preting this finding is the non-specific nature of those
processes: broadly described as ‘decline’ (Cohen et al
2016), they appear to be real phenomena, but are a
mix of other insects, disease, drought effects, and other
stressors. Our own estimates show substantial uncer-
tainty in their biomass impacts, leading us to caution
against over-interpretationof their importance without
further study.

Overall, our system appears viable as another tool
for managers and modelers of forest carbon. It pro-
vides consistent spatial and temporal estimates of forest
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biomass dynamics, and attempts transparent inclusion
of errors and uncertainties. By linking agents of change
with biomass change, it provides tools to managers and
modelers to understand impacts and evaluate possible
alternative future scenarios.

5. Conclusion

We have presented an empirical approach to monitor-
ing live forest carbon at broad scales, using a mix of field
data, statistical modeling, remotely-sensed time-series
imagery, and small-footprint lidardata.The framework
builds maps of forest biomass state for each year that
are consistent and comparable across years, and is con-
structed to allow direct coupling of change in biomass
to specific change agents. Several important findings
emerge from this work:

1. A common image framework for biomass estima-
tion and for change detection allows for consistent
comparison of both state and change processes con-
trolling carbon dynamics.

2. Although biomass estimation with optical sensors
tends to saturate using traditional statistical meth-
ods, the nearest-neighbor imputation approach
allows us to better capture the full range of val-
ues (including very high biomass) at the ecoregion
scale.

3. Comparison with estimates from lidar data shows
general agreement, but also shows local-scale dis-
agreement at the scale of pixels and forest stands.
This suggests that there is a lower limit on the spa-
tial detail at which this regional scale method can
be applied. Further investigation to determine the
appropriate scales is underway.

4. Variability in controlling parameters for both the
time-series fitting and the imputation approach
do result in variability in biomass estimates at the
pixel scale, but using the mean of these ensembles
improves the overall fit between observed and pre-
dictedvalues. Importantly, the variability inbiomass
estimates caused by methodological differences is
markedly less than the different in biomass esti-
mates caused by use of different allometric scaling
equations.

5. In this forest-dominated study area, growth and loss
processes largely balance in most years, with loss
processes dominated by human removal through
harvest. In years with substantial fire activity,
however, overall biomass loss greatly outpaces
growth.
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