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Abstract
We assess the influence of humans on burned area simulated with a dynamic global vegetation model.
The human impact in the model is based on population density and cropland fraction, which were
identified as important drivers of burned area in analyses of global datasets, and are commonly used
in global models. After an evaluation of the sensitivity to these two variables we extend the model by
including an additional effect of the cropland fraction on the fire duration. The general pattern of
human influence is similar in both model versions: the strongest human impact is found in regions
with intermediate productivity, where fire occurrence is not limited by fuel load or climatic
conditions. Human effects in the model increases burned area in the tropics, while in temperate
regions burned area is reduced. While the population density is similar on average for the tropical and
temperate regions, the cropland fraction is higher in temperate regions, and leads to a strong
suppression of fire. The model shows a low human impact in the boreal region, where both
population density and cropland fraction is very low and the climatic conditions, as well as the
vegetation productivity limit fire. Previous studies attributed a decrease in fire activity found in global
charcoal datasets to human activity. This is confirmed by our simulations, which only show a decrease
in burned area when the human influence on fire is accounted for, and not with only natural effects
on fires. We assess how the vegetation–fire feedback influences the results, by comparing simulations
with dynamic vegetation biogeography to simulations with prescribed vegetation. The vegetation–fire
feedback increases the human impact on burned area by 10% for present day conditions. These
results emphasize that projections of burned area need to account for the interactions between fire,
climate, vegetation and humans.

1. Introduction

Fire appeared on Earth around 400 million years
before the present day (Scott 2000), and shaped the
evolution of ecosystems and plant traits (Pausas and
Schwilk 2012). Humans started to use fire approxi-
mately 1–1.4 million years ago, which was an important
step in the evolution of human technology (Berna et
al 2012, Gowlett et al 1981). Habitual use in Europe
followed 300–400 thousand years ago (Roebroeks and
Villa 2011). This tight connection and long evolution
of fire, vegetation and humans hampers the separa-
tion between natural and anthropogenic fire regimes.
Here, we use a global modeling approach to separate

human influences on burned area from natural fire
occurrence.

Humans influence various aspects of fire regimes,
includingnumberof fires, fire size (Hantson et al2015),
burned area, intensity, emissions or seasonality (Magi
et al 2012). Humans influence the area burned directly,
by igniting and suppressing fires, but also indirectly
by modifying the vegetation structure and compo-
sition, and by fragmenting the landscape (Bowman
et al 2011). These direct and indirect effects can either
promote or suppress fire. Conversion of forest to grass-
lands can lead to a higher flammability of the landscape,
increasing fire occurrence (Cochrane 2003). In con-
trast, a reduction or limitation of fire spread due to
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human action is expected due to harvesting or built
infrastructure.

Satellite data provide detailed information on fire
regimes, and reveal a strong human influence across
the globe (Archibald et al 2013). The spatial patterns
suggest a decrease in burned area with increasing pop-
ulation density (Bistinas et al 2014, Knorr et al 2014) or
cropland fraction (Bistinas et al 2014, Andela and van
der Werf 2014). Human influence was also detected in
a trend analysis showing a strong decrease in burned
area over the last two decades (Andela et al 2017).

The global charcoal database provides informa-
tion on the variability in fire activity over longer
time scales. In these charcoal records, variations which
oppose the trend expected due to climatic conditions
are interpreted as human driven (Marlon et al 2008).
The increase in charcoal records from 1750–1870 is
attributed to human influence, linked to population
growth and land-use changes, and a subsequent
decrease, due to intensification of land use. The trends
in the charcoal record are confirmed by CO ice core
records for the Southern Hemisphere (Wang et al
2010).

The human influence on fire regimes is also
observed locally: analysis of single charcoal records in
New Zealand shows a strong change in fire regime,
with an increase in fire occurrence, after the arrival of
humans (McWethy et al 2010). In the tropics, land use
change is known to influence the fire regime, and has
potential to modify large parts of this important biome
(Cochrane 1999). The higher flammability of defor-
ested areas leads to more frequent fire occurrence, and
can further damage the surrounding forested areas and
amplify the influence of fires set by humans on the
vegetation and fire regime (Cochrane 1999).

In this study, we assess the influence of humans on
fire occurrence in terms of burned area in a global
fire enabled dynamic vegetation model JSBACH–
SPITFIRE.Wefirst evaluate themodel along thehuman
dimensions included in the model, which are popula-
tion density and the cropland fraction, and extend the
model with a stronger influence of the cropland frac-
tion. We then investigate where burned area is strongly
influenced by humans. We further assess whether the
feedback between vegetation and fire amplifies the
human impact. We discuss limitations and uncer-
tainties of our approach, and compare our results to
available literature.

2. Model description and simulation setup

2.1. JSBACH–SPITFIRE
JSBACH (Raddatz et al 2007, Brovkin et al 2009) is
the land surface model of the MPI Earth system model
(MPI-ESM) (Giorgetta et al2013). We use the JSBACH
version with the soil carbon model YASSO (Goll et al
2015). The process-based fire model SPITFIRE (Thon-
icke et al 2010) has been evaluated for present day

burned area and carbon emissions (Lasslop et al 2014),
and is described in detail and in comparison to other
global fire models in Rabin et al (2017). JSBACH
simulates the terrestrial carbon and water cycle in a
process-based way. It provides fuel amounts, vegeta-
tion composition and soil moisture for the fire model.
The fire model reduces the carbon pools according to
the simulated combustion of biomass, and computes
tree mortality due to fire. Fire can start if ignition (light-
ning or human) occurs and a sufficient amount of fuel
leads to sufficiently high fire line intensity. Based on the
fuel size and moisture, the combustion completeness
and rate of fire spread is computed. The combina-
tion of the rate of spread with the fire duration (see
below) yields the burned area. Tree mortality is a func-
tion of the fire line intensity and the residence time of
the fire. SPITFIRE accounts for the human influence
based on population density and the cropland fraction.
Population density (PD [inhabitants km−2]) is used to
compute the human ignitions (nh,ig)):

𝑛h,ig = 𝑃D0.4e−0.5
√
𝑃D𝑎(𝑁d)∕10. (1)

The factor 0.4 was adjusted to tune the model
to reproduce the global burned area of the GFED3
dataset (Giglio et al 2010). The regionally varying factor
(a (Nd)) was introduced to reflect regional and cultural
differences in the human use of fire as a tool. As the
burned area fraction varies globally by several orders of
magnitude, the factor (which varies between 0.11 and
0.33)has rather low influence.Thiswas found in a study
using ORCHIDEE–SPITFIRE (Yue et al 2014) and
for JSBACH–SPITFIRE simulations without vegeta-
tion dynamics, where the spatial variability of ignitions
has low influence on the spatial patterns of burned
fraction (Lasslop et al 2014). The JSBACH–SPITFIRE
model reduces the fire duration (DF in minutes) with
increasing population density, to improve the relation-
ship between population density and fire size (Hantson
et al 2015). The maximum fire duration was increased
from 4 hours in the original model version (Thonicke
et al 2010) to 12 hours (Hantson et al 2015), assuming
that most fires cease during night. While fires in reality
often continue during night, due to the low variation
of ignitions in the model, a new fire will start the next
day unless the conditions for a fire change (changes in
moisture conditions or fuel load), and therefore reduce
the influence of the 12 hours threshold on longer term
fire occurrence. DF is computed in three different ways:
(1) as a function of the fire danger index (FDI):

𝐷F = 723
1 + (240 ⋅ e−11.06⋅𝐹𝐷𝐼 )

. (2)

(2) using PD and the FDI:

𝐷F =
⎧⎪⎨⎪⎩

723
1+(240⋅e−11.06⋅𝐹𝐷𝐼 ) if 𝑃D0.01
241⋅(4−log 10(𝑃D))⋅0.5
1+(240⋅e−11.06⋅𝐹𝐷𝐼 ) if 0.01 < 𝑃D < 100

241
1+(240⋅e−11.06⋅𝐹𝐷𝐼 ) if 𝑃D100.

(3)
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Table 1. List of simulations with settings for the computation of ignitions, fire duration, land use and vegetation dynamics.

Reduced fire duration due to

Simulation Human ignitions Population density Crops Land use Vegetation dynamics

HumanDynVeg yes yes no yes yes
HumanDynVegCrops yes yes yes yes yes
NaturalDynVeg no no no no yes
NaturalLUDynVeg no no no yes yes
HumanFixVeg yes yes no yes no
NaturalLUFixVeg no no no yes no

and (3) additionally reducing DF with increasing crop-
land fraction (fcrop) by multiplying equation (3) with
(1–fcrop). The first approach is used when no human
influence is included, the second includes human
influences, and the third is an extension to improve
the model’s sensitivity to the cropland fraction (see
Appendix).

Land use is included in JSBACH following the pro-
tocol of Hurtt et al (2011), and described in detail in
Reick et al (2013). In SPITFIRE, fires are excluded
from cropland area, and pastures are treated the same
as natural grasslands. Moreover, land use influences
fire by changing the carbon stocks of the available fuels
(Wilkenskjeld et al 2014).

In this study we use JSBACH in the offline mode,
forced with meteorological forcing which was extracted
from simulations with the MPI-ESM version 1.1 for
the historical period 1850–2005. The spatial resolu-
tion is 1.875◦ × 1.875◦, and the temporal resolution is
30 min. The fire routine is called once a day. For the
spinup the first 28 years of forcing (1850–1877) were
recycled, and CO2 concentration fixed at the value of
1850 (284.725 ppm). The historical simulation from
1850 to 2005 uses transient climate, CO2 concentra-
tion and land use. The population dataset is based on
(Klein Goldewijk 2001). The decadal temporal resolu-
tion is interpolated to annual values, and updated at
the beginning of the year.

2.2. Simulations
To assess the impact of humans on the fire regime, we
compare burned area from simulations with (simula-
tion name includes tag ‘human’) and without human
influence (tagged ‘natural’). We include two differ-
ent ways of accounting for the human impact on fire
duration. The first decreases the fire duration with
population density; the second additionally reduces
fire duration with increases in the cropland fraction
(tag ‘Crops’). As the representation of human igni-
tions in the model already includes a suppression of
ignitions for high population density, the simulations
cannot factor out fire suppression by humans—only
the combined effect of human enhancement and sup-
pression of fires can be separated. A decrease in burned
area when including human effects, however, indicates
that human suppression dominates, while an increase
in burned area would indicate that the additional igni-
tions are more important. We assess the importance
of the feedback between fire and vegetation on the

influence of humans on the fire regime, by compar-
ing simulations with (DynVeg) and without (FixVeg)
dynamic vegetation. In that case, a consistent initial
vegetation cover was necessary, and land use needed
to be included (NaturalLU simulations). Therefore,
only the amplification of vegetation dynamics on the
direct human influence on ignitions and fire suppres-
sion could be assessed. The effect of fire–vegetation
feedback on the human impact was quantified by
comparing the difference between HumanDynVeg
and NaturalLUDynVeg to the difference between
HumanFixVeg and NaturalLUFixVeg simulations.
Overall six simulations with different settings in the
computation of ignitions, fire duration, land use
and vegetation dynamics were performed (table 1).
We performed a spinup simulation of 1000 years
for the simulations with dynamic natural vegetation.
The spinup period with fixed vegetation cover was
only 300 years, as only the rather fast litter carbon
pools need to be in equilibrium to stabilize the fire
regime.

Data analysis and plotting was done using R 3.3.3
(R Core Team 2016). In the regional analysis we define
the boreal region as all grid cells with latitudes >60◦,
the temperate region with latitudes between −30◦ and
−60◦ or 30◦ and 60◦, and the tropical with latitudes
between −30◦ and 30◦.

3. Results

3.1. Human impact on burned area
3.1.1. Global impact and spatial patterns
We assess the influence of humans on burned area by
comparing the simulation HumanDynVeg (includes
human set fires, fire suppression as a function of
population density and land use) or simulation
HumanDynVegCrops (additionally including suppres-
sion as a function of the cropland fraction) with
the simulation NaturalDynVeg (only lightning igni-
tions and no human influence). Globally, we can find
regions with increased and reduced burned area due
to human influence for the present day (figure 1). The
spatial pattern of the effect of humans is similar for
both simulations including the human effects: Human-
DynVeg and HumanDynVegCrops. We find a strong
suppression of burned area in regions with high pop-
ulation density and high cropland fraction (Eastern
part of the USA and Europe, India). Overall, we find
suppression of fire mostly in the temperate regions.
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Difference in burned fraction of gridcell

(a) HumanDynVeg-NaturalDynVeg

(b) HumanDynVegCrops-NaturalDynVeg
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Figure 1. Global distribution of differences in burned fraction with and without human influence. Based on a comparison of the
HumanDynVeg and NaturalDynVeg simulation (a) and on a comparison between HumanDynVegCrops and NaturalDynVeg (b) for
present day (average over the years 1996–2005).

(a) Tropics (b) Temperate (c) Boreal

Figure 2. Burned fraction along a gradient of NPP for tropical (a), temperate (b) and boreal regions (c) for the present day (average
over the years 1996–2005). Lines were fitted using generalized additive models, shaded areas indicate the 95% confidence interval of
the mean. Please note the different axis scales of the subplots.

Tropical regions (except India) mainly show strong
increases in burned area due to the human impact
(figures 1 and 2(a)), indicating that the influence of
higher ignitions is strong there, and fire is limited by
ignitions. The correlation between the differences in
burned area and human ignitions in the simulations
HumanDynVeg and NaturalDynVeg is low (R2 = 0.1),
but highly significant (p-value<0.001). The low corre-
lation between human ignitions and change in burned
area due to human effects indicates that the effect of
increases in ignitions is strongly modulated by other
factors, such as climate and vegetation.

From pre-industrial to present day (over the period
from 1870 to 2005), burned area decreases by 19.6%
(HumanDynVeg) and 23.6% (HumanDynVegCrops)
if human influences are accounted for (table 2). In
contrast, the simulationconsideringonlynatural effects
shows a 5.4% increase in burned area.

Table 2. Global burned area [Mha] for preindustrial (average over
1860–79) and present day (average over 1996–2005) for all
simulations.

Simulation Burned area
preindustrial

Burned area
present day

HumanDynVeg 449.21 361.16
HumanDynVegCrops 413.20 315.61
NaturalDynVeg 289.76 305.42
NaturalLUDynVeg 228.26 222.84
HumanFixVeg 449.86 366.36
NaturalLUFixVeg 279.46 242.65

3.1.2. Human impact on burned area along gradients
of plant productivity
The human impact on burned area along gradients
of plant productivity is similar for the simulations
HumanDynVeg and HumanDynVegCrops. The addi-
tional suppression in simulation HymanDynVegCrops
leads to a lower burned area. The effect of humans is
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generally low at low NPP (< 40 g C m−2 year−1)(figure
2). Burned area in regions with low productivity is lim-
ited by the fuel buildup (Krawchuk and Moritz 2011,
Bistinas et al 2014). In the tropical region both sim-
ulations with human influence show an increase in
burned area for intermediate NPP, compared to the
simulation without human influence; for low and high
NPP the difference is small (figure 2(a)). Moreover,
the human impact shifts the maximum of burned area
towards higher productivity in the tropical regions.
While burned area is limited by the available fuel for low
productivity areas, climatic conditions are increasingly
limiting for high NPP.

In temperate regions, the influence of humans
reduces the burned area at intermediate to high NPP
values (40–110 g Cm−2 year−1) (figure 2(b)). Popu-
lation density is on average similar for tropical and
temperate regions; cropland fraction is, however, 50%
higher in temperate regions, leading to a reduction in
burned area in contrast to the higher burned area in
the tropics. Another potential explanation is the differ-
ence between modeled human and lightning ignitions:
human ignitions are assumed constant within the year,
while lightning ignitions include a seasonality. In tem-
perate regions, the lightning strikes are most frequent
in summer, the season with high fire risk. In the tropics
the number of lightning strikes is highest in the rainy
season, where fire occurrence is limited by meteorolog-
ical conditions. This may lead to an ignition limitation
in the tropics during the dry season.

For the boreal regions, no significant differences
(95% confidence intervals of the fitted lines overlap)
are simulated (figure 2(c)). In the boreal regions NPP
is rather low (below 74 g Cm−2 year−1), burned area
there is, however, not only limited due to the low pro-
ductivity, but also by shorter periods with high fire risk.
Low population density in the boreal region (factor 100
lower compared to temperate and tropical regions) and
smaller cropland fraction (0.003 on average, compared
to 0.1 in the tropics and 0.15 in temperate regions)
additionally explain the small difference between the
simulations with and without human impact.

3.2. Amplification of human impacts through vege-
tation dynamics
Fire leads to a reduction in woody vegetation and
an increase in highly flammable herbacious vegeta-
tion, forming a positive feedback. Due to this positive
feedback alternative stable states under the same cli-
matic conditionsoccur in JSBACH–SPITFIRE(Lasslop
et al 2016). This means that increases in burned area
can lead to the crossing of a tipping point driv-
ing the system in a stable low-tree-cover state with
higher burned area. The effect of humans on fire is
therefore expected to be higher in simulations with
dynamic vegetation cover. The effect is quantified
by comparing the difference between the Human-
DynVeg and NaturalLUDynVeg simulations to that

between HumanFix and NaturalLUFix. Both increases
and decreases due to the human impact are stronger if
vegetationcover isdynamic (figure3).Whenvegetation
cover is fixed, the human impact increases the burned
area for preindustrial from 287.16 (NaturalLUFix) to
454.83 (HumanFix) Mha (58%), while when including
the feedback between fire and vegetation, the human
impact increases the burned area from 235.46 (Natural-
LUDynVeg) to456.61 (HumanDynVeg)Mha(93%). If
the vegetation–fire feedback is excluded the differences
in global burned area caused by the human impact are
reduced by 24% in the pre-industrial period and 10%
for present day (table 2, (HumanFix-NaturalLUFix)
divided by (HumanDynVeg-NaturalLUDynVeg). The
lower effect for present day might be due to the larger
areas controlled by human land use.

4. Discussion

4.1. Uncertainties in modeling the human impact on
fire
Over the last century, technological advances in fire
fighting and increased resources spent on fire man-
agement have certainly impacted the human capacity
to suppress fires. Humans change the local vegetation
in many ways that may influence the fire regime—for
instance, the introduction of new species with higher
flammability can increase the areaburned, or landman-
agement leading to a fuel reduction through harvest or
grazing can lead to a reduction of burned area (Bow-
man et al 2011). These effects, especially their variation
over time, are not represented in the model. The limited
generalizable understanding and lack of global infor-
mation limit the possibility of reflecting this knowledge
in global models. The representation of humans in
global models is largely based on data analyses of spa-
tial datasets, which show that human parameters (e.g.
population density and land use) do explain part of
the variation observed for burned area, and how they
influence burned area.

Modeling human ignitions and suppression as a
function of population density is common in global
fire models (Hantson et al 2016). It is often assumed
that for low population density ignitions increase, and
that for high population densities fires are increasingly
suppressed. Some models include the suppression for
high population density in the function of the igni-
tions, others include this influence only or additionally
on the rate of spread or fire duration, and some models
include the human suppression in a scaling function
that reduces burned area directly (Hantson et al 2016,
Rabin et al 2017). The suppression of fire for high pop-
ulation density is, however, now common in global
fire models (Hantson et al 2016, Rabin et al 2017).
This spread in the representation of human impact
in models reflects the versatile results of data analy-
sis. On the global scale, based on multivariate analysis
of global spatial datasets, an increase in burned area
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Figure 3. Human impact for present day with dynamic vegetation (HumanDynVeg-NaturalLUDynVeg) and fixed vegetation
(HumanFix-NaturalLUFix).

with increases in population density even for very low
population densities was not detected (Bistinas et al
2013), or detected only with high uncertainty (Knorr
et al 2014, Lasslop et al 2015). In a study for Africa, an
increase for low population density was found for the
number of fires, but not for the burned area (Archibald
et al 2009). When applying statistical models to smaller
regions in the United States, response functions with a
distinct maximum—similar to the modeling approach
used here—were detected for many regions, but the
exact shape varied widely (Parisien et al 2016).

In the evaluation of the modeled burned frac-
tion along increasing population density, we found
an underestimation of burned fraction for high and
low population densities (figure A1). However, these
regions with high underestimation only contribute
2.5% to the global burned area. Occurrence of ignitions
in the model is based on the lightning and population
datasets, as humans might also set fires in uninhab-
ited places, or lightning strikes might not be tracked. A
small background ignition rate might help to overcome
this model error. Due to the small contribution of these
areas to the total burned area, we expect that this can
only have a small influence on the spatial patterns of
human impact. The evaluation (figure A1) does not
give a clear indication that our approach of increas-
ing ignitions for low population densities and then
reducing the same after a certain threshold should be
replaced by a function that represents only suppression
of humans, as indicated by some global data analysis
(Bistinas et al 2013, Knorr et al 2014).

The second human dimension in global fire mod-
els is the fraction of croplands. Global data analysis
confirms that the effect of croplands is to reduce
burned area (Bistinas et al 2014, Andela and van der

Werf 2014). Croplands are often simply excluded from
burning in fire models (Rabin et al 2017). LPJ–LMfire
is an exception, and includes a passive fire suppression
assuming that the cropland fraction is a good proxy
for landscape fragmentation (Pfeiffer et al 2013). Our
extended model version, which reduces fire duration
with increasing cropland fraction, improves the model
performance (figure A1) but does not have a strong
influenceonthepatternsofhumaninfluenceonburned
area.

Overall, our model-based study thus shows a plau-
sible picture of limited influence of humans on burned
area in regions with low vegetation productivity or
meteorological conditions limiting burned area. The
strong suppression of humans due to dense population
and croplands in temperate regions is well supported
by literature, and expected for other global fire mod-
els due to a similar representation of the human
impact. The effects of humans in sparsely populated
areas are most uncertain based on available literature,
and comparing global model structures (e.g. whether
they allow for anthropogenic enhancement of burned
area). We find enhancement of burned area due to
the human influence mostly in the tropics, due to
the lower cropland fraction (on average cropland frac-
tion is 50% higher in the temperate regions). A lower
suppression for the tropical regions compared to the
temperate regions can therefore also be expected for
models not allowing for an enhancement of burned
area due to human ignitions.

4.2. Comparisonwithprevious studieson thehuman
effect on fire
Besides the satellite data analyses discussed in the pre-
vious section, paleo-data contain information on the

6



Environ. Res. Lett. 12 (2017) 115011

variability of fire. These datasets are especially valu-
able as they cover long time periods. On the other
hand, the uncertainty of the datasets is larger, and it
is less clear which aspect of the fire regime is captured
(Brücher et al 2014). Variability in the charcoal record
could be the result of variations in the area burned, or
variations in the biomass consumed—for instance, due
to changes in vegetation composition. Charcoal (Mar-
lon et al 2008) and ice core (Wang et al 2010) data
indicate a strong decrease in biomass burning between
the pre-industrial era and present day. This decrease
has been attributed to human action, as the decrease
in fire occurrence is associated with a strong increase
in population density, while the climate records can-
not explain a decrease in fire occurrence. Our results
confirm these previous findings, showing a strong
decrease in burned area only, when human effects are
included.

Previous studies have posed hypotheses about the
effect of humans on fire regimes based on charcoal
data analysis and theoretical considerations (McWethy
et al 2013, McWethy et al 2010). They suggest that
in temperate regions the influence of humans ampli-
fies fire in regions with high net primary productivity
(NPP), while for intermediate NPP suppression is
expected (McWethy et al 2013). Our model results
show the suppression for intermediate NPP, which dis-
appears for higher NPP, but do not show an increase
of burned area due to human influence for high NPP.
Paleo records indicate that the arrival of humans is
often followed by a strong increase in fire occur-
rence (McWethy et al 2010). Although the model
approach does not distinguish between initial and
later phases of human settlement, the cropland frac-
tion might be an indicator for this development. In
present day temperate regions, humans have already
passed this initial phase, and the region is now mainly
characterized by fire suppression.

In tropical regions, a study investigating the effect
of different burning patterns in tropical savannas did
not find effects on the total area burned (Van Wilgen
et al 2004). However, increases are expected, espe-
cially if the disturbance of primary forests leads to a
higher flammability of the landscape (Cochrane 1999).
Based on the uncertainties in how to model the effect
of humans for low population densities, and the variety
of results from data analysis (see above), we consider
the very strong enhancement in the tropics as most
uncertain.

5. Conclusions

We assess the impact of humans on the global wild-
fire distribution, based on a global vegetation model,
and compare the results to previous studies. The
model accounts for human influence based on popu-
lation density and land use, which are commonly used
human parameters in global fire models. The model

reproduces the sensitivity of burned area to both vari-
ables, in comparison to satellite datasets. This study
shows that including the human dimension in global
fire modelling is crucial, and confirms the human
driven decrease since preindustrial times observed in
the global charcoal dataset. We find that the human
impact is low for the boreal region, strongly suppresses
fire in the temperate regions and enhances fire in
the tropical regions. The difference between temper-
ate and tropical regions is likely due to higher land
use in the temperate regions, while the low impact
in boreal regions can be explained by much lower
population density and cropland fraction. We find
the strongest human influence in regions with inter-
mediate productivity, where burned area is strongly
limited neither by fuel availability nor by climatic
conditions. We show that the interaction between
fire and vegetation dynamics amplifies the human
impact. This feedback will be important not only when
investigating the human impact on fire, but also in
other studies investigating changes in fire regimes or
changes in vegetation in fire affected areas. Projections
of fire occurrence need to understand and account
for the interactions between fire, climate, vegetation
and humans.

Appendix: Evaluation of the response of
burned area to the human dimensions

To evaluate the impact of humans on the simulated
fire occurrence, we compare the simulated burned
area to burned area derived from satellite data for the
present day, along a gradient of the human dimen-
sions of the model; these are population density and
cropland fraction (figure A1). We use the burned area
datasets of the GFED database version 3 (Giglio et al
2010), 4 (Giglio et al 2013) and 4s (Randerson et al
2012).

The simulations including the human impact show
a similar variation of burned area for different popu-
lation densities compared to the GFED burned area
datasets. The GFED4s dataset shows higher maxi-
mum values for the burned fraction than GFED3
and GFED4. GFED4s includes small fires that are
usually not captured. These small fires are mostly
burned croplands. Cropland burning is not included
in JSBACH–SPITFIRE; the comparability of the model
is therefore higher with GFED3 and GFED4. The model
reproduces the maximum value of the GFED3 and 4
dataset well, but underestimates fire occurrence for low
and high population density. The simulation without
human effects on the fire regime shows a maximum
for higher population densities compared to the obser-
vations; the simulation underestimates burned area for
lowpopulationdensities andoverestimatesburnedarea
for high population densities.

The evaluation along the cropland fraction shows
an overestimation of burned fraction for high
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Figure A1. Average annual burned area along a gradient of the logarithmic population density (left) and cropland fraction (right) for
present day (average over 1996–2005 for the model simulations and 1997–2006 for the GFED burned area datasets (version 3, 4 and
4s), population density is representative for the year 2000, cropland fraction is the model mean over 1996–2005). Lines were fitted
using generalized additive models; shaded areas indicate the 95% confidence interval of the mean.

cropland fraction if the model simply excludes crop-
lands from burning. Including croplands in the
computation of the fire duration (simulation Human-
DynVegCrops) improves the mismatch for high
cropland fraction. The simulation without human
effects mainly increases the burned area with increas-
ing cropland fraction, and is not able to reproduce
the observed pattern with a maximum for a cropland
fraction of around 0.05.

The comparisonbetween the simulations including
andexcludinghumaneffects confirms that bothhuman
effects—humans as an additional ignition source, and
the suppressionbyhumansof fire spread, are important
in reproducing the variation of burned area along gra-
dients of human influence. Natural fire regimes would
be shifted towards regions with stronger human influ-
ence. The spatial correlation with the GFED4 dataset
increases from 0.05 for the NaturalDynVeg simula-
tion to 0.38 for both simulations including the human
impact.

Another benchmark for the human influence
on burned area was recently provided by Andela
et al (2017). Satellite data show a negative trend
in global burned area over the last 18 years, which
was attributed to the human influence (Andela et
al 2017). As our simulations only cover the period
until the year 2005, we recomputed the trend over
the years 1997–2006 for GFED versions 3 and 4.
To account for the uncertainty due to the high
interannual variability, we computed the trend ten
times, each time excluding one year. We find nega-
tive trends for GFED version 3 (−2.6% to−1.2% per
year),mixed trends forGFEDversion4(−0.5% to 0.6%
per year), negative trends for the HumanDynVeg
simulation (−0.6% to−0.02%), and mixed trends for
the HumanDynVegCrops simulation (−0.5% – 0.1%
per year). This metric is therefore not sufficiently
robust over this short time period to clearly indi-
cate whether the human influence is sufficiently strong
in the model.
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