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Abstract

Climate variability is shown to be an important driver of spatial and temporal changes in
hydrometereological variables in Europe. However, the influence of climate variability on flood
damage has received little attention. We investigated the El Nino Southern Oscillation (ENSO),
the North Atlantic Oscillation (NAO), and the East Atlantic pattern (EA) during their neutral,
positive, and negative phases, to understand their relationships with four flood indicators:
Occurrence of Extreme Rainfall, Intensity of Extreme Rainfall, Flood Occurrence, and Flood
Damage. We found that positive and negative phases of NAO and EA are associated with more
(or less) frequent and intense seasonal extreme rainfall over large areas of Europe. The
relationship between ENSO and the Occurrence of Extreme Rainfall and Intensity of Extreme

Rainfall in Europe is much smaller than the relationship with NAO or EA, but still significant in
some regions. We show that Flood Damage and Flood Occurrence have strong links with climate
variability, especially in southern and eastern Europe. Therefore, when investigating flooding
across Europe, all three indices of climate variability should be considered. Future research should

focus on their joint influence on flood risk. The potential inclusion of seasonal forecasts of
indices of climate variability could be effective in forecasting flood damage.

1. Introduction

Between 1980 and 2015, Europe experienced 18% of
worldwide weather-related loss events, which
accounted for over US$500 billion (bn) in damage
[1]. Consequently, it is urgent to further develop
adaptation strategies to mitigate the consequences of
weather-related disasters, such as floods [2]. Europe’s
capability to prepare for such disasters is challenged by
a large range of uncertainties and a limited
understanding of the driving forces of hydrometeoro-
logical hazards [3]. One of the major sources of
uncertainty is the relationship between climate
variability and weather-related losses [4].

Climate variability refers to natural fluctuations of
the climate system around the long-term trend [5].
Such variability is caused by coupled interactions
between atmospheric and oceanic components,
measured by an index. Globally, ENSO is the most
important mode of climate variability, and has been

linked with changes in hydrometeorological extremes
in past studies at different scales, including national
[6-8], continental [9-11], and global [12-15].

In addition to ENSO, hydrometeorological vari-
ables across Europe show relationships with other
indices of climate variability, like NAO and EA. NAO
measures anomalies in sea level pressure over the
subpolar and the subtropical region of the North
Atlantic [16], while the EA measures these anomalies
across the entire North Atlantic region from east to
west [17, 18]. ENSO, NAO, and EA have positive,
negative, and neutral phases, and can be related with
variations in European climate. For instance, NAO™
phase links with increased westerlies over the middle
latitudes, and intense weather systems over the North
Atlantic. On the other hand, NAO™ phase shows an
opposite pattern over these regions [16]. Therefore,
different phases of ENSO, NAO and EA can be
associated with increases or decreases in natural
disaster burden [19-21].

© 2017 IOP Publishing Ltd
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Figure 1. Flowchart representing the methodological framework applied in this study, handled in four steps: (1) collection of two
input datasets; (2) extraction of four flood indicators based on input datasets; (3) application of statistical methodology; (4) analysis of

results.

Whilst several studies have assessed the regional
influence of ENSO, NAO, and EA on precipitation [19,
22-25] and discharge [26-28], less research has been
carried out at Pan-European scale. Fewer still have
examined peak discharge. An exception is an investiga-
tion of observed European peak river discharge
relationships with NAO, Arctic Oscillation (AO),
frequency of west circulation (FWC), and north to
south sea level pressure difference (SLPD) [29]. Some
studies have examined climate variability’s influence on
extreme precipitation [9]. However, these studies do not
address differences in the frequency and intensity of
extreme precipitation during positive and negative
phases compared to neutral phases.

Only few studies specifically addressed relationships
between climate variability and the socioeconomic
impacts of flood disasters. At the global level, an initial
study [30] assessed links between ENSO and the
reported frequency of drought and flood disasters.
Subsequently, others [31] investigated links between El
Nino and the burden on human health. These studies
were followed up by research [19] that analysed whether
phases of ENSO could be associated with an increase in
reported climate-related disasters. Recently, a global
flood risk model was used to examine ENSO’s
relationship with flood risk at the global scale [32],
while other studies have assessed relationships between
NAO and EA and agriculture risks e.g. [33-37].

To the best of our knowledge, no studies have
examined theimpacts on flood damage of multipleindices
of climate variability. Therefore, we analyse ENSO, NAO,
and EA indices during their neutral, positive and negative
phases, to answer the following research questions:

e Are there differences in the frequency and intensity
of extreme rainfall between the different phases of
the indices of climate variability?

e Are there anomalies in flood occurrence and
damage between the different phases of the
indices of climate variability?

In section 2 we describe the climate and flood
indicators, and the statistical methods, followed by the
presentation and discussion of the results in sections 3
and 4. We conclude with section 5.

2. Methods: climate, flood indicators and
statistical approach

We use statistical methods to analyse relationships
between ENSO, NAO, and EA indices and four
indicators of flooding, namely: (1) Occurrence of
Extreme Rainfall (OER); (2) Intensity of Extreme
Rainfall (IER); (3) Flood Occurrence; and (4) Flood
Damage. These indicators were derived from two
datasets: a database of flood disasters and losses in
Europe [38] and a gridded dataset of daily precipita-
tion [39]. An overview of the methodological
framework is displayed in figure 1. The methods
and datasets are described in more detail in the
following subsections.

2.1. Indices of climate variability

In this study, we represent climate variability using the
ENSO, NAO and EA indices, whose phases were
divided into negative, positive and neutral.

For ENSO, we used the Oceanic Nifio Index (ONI)
from 1950-2014 (www.cpc.ncep.noaa.gov). ONI is a
three-months running mean of sea surface tempera-
ture (SST) anomalies in the Nifio 3.4 region. We used
the data for December-February (DJF), March-May
(MAM), June-August (JJA), and September-Novem-
ber (SON). ENSO’s phase classification was estab-
lished by the National Oceanic and Atmospheric
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Administration (NOAA), which compares the run-
ning mean value to a 30 year average to derive periods
of below or above normal SSTs. ENSO™ (ENSO™)
phases are classified when the threshold of —(4) 0.5 °C
is met for a minimum of five consecutive overlapping
3 month periods.

For NAO, we used the Hurrell NAO index
(station-based) from the Climate Data Guide
(https://climatedataguide.ucar.edu/climate-data). We
obtained the seasonal index from 1950-2014 for DJF,
MAM, JJA, and SON. For EA, we used the monthly
standardized index from NOAA. Again, we averaged
the EA series for the same period as for NAO. Both the
NAO and EA indices follow a Gaussian distribution,
therefore, the three phases were classified usinga + 1o
[40]. An overview of the indices and their classification
is shown in the supplementary material figure Sl
available at stacks.iop.org/ERL/12/084012/mmedia.

2.2. Flood indicators and European sub-regions

We assess flood by means of four indicators: OER,
IER, Flood Occurrence and Flood Damage. Because
Flood Occurrence and Flood Damage records were not
sufficient to establish comparison at the country level,
we grouped the records into four sub-regions. For the
European sub-regions (supplementary material figure
S2), we used the classification established by the
United Nations Statistics Division. We extracted all
four indicators seasonally: winter (DJF), spring
(MAM), summer (JJA), and autumn (SON).

2.2.1. Occurrence of extreme rainfall and intensity of
extreme rainfall

We obtained the OER and IER from the E-OBS rainfall
dataset (www.ecad.eu/). This dataset contains daily
gridded precipitation for 1950-2014, with a horizontal
resolution of 0.25 degree. We extracted the OER events
per season and year, and the intensity of those events.
We define extreme rainfall using Partial Duration
Series [41], where the n largest rainfall events are
extracted per year, relative to the length of the daily
series [42]. The extreme series contain an average of
three high rainfall events per season (n=3 x 65 years).
We applied an inter-event time criterion of 24 h to
fulfil the independence of the series, and calculated the
OER by counting the number of extremes per season/
year; the indicator of IER is the ratio of the sum of the
intensity of these respective events (per season/year)
and the OER indicator.

2.2.2. Flood occurrence and flood damage

We used the NatCatSERVICE dataset of Munich Re
[38] to derive time-series of Flood Occurrence and
Flood Damage. This dataset registers flood events in
Europe, and their respective period, timing, location
and damages (US$) between 1980-2012. To calculate
Flood Occurrence we extracted the initial date of the
floods, and then counted and sorted these events into a
specific season of the year. For the Flood Damage
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indicator, we deflated the nominal flood damage
recorded from 1980-2012 into 2010 US$ values, and
converted these into Purchasing Power Parity (PPP)
equivalent (further description in the supplementary
material S3). The distribution of reported flood events
and damage recorded in the Munich Re database per
sub-region and season is available in figure S3.

2.3. Statistical approach
For the OER and IER indicators, we applied a two-
tailed T-Test (each tail « = 5%). The test identifies
whether the mean occurrence and intensity of extreme
rainfall found in positive or negative phases are
significantly different from the one found during the
neutral phase. Field significance of the gridded results
was assessed using the binomial distribution [43].
For the Flood Occurrence and Flood Damage
indicators, we used a methodology proposed in
previous research [44]. Following this approach, we
investigated anomalies in Flood Occurrence and Flood
Damage within phases of ENSO, NAO and EA by
calculating the percentage anomaly that deviates from
a normal value (defined as 5 years running mean) for
the time interval (¢ in years) t—2 to t+ 2. We applied a
5 years running mean to minimize possible pitfalls
regarding reporting issues in the Munich Re dataset.
Often, an issue with disaster databases is that the
frequency count of damaging floods includes in-
creased reporting of natural disasters towards more
recent years [45]. In addition, we tested the long-term
average (1982-2010) as a normal value, however
results did not greatly differ between the two
methodologies (supplementary S4). The percentage
anomaly (F') for a respective season (S) and sub-
region (R) is obtained by:

Fsr— Fgp

Fop=—=—> x 100 (1)

Fs r indicates the value of the Flood Occurrence or
Flood Damage, and Fy is the normal value for the
indicator. The calculation of the percentage flood
anomaly aims to detect the major changes in these two
indicators induced by short-term climate factors,
although other factors like exposure and vulnerability
may also contribute to yearly variations. The second
step is to obtain an average flood anomaly (%) for each
phase of the climate indicator (I) for 1982-2010:

1 2010
Fo,o=——) FopifIs > u (2)
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np- g, - gand nyy p are the numbers of positive,
negative and neutral phases of indices of climate
variability, respectively, and threshold u is + 1o or £
0.5 °C depending on the climate indicator. Next, we
compared the difference between average percentage
flood anomalies in positive or negative seasons to the
values in neutral seasons:

AF g+ = Fype —Fpn (5)

AF R~ =Fri- — Fpw (6)

A negative (positive) value of AF'p+ and AF g -,
suggests, on average, a lower (higher) impact of the
index of climate variability I'" and I, compared to the
average in flood anomaly for the indicators in neutral
phases. We tested the statistical significance of the
difference by bootstrapping the values of the percent-
age flood anomaly for a sub-region using 10000
iterations. The two-sided test considers significance
level of 5% (strong significance) and 10% (weak
significance) in each tail, adopting the null hypothesis
that the difference between the average percentage
flood anomaly in I'" or I and I" are equal to zero
(details in the supplementary material S5).

3. Results

In this section, we firstly describe the differences in
OER and IER indicators within ENSO, NAO and EA
phases, followed by outcomes regarding anomalies in
Flood Occurrence and Flood Damage.

3.1. Differences in the occurrence and intensity of
extreme rainfall

In figure 2, we display the seasonal differences in the
OER indicator between the I and I  phases
compared to the I" phases in percentage terms. The
strongest link can be seen for NAO and EA. The mean
OER per season and phase is displayed in figure S6.1 in
the supplementary material.

Extreme rainfall in winter occurs more frequently
in southern and eastern Europe, and less frequently in
northern countries during NAO™; the opposite pattern
is seen during NAO™. In spring, during NAO~ we
observe more frequent extreme rainfall in large
portions of eastern Europe. The main signal in
summer and autumn is less frequent extreme rainfall,
particularly in southern and eastern Europe during
NAO™. Extreme rainfall is less frequent in large part of
Europe during EA™, although more frequent extremes
are seen in south-eastern regions. In winter and spring,
we observe a higher OER in sparse areas of northern
Europe during EA™, and opposite pattern in southern
and western Europe in all seasons.

In general, the influence of ENSO on the OER in
Europe appears to be much smaller than the influence
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of NAO or EA. In winter, less frequent extreme rainfall
is seen during ENSO™ in sparse areas, particularly in
the east. During spring, we observe positive differences
in parts of northern Spain and southern France during
ENSO™, and over Sweden during ENSO™. In autumn,
we observe more frequent extreme rainfall in large
areas of Europe within both phases of ENSO, especially
in Iceland during ENSO™,

In figure 3, we show the significant differences in
the IER for the I'" and I phases compared to the I''
phases for each season in percentage terms. Again,
NAO and EA show the strongest relationships. The
mean [ER per season and phase is displayed in figure
S6.2 in the supplementary material.

In winter during NAO™, we observe higher IER in
eastern Europe, and lower IER in northern and
western Europe. The reverse pattern is observed
during NAO™. Except in winter during NAO™, IER is
lower in large areas of Europe. However, the opposite
is observed in south-eastern and north-eastern Europe
in summer during a NAO ™.

During EA™, extreme rainfall is less intense over
the year in northern and western Europe. In all
seasons, we observe lower IER during EA" in large
areas of the continent, except in summer and
autumn in parts of northern and eastern Europe,
where extreme rainfalls are on average 25% more
intense.

In general, the influence of ENSO on the IER in
Europe is limited and rather local. During ENSO™, we
observe lower IER in all seasons in scattered areas of
western and eastern Europe, and higher IER over
Spain during ENSO™, except in autumn.

3.2. Anomalies in flood occurrence and flood
damage at the pan-european scale
At the pan-European scale, all three indices of climate
variability show significant relationships with Flood
Occurrence in one or more phase and/or season
(figure 4(a)). The strongest link is observed for NAO.
In summer, during NAO™, anomalies in Flood
Occurrence are 170% higher than during NAO™. In
winter, during NAO ™, anomalies in Flood Occurrence
are on average 70% higher than during NAO™. We also
found that Flood Occurrences in spring are signifi-
cantly lower during NAO™, and higher (81% and
33%) during EA" and ENSO™ but we found no
significant anomalies during their negative phases.
We found significant anomalies in Flood Damage
(compared to I phases) linked to all three indices of
climate variability, with the strongest anomalies again
for NAO (figure 4(b)). Anomalies in winter Flood
Damage are on average 222% higher during NAO™,
and 104% lower in spring during NAO™. Still in
spring, Flood Damage are 137% higher during EA™.
We observe positive anomalies in summer during the
positive phase of the NAO and ENSO, with the highest
anomalies (374%) during NAO™.




I0P Publishing

Environ. Res. Lett. 12 (2017) 084012

W Letters

Winter

Autumn

Summer

NAO-

NAO*

EA

EA*

ENSO-

ENSO*

-100 -75 -50 -25

Differences in the occurrence of extreme rainfall compared to neutral phases (%)

0 25 50 75 100

Figure 2. Mean percentage difference in the seasonal occurrence of extreme rainfall (OER) (number of events/season) between
negative phase and positive phase of the indices of climate variability, compared to the neutral phase. Blue (red) colours symbolize a
significantly higher (lower) number of extreme events compared to the neutral phase (each tail & = 5%). Field significance of the
gridded results was assessed using the binomial distribution and found to be highly significant (P < 0.001). Seasons/phases of the
indices of climate variability that were found to be significant only due to T-Test are indicated with an asterisk ().

3.3. Anomalies in flood occurrence and flood
damage at the sub-regional scale
In figure 5, we show the anomalies in Flood
Occurrence per season for the four European sub-
regions. In southern Europe (figure 5(a)), Flood
Occurrence anomalies during winter are 181% higher
during NAO™, and 40% lower in spring during
ENSO™. In summer seasons Flood Occurrence
anomalies are 111% higher during NAO™, and 48%
lower during EA™ phases. However, anomalies in
Flood Occurrence are 164% and 80% higher in
autumn during EA" and ENSO™, respectively.

For eastern Europe (figure 5(b)), Flood Occur-
rence anomalies in winter are 89% and 59% higher
during NAO™ and EA™, respectively. However, during

NAO™ in spring, Flood Occurrence is 47% lower
compared to neutral, and 110% higher in summer. We
found positive anomalies in Flood Occurrence in
spring for NAO™, and in autumn for ENSO™.

In western Europe (figure 5(c)), during NAO™ in
summer, Flood Occurrence is much higher (247%)
compared to neutral. In addition, anomalies in Flood
Occurrence in summer and autumn are on average
53% and 69% higher during EA~ and EA™.

In northern Europe (figure 5(d)), in spring and
summer, anomalies in Flood Occurrence are on
average 47% and 62% lower during NAO™' and
ENSO™, respectively. In addition, significant positive
anomalies are seen in autumn during positive phases
of ENSO and EA.
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Figure 3. Mean difference in the intensity of extreme rainfall (IER) (mm/event) between negative phases and positive phases of the
indices of climate variability, compared to neutral phases. Blue (red) colours symbolize significantly higher (lower) intensity of
extremes events compared to a neutral phase (each tail & = 5%). Field significance of the gridded results was assessed using the
binomial distribution and found to be highly significant (P < 0.001). Seasons/phases of the indices of climate variability that were
found to be significant only due to T-Test are indicated with an asterisk ().

In terms of Flood Damage for southern Europe
(figure 6(a)), we found significant anomalies (com-
pared to neutral) during several phases and/or seasons
of the indices of climate variability. Anomalies in
Flood Damage are positive (373%) in winter during
NAO™, and in summer (389%, 129% and 230%) for
NAO™ (389%), EA™ (129%) and ENSO™ (230%),
respectively. Flood damages are lower during ENSO™
in spring.

In eastern Europe (figure 6(b)), we found
significant anomalies in Flood Damage for one or
more seasons or phases for all of the indicators of
climate variability. Anomalies in Flood Damage are
120% in winter during EA™, and 125% (277%) lower
(higher) in spring during NAO™ (EA™). Flood
Damages are 293% higher in summer during NAO+,

and —125% and 140% in autumn during the negative
phases of ENSO and EA.

In Western Europe (figure 6(c)), we observe
significant anomalies in Flood Damage during
several phases and/or seasons of NAO and ENSO.
In winter and summer, anomalies in Flood Damage
are 107% and 400% higher during NAO™, respec-
tively. In summer and autumn, we find higher Flood
Damage (121% and 157%) during ENSO™ and
ENSO™.

In northern Europe (figure 6(d)), spring and
summer seasons are associated with negative anoma-
lies in Flood Damage during the positive phases of the
indices of climate variability. Anomalies in Flood
Damage are higher in autumn (95% and 126%)
during ENSO™ and EA™, respectively.
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Figure 5. Average percentage anomalies in flood occurrence per season, within the positive and negative phases of the different
climate indices (compared to neutral). Results are shown for: (a) southern Europe; (b) eastern Europe; (¢) western Europe; (d)
northern Europe. For strong significance, we use o = 5%, while for a weak significance « = 10% at each tail.

4. Discussion

4.1. Similarities and differences between the four
flood indicators

We observe major similarities in the overall patterns
among the four flood indicators. Large differences in
OER and IER (figures 2-3) often coincide with large

anomalies in Flood Occurrence and Flood Damage
(figures 4—6) and supplementary material table S7).
For example, in winter southern- and eastern Europe
receive more frequent and intense extreme rainfall
during NAO™. This may be causing the high anomalies
in Flood Occurrence and Flood Damage at the pan-
European scale. Floods, especially in summer, are
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greatly anomalous in eastern and western Europe,
where more frequent events coincide with higher costs
(supplementary material S3). Summer-autumn major
floods in Europe are mostly driven by river and flash
floods, which are triggered by regional heavy rainfall
followed by consecutive wet days [46, 47]. For
instance, in western and eastern Europe, regions
where major European river basins are located, three
of their most destructive floods occurred in summer
caused by such weather conditions [47].

However, there are also some differences between
the indicators. For example, for some regions/phases,
floods events are not more frequent, but they are more
damaging; this is the case in winter in western Europe
during NAO™. However, we note that this sub-region
also shows more intense extreme precipitation in
winter during NAO™, which could result in larger
floods and damages, even though the frequency of
floods may not increase. Flood frequency can only
partly explain anomalies in flood damage, and other
drivers such as changes in exposure, vulnerability and
intensity of extreme may also play a significant role. In
addition, in some areas extreme rainfall is not more
frequent, but more intense, as is the case in
Scandinavian countries during NAO™ in summer.
Additionally, some of the significant anomalies in
Flood Damage may be influenced by a few exception-
ally high damage events. For example, anomalies in

Flood Damage during summer in southern Europe
were heavily influenced by one single event in Italy in
2002, with an estimated US$ 5.5 bn in damages (35%
of the total summer Flood Damage for the southern
sub-region). Moreover, some high anomalies in Flood
Occurrence may be related to other hydrometereo-
logical variables than IER and OER, such as snow melt
and storm surge, which needs further study [48, 49].

4.2. Comparison to previous research

We provide a detailed comparison between our results
and those of past studies in Europe in S8 of the
supplementary material. In brief, the following points
can be summarised: (i) occurrence of winter extreme
rainfall in southern regions is greatly related to NAO ™,
while NAO™ is linked to more frequent and intense
extreme precipitation over North-eastern areas, which
agrees with previous studies e.g. [22, 24, 50, 51]; (i)
ENSO’s influence on the European climate is not clear,
and changes in the intensity and frequency of extreme
precipitation are minor [15, 52-54]; (iii) in summer,
we observe that NAO exerts great influence on rainfall
patterns, but with an opposite sign to that observed in
winter [8, 9, 17]; (iv) in autumn, extreme precip-
itations are less frequent and intense during NAO™,
which are associated with drier conditions over
southern and eastern regions, as highlighted by
others [9].
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Another aspect that affects susceptibly to climate-
related disasters is the level of flood protection.
According to a modelling study [55], large portions of
southern and eastern Europe are protected against
floods up to about a 20 year return period.
Consequently, many locations are not well adapted
to deal with extreme flood events. This has been the
case in Italy and Spain, which have previously suffered
major flash floods and river flood disasters [46]. The
high levels of flood protection in northern Europe
[55], may reduce the influence of climate variability on
Flood Occurrence and Flood Damage.

Socioeconomic development also plays a role in
flood risk, and may alter the relationship between
hydrometeorological extremes and resulting losses
[56]. Only few studies analyzed changes in vulnerability,
flood damage and risk due to the lack of reliable and
long flood damage data [45]. However, some studies
found that changes in exposure and socioeconomic
development are a key drivers of increasing flood losses
in Europe [57, 58]. Others have suggested that increased
flood damage is also associated with increased
precipitation [59]. Therefore, understanding trends
in flood frequency and damage can only be partially
explained by estimating meteorological changes.

4.3. Applications, limitations and recommendations
The indices of climate variability assessed in this study
can be forecast with varying levels of skill and lead-
times. Hindcasts of winter-mean NAO show that there
is skill for predicting this index with lead-times of at
least a month [60, 61]. EA summer and autumn
anomalies can be properly forecast with a lead-time of
1 to 2 months [62]. ENSO forecasting is more
developed, and most prediction systems have some
skill to detect events with lead-times of 12-14 months
[63]. In those regions of Europe where ENSO, NAO
and EA show strong relationships with precipitation
and flood indicators, seasonal risk outlooks could
potentially be developed based on predicted values of
the indices of climate variability. Such outlooks could
provide information on whether flood impacts in
upcoming seasons are likely to be higher or lower than
average, which could be useful for flood disaster
preparedness. For example, the European Union’s
Solidarity Fund, holding 500 million Euros per year to
help member states finance disaster losses, is greatly
affected by large-scale correlations in flood losses [2].
Taking into account some of the long term climate
variability anomalies in the design and budgetary
planning of international finance mechanisms could
reduce the chance of such a fund facing unexpected
pay-outs across large regions in Europe, and reduce
the chance of fund depletion.

The primary limitation of this investigation is that
we analyse the impact of ENSO, NAO and EA
separately. Globally, ENSO is the main driver of
interannual climate variability, but interactions be-

W Letters

tween ENSO and both NAO and EA have been
identified in several studies e.g. [62, 64, 65]. Future
work should assess the joint impacts of ENSO, NAO
and EA on floods. Future work would also benefit
from using different methods to classify the different
phases of climate variability, and examining time-lags
between the indices of climate variability on the flood
indicators. For instance, ENSQO’s impact on climate
may vary throughout its developing, mature or
decaying phases [66—69]. Moreover, some of the
significant results may had occurred by random
chance on season/phases of the indices of climate
variability marked with an asterisk on figures 2 and 3,
where results would improve with a local analysis.
Furthermore, global disaster databases, such as the one
used in this study, are also know to face major
limitations, such as reporting errors [70]. Lastly,
extreme rainfall frequency and intensity, and large-
scale climate variability can only partly explain
anomalies in flood risk [58, 59]. Other aspects such
as changes in exposure and vulnerability [55, 56] were
not included in this study.

5. Conclusions

In this paper, we examined relationships between the
different phases of ENSO, NAO and EA, and
differences and anomalies in the OER, IER, Flood
Occurrence, and Flood Damage. We show that:

e Positive and negative phases of NAO and EA are
associated with more frequent extreme rainfall
over large areas of Europe. The NAO™ and EA™
phases are associated with less frequent extreme
rainfall, especially during summer and autumn.

e Positive and negative phases of NAO and EA are
associated with significant differences in the
intensity of extreme rainfall compared to the
neutral phase.

o The effect of ENSO on the intensity and frequen-
cy of extreme rainfall in Europe is much smaller
than the influence of NAO or EA.

e At the aggregated pan-European scale, NAO, EA
and ENSO show significant relationships with
Flood Occurrence and Flood Damage in one or
more phases and/or season. In summer during
NAO™, these anomalies are on average 170% and
136% higher.

e Anomalies in Flood Damage in spring and
summer are on average 110% lower in northern
Europe during NAO+, EA+ and ENSO+-.

e Flood Damage and Flood Occurrence are strongly
related with climate variability, especially in
southern and eastern Europe.
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Therefore, when investigating at the Pan-European
scale, all three indices of climate variability should be
taken into account. Future work should focus on their
mutual relations to flood risk. Consequently, the
inclusion of seasonal forecasts of the indices of climate
variability could be used to develop flood risk outlooks
for the continent.
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