
     

LETTER • OPEN ACCESS

The role of storage dynamics in annual wheat
prices
To cite this article: Jacob Schewe et al 2017 Environ. Res. Lett. 12 054005

 

View the article online for updates and enhancements.

You may also like
A comparison of coal supply-demand in
China and in the US based on a network
model
Cui-Cui Fang,  , Mei Sun et al.

-

Promoting future sustainable utilization of
rare earth elements for efficient lighting
technologies
Chen Zhong, Yong Geng, Zewen Ge et al.

-

Tracking banking in the Western Climate
Initiative cap-and-trade program
Danny Cullenward, Mason Inman and
Michael D Mastrandrea

-

This content was downloaded from IP address 3.145.131.238 on 08/05/2024 at 06:03

https://doi.org/10.1088/1748-9326/aa678e
https://iopscience.iop.org/article/10.1088/1674-1056/22/10/108901
https://iopscience.iop.org/article/10.1088/1674-1056/22/10/108901
https://iopscience.iop.org/article/10.1088/1674-1056/22/10/108901
https://iopscience.iop.org/article/10.1088/1748-9326/acdf74
https://iopscience.iop.org/article/10.1088/1748-9326/acdf74
https://iopscience.iop.org/article/10.1088/1748-9326/acdf74
https://iopscience.iop.org/article/10.1088/1748-9326/ab50df
https://iopscience.iop.org/article/10.1088/1748-9326/ab50df
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvdJWDwo6ea7_PV_HDRoiA_jz8w_u93hWwlj8WGgPiJPfYsZmjxM1nPMRFnNEvGbIRo5RPgYWNuj8IeSuLlLBYQkUhJXFy2nTUhW_mbzZACvJ3T0VuMQ0xNPXihh_a8RatAv9RhF5R5CyHZUjawsZ19y9AyrHgsdpuz2WKRPZmTAZLB9UvM1x8H2CH_2-HJEwEEE-ysOZjL0yFwVMRjNTMkRxHcGdA7RUPpoTKaWMwsHAnI6UlHn1LqRmBlXvkac416ZglZ0MhpSRqDyFcNz14moKSWW03PckWVyXIBXq6V9lV0j7ggK925l6xRnq-H9O6EOsJIJ8QnkUzfxUDxmw3F7mH7vA&sig=Cg0ArKJSzL6lVS1H30lZ&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/breath-biopsy-complete-guide/%3Futm_source%3Djbr%26utm_medium%3Dad-b%26utm_campaign%3Dbb-guide-bb-guide%26utm_term%3Djbr


OPEN ACCESS

RECEIVED

20 June 2016

REVISED

4 February 2017

ACCEPTED FOR PUBLICATION

17 March 2017

PUBLISHED

28 April 2017

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 3.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

Environ. Res. Lett. 12 (2017) 054005 https://doi.org/10.1088/1748-9326/aa678e
LETTER

The role of storage dynamics in annual wheat prices

Jacob Schewe1, Christian Otto and Katja Frieler
Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany

E-mail: jacob.schewe@pik-potsdam.de

Keywords: price variability, food security, supply shocks, trade policy, climate change

Supplementary material for this article is available online
Abstract
Identifying the drivers of global crop price fluctuations is essential for estimating the risks of
unexpected weather-induced production shortfalls and for designing optimal response measures.
Here we show that with a consistent representation of storage dynamics, a simple supply–demand
model can explain most of the observed variations in wheat prices over the last 40 yr solely based on
time series of annual production and long term demand trends. Even the most recent price peaks in
2007/08 and 2010/11 can be explained by additionally accounting for documented changes in
countries’ trade policies and storage strategies, without the need for external drivers such as oil
prices or speculation across different commodity or stock markets. This underlines the critical
sensitivity of global prices to fluctuations in production. The consistent inclusion of storage into a
dynamic supply-demand model closes an important gap when it comes to exploring potential
responses to future crop yield variability under climate and land-use change.
1. Introduction

The world market prices for food grains vary
substantially on multi-annual and shorter timescales,
with important implications for both importing and
exporting countries. Although domestic markets are
partially insulated from the world market [1], food
prices particularly in developing countries can
respond strongly to world grain prices [2]. Extreme
increases in staple food prices, such as in 2007/08 and
2010/11 when world prices for wheat went up by more
than 100% and more than 50%, respectively, in a
matter of months, have been linked to far-reaching
humanitarian crises and food riots in several
developing and emerging countries around the world
[3, and references therein]. For policies aimed at
improving food security today, and in a future for
which substantial changes in weather regimes and
human land use patterns are expected, it is therefore
important to understand the dynamics that drive
short-term variations in world prices.

Weather fluctuations during plant growth render
grain production inherently volatile from one growing
season to the next. In particular, droughts and extreme
heat spells have a large negative effect on cereal
production around the globe [4], and severe droughts
© 2017 The Author(s). Published by IOP Publishing Ltd
have also preceded the recent price spikes [5].
However, grain prices can also be affected by various
other factors, and to which extent each of these factors
contribute to price variability is a matter of ongoing
research [e.g. 6]. Much of the recent debate about
drivers of food price variability focuses on the price
spikes of 2007/08 and 2010/11. Apart from direct
effects of adverse weather events, several authors have
ascribed a dominant role to export restrictions
imposed by several important producer countries in
response to yield shortfalls, further reducing world
market supply and thus amplifying the price response
to the yield shocks [5, 7, 8]. A similar argument has
been made for the demand side, namely that
importing countries, in response to an initial price
rise, started to buy larger than usual quantities in an
attempt to restock inventories and insure themselves
against further price rises, thus collectively amplifying
those very price rises [9–11].

On the other hand, increasing demand for biofuel
production has been discussed as a major cause for
rising prices particularly of maize and soybean, and
partly of other crops due to substitution effects
[12–14]. Finally, speculation by index funds driven out
of the collapsing US housing and stock markets has
been invoked as an external factor to explain the
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Figure 1. Schematic illustration of the supply and demand functions in an exemplary equilibriummodel without storage (left), and in
our model with storage (right; note that price is on the horizontal axis). In each case the implementation of a negative production
shock is indicated by the arrow and the dashed supply curve. Assuming that supply and demand were in equilibrium before the shock
(S ¼ D), then shifting the supply curve by the amount that realized production S� falls short of planned production S implies a new
equilibrium price P� at which demand D� would exceed available supply S� in the model without storage (left). In the model with
storage (right), the supply curve represents total available goods including both new production and carryover stocks. Demand at the
intersection can always bemet, and the balance of goods is conserved through the producer-side and consumer-side inventories, Ip and
Ic, respectively. Pmax,p is the price at which all producer-side stocks would be sold; Pmax,c the maximum price at which consumer-side
storage is taken; and Imax,c the consumer-side ‘target’ storage level.
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‘boom and bust’ nature of the 2007/08 peak [15–17].
However, much of the existing analyses are descriptive
(e.g. ref. [5] or rely on exemplary calculations (e.g. ref.
[16] without attempting to reproduce the observed
price time series in a quantitative way. A notable
exception is a recent study that fits a supply-demand
equilibrium model to 30 yr of grain price data, but
explains the recent food price peaks based on cross-
market speculation [17], without considering trade
policies.

In this paper, we apply a global, annual supply-
demand equilibrium model in order to quantify to
what degree i) observed annual wheat price fluctua-
tions over the last four decades can be explained by
reported variations in production in the presence of
dynamic storage; and ii) the remaining unexplained
price variations in the last decade can be traced back to
reported trade policy responses in the wheat market, as
opposed to external drivers. We thereby offer a
quantitative basis for assessing the vulnerability of the
global food system to short-term production shocks,
such as induced by weather.

A main characteristic of our model is that the
supply function refers not only to current production,
but includes supply from storage. Similarly, the
demand function describes market demand by storage
holders, not by end consumers. This integration of
storage into the supply and demand functions permits
a stock-flow consistent representation of short-term
variability, in contrast to models that directly juxtapose
production and final consumption (figure 1). We
apply two different versions of the model: One in
which final consumption is prescribed to match
observed annual consumption (i.e. annual consump-
tion is used as an input); it serves to quantify the price
variability that is due to observed fluctuations in the
physical quantities of supply and demand—that is, it
includes any mechanisms that lead to changes in these
physical quantities: weather or farm management
affecting production; dietary shifts, substitution with
2

other products, or changes in non-food uses affecting
consumption (in particular, an increasing use of wheat
due to rising maize prices related to biofuels would be
included here); or even speculation, to the extent that
it had any effect on actual production or consumption.
In the other version, annual consumption is allowed to
deviate from the observed long-term trend in response
to simulated prices; it serves to quantify the amount of
short-term price variability that can be explained
solely by observed production changes.

The effect of storage on the statistics of commodity
prices has previously been investigated using the
competitive storage approach (e.g. [18, 19]). In
comparison, the model presented here is conceptually
and computationally simpler, and explicitly designed
to test the predictive capacity of the potential drivers of
price variability discussed above. A more detailed
comparison of our model and the competitive storage
model can be found in the Appendix. We note that
because of its simplicity, our model may be
particularly suited for inclusion in an integrated
assessment framework, where climate effects on short-
term food price variations are considered alongside
other economic and societal impacts of climate change
and/or adaptation options. For example the sequenc-
ing of multiple climate-induced yield shortfalls, and
the resulting depletion of stocks and rise of prices,
would be overlooked on the 5-or 10-year time steps of
conventional integrated assessment models, but can be
accounted for with our model.
2. Methods
2.1. Data
We use world wheat (US hard red winter) production
(supplementary figure S1 available at stacks.iop.org/
ERL/12/054005/mmedia) and domestic consumption
data (online supplementary figure S2) from the United
States Department of Agriculture (USDA) Production,
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Supply and Distribution (PSD) online database2 as
inputs to the model, and compare our simulated world
ending stocks to data from the same source, and
simulated prices to data reported by the World Bank3.
Over the period 1975–2013, in the USDA PSD data,
the cumulative difference between production and
consumption exceeds the increase in stocks by approx.
100mmt (million metric tons; see online supplemen-
tary figure S3). This inconsistency could be caused by
missing or incorrect data in either or all of the
production, consumption, and stocks time series. To
obtain a self-consistent dataset for driving and
evaluating our model, we eliminate the discrepancy
by adding a constant amount of 2.7 mmt per year to
the reported consumption data; assuming that
consumption might be the most error-prone of the
three datasets since its measurement is more indirect
than that of production, and since systematic
measurement errors in consumption may more easily
go unnoticed than in stocks data which is cumulative.
We note that this cross-the-board adjustment of the
reported consumption data merely serves the purpose
of this model study; we do not attempt an actual
correction of the original data.

2.2. Model
The model presented here is designed to provide a
simplified representation of year-to-year supply-
demand dynamics, including stocks, on a global food
grain market.

2.2.1. The short-term supply curve
Equilibrium prices on the agricultural commodity
market are commonly modeled as the price at the
intercept of a supply (subscript s) and a demand
(subscript d) function of the type:

Qs ∝ Pes ð1Þ

Qd ∝Ped ð2Þ

whereQ is quantity, P is price, and e is price-elasticity4.
The supply curve is generally considered to represent
the marginal cost to producers of supplying an
additional unit of e.g. grain; and the demand curve to
represent the marginal price that consumers are
willing to pay for an additional unit. This view
corresponds to a long-term planning perspective
where production can be adjusted along the supply
curve to meet expected demand. Long-term changes
in underlying conditions such as climate, consumer
preferences, available production technologies, regu-
lations, etc. can shift the supply and demand curves or
2 https://apps.fas.usda.gov/psdonline/, last accessed on 17 January
2017
3 http://data.worldbank.org/data-catalog/commodity-price-data,
last accessed on 17 January 2017
4 Besides this iso-elastic form, other functional forms are sometimes
used, e.g. a linear form, Q ∝ e P.

3

change their shapes, leading to a new equilibrium
price.

On annual or shorter timescales, however,
producers have little capacity to adapt production:
only to the extent that interhemispheric differences in
growing seasons, or multiple growing seasons per
timestep in a single region, allow them to change
acreage or inputs in the second growing season in
response to realized yields in the first growing season.
A supply curve referring only to production therefore
has very limited meaning at these timescales. Instead,
the flexible part of supply comes from storage (grain
inventories).

This has implications for how short-term produc-
tion shocks can be accurately represented in a supply-
demand equilibrium model. Previous studies have
modelled such shocks by shifting the supply function
by an amount corresponding to the production
shortfall (or surplus) and thus obtaining a price shift
[17, 20]. Except in the limit of extremely elastic
demand, the quantity demanded at that new
equilibrium price is, however, larger (smaller) than
the quantity originally produced (figure 1, left); and
because production cannot adapt, the difference
would have to be supplied from (transferred to)
storage. While this may be neglected when only
looking at a single event, inconsistencies pile up from
one shock to the next. Therefore, when an annual
production time series is realized as a series of
production shocks in an equilibrium supply-demand
model, it is important to keep track of storage as an
integral part of total supply.

We include storage directly into the supply curve.
When the supply curve is reinterpreted to refer not to
long-term production potential but to a given year’s
realized production plus carryover stocks, then it has a
defined upper bound: At any given point in time, no
more goods can be supplied than the sum of goods just
harvested and those left in storage from previous
harvests. We introduce a variable Ip representing total
producer-side storage, or inventories, which may be
thought of as the sum of grain held by storage firms,
farmers, or in any other stores before being sold on the
world market. Assuming that any new harvest is added
to this aggregate storage term, the storage balance is:

IpðtÞ ¼ Ipðt � 1Þ � Qxðt � 1Þ þ HðtÞ ð3Þ

where t is the present time step (year), Qx is the
quantity sold to the consumer side, and H is
production (harvest). We then define the short-term
supply function as

QsðtÞ¼ IpðtÞ⋅dtrade ⋅ðPðtÞ=Pmax;pÞa if PðtÞ� Pmax;p

IpðtÞ⋅dtrade if PðtÞ>Pmax;p

�

ð4Þ

where the index p denotes the producer side; P is world
price; and Pmax,p is the (hypothetical) price at which all
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existing stocks would be sold (figure 1, right). The
exponent a controls the shape of the supply curve, and
can be interpreted as a short-term elasticity of supply;
a ¼ 1 corresponds to a linear supply curve, whereas
larger (smaller) values of a correspond to a convex
(concave) shape of the supply curve. dtrade is the
fraction of total producer-side stocks that is available
for trade. For the present application, we set dtrade ¼ 1
except during export restrictions; see Results.

With this type of supply function it becomes
possible to consistently model a series of production
shocks, or more generally a variable production
timeseriesH(t). According to equation (3), any change
in H leads to a change in Ip, shifting the upper bound
and thus stretching or compressing the entire supply
curve. Because the carryover stocks are also part of Ip,
the balance of goods is conserved from one time step
to the next.

2.2.2. The short-term demand curve
Similar arguments can be made on the demand side.
End consumers of staple foods typically do not buy
directly on the world market, but are at the end of a
supply chain including wholesale, processing, and
retail enterprises most of which keep some amount of
their inputs and/or outputs in storage [21]. Govern-
ments also store food grains over longer periods of
time as strategic reserves. On long timescales,
variations in all these grain stocks may cancel out,
and the demand curve can be seen as an expression of
the end consumers’ willingness to pay for a given
product or its derivatives. On short timescales,
however, the world market price forms on the basis
of the demand actually registered by market partic-
ipants, e.g. large grain vendors, governments, etc.
Their demand is an expression of their willingness to
store grain at a given moment, and then process and/or
resell or distribute it later.

Analogous to the producer side, we assume that
the consumer-side storage level Ic is given by

I cðtÞ ¼ Icðt � 1Þ þ QxðtÞ � QoutðtÞ ð5Þ

where Qx is the quantity purchased on the world
market (equal to the quantity sold by the producer
side), and Qout is final consumption. We further
introduce a maximum storage level Imax,c that controls
the upper end of the short-term demand curve, such
that at very low prices, the consumer side will buy just
enough grain to refill their storage Ic to the level Imax,c.
The interpretation of Imax,c is not necessarily the
maximum physical storage capacity, but rather a
measure of the amount of storage that consumers
consider optimal. The demand function is then in the
simplest form given by

QdðtÞ ¼ ðImax;cðtÞ � IcðtÞÞ ⋅ ð1� PðtÞ=Pmax;cÞbÞ i
0 i

�

ð6Þ
4

where Pmax,c is the maximum price consumers are
ready to pay for a single unit (figure 1, right). The
exponent b controls the shape of the demand curve,
and can be interpreted as a short-term price elasticity
of world market demand.

We investigate two different versions of the model:
One (called FixCons, for fixed consumption) in which
final consumption Qout is prescribed to match
observed annual consumption; and one (called
FlexCons, for flexible consumption) in which annual
deviations from the observed long-term consumption
trend are determined within the model based on
simulated prices, according to

QoutðtÞ ¼ Qout;ref ðtÞ⋅ PðtÞ / PaveðtÞð Þed ð7Þ

with PaveðtÞ ¼ 1
t

Pt�1
t 0¼t�t Pðt 0Þ. That is, we assume

that if the world price in year t is equal to the average
price of the t previous years, consumption lies on the
long-term trend line (Qout,ref is the 11 yr running
average of reported annual consumption, online
supplementary figure S2). If the price is higher
(lower), consumption is below (above) the long-term
trend, with ed < 0 being the price elasticity of
consumption (different from the elasticity of demand
of the consumer-side storage holders, b). Equation (7)
is a highly simplified representation of final consump-
tion that assumes that consumers adapt to long-term
(as defined by t) price changes, but are sensitive to
short-term fluctuations. Insulation of domestic
markets is only taken into account through the
constant elasticity ed, neglecting changes over time in
the transmissivity between world and domestic
markets (and neglecting differences between different
national and regional markets, which are all lumped
together in this global model). This simple approxi-
mation serves the purpose of the present study, but we
note that it could very easily be replaced by different,
more sophisticated representations of Qout.

Given these supply and demand functions, we
assume market clearance in each time step, i.e.Qd(t)¼
Qs(t)¼ Qx(t) , and thus obtain the equilibrium price P
(t) and thequantity tradedQx(t) fromequations (4) and
(6).Note that in the present application of themodelwe
make the simplifying assumption that all international
trade is conducted at a single world market place
between one representative producer and one represen-
tative consumer, and that we do not take into account
any specifics of futures versus spot markets. The model
described here may be extended, e.g. by modelling the
global supply curve as the sum of individual supply
curves representing multiple independent market
participants, but is here deliberately kept as simple as
possible, in order to explore the effects of themost basic
supply-demand and trade mechanisms.



Table 1. Data and parameter values used in simulations with prescribed (FixCons) and endogenous (FlexCons) annual consumption.

Symbol Description FixCons FlexCons

Exogenous (data from USDA) and endogenous variables

H(t) Annual production exog. exog.

Qout(t) Annual final consumption exog. endog.a

P(t) Annual price endog. endog.

Ip(t) þ Ic(t) Annual total ending stocks endog. endog.

Producer side parameters

a Exponent of supply curve 0.1 0.1

Pmax,p Producers’ maximum price ($) 350 350

Consumer side parameters

b Exponent of demand curve 1.0 1.0

Pmax,c Consumers’ maximum price ($) 850 850

Imax,c,þ Consumer storage capacity in excess of annual demand (% of year–1975 demand) 55 55

ed Price elasticity of final demand — �0.1

t Price adjustment timescale of consumption (number of previous years to compute reference price) — 3

a The endogenous calculation of annual final consumption is based on the long-run consumption trend, which is determined

exogenously from annual USDA data; cf equation (7).

Environ. Res. Lett. 12 (2017) 054005
We point out that our modeling approach does not
explicitly account for any particular costs or profits
incurred by storage holders on the producer or
consumer side. Instead, the supply and demand
functions represent the aggregate behavior of storage
holders, which follows from their respective objectives
(e.g. profit maximization), characteristics (e.g. risk
aversion), and costs incurred (e.g. for production and
storage). Our rationale is to avoid modeling each of
these factors explicitly—both because of the resulting
complexity and because objectives, characteristics, and
costs may differ substantially between different types
of private and public storage holders—and instead
choose a simple but plausible set of aggregate supply
and demand functions. In particular, a potential effect
of storage costs is implicit in the concave form of the
supply function (a < 1, i.e. producer-side storage
holders sell relatively much grain even at low prices).

The model workflow within a given timestep is
illustrated in online supplementary figure S4. The
model is implemented in Python; the program code is
available upon request.

2.3. Model parameters
Parameter values used in this study are given in table 1.
The consumer-side maximum storage capacity Imax,c is
set to 190 mmt (55% of 1975 consumption) above the
long-term average annual consumption:

Imax;cðtÞ ¼ QoutðtÞ þ Imax;c;þ

where QoutðtÞ is the running average consumption
(we use an 11 yr window centered on the year in
question), and Imax,c,þ is set to 190 mmt. That is,
consumers collectively desire to hold up to 190 mmt
as excess stocks, in addition to basic working levels.
The ratio of Imax,c,þ to average annual consumption
(the ‘target’ consumer-side stocks-to–use ratio) thus
5

declines from 55% in 1975 to about 30% in the 2000s.
This range appears plausible because it is somewhat
higher than the actual historical range of about
15%–40% for the global stocks-to–use ratio [22]. The
total storage level is initialized with 80 mmt at the
beginning of the simulation, to match reported ending
stocks of 1974. The demand curve is assumed linear,
b ¼ 1, as the simplest choice for this parameter. The
remaining parameters Pmax,c, Pmax,p, and a are chosen
to obtain a good match of the simulated price time
series with the observed one. Systematic variation of
the parameters shows that they control the average
price level as well as the overall amplitude of
price variability, but have no major effect on the
relative magnitude of individual price changes; i.e. the
shape of the price time series is insensitive to changes
in these parameters apart from scaling (online
supplementary figure S5). Our parameter estimates
are further corroborated by an ad-hoc application of
the model to corn (maize), which yields a considerable
agreement between simulated and observed price
variations using the same set of parameter values as
chosen for wheat; see the Appendix.

The parameter values for the FlexCons model are
the same as for the FixCons model, except that two
additional parameters enter through the representa-
tion of final consumption, equation (7): the price
elasticity of final consumption, ed, and the number of
previous years t over which prices are averaged to
obtain the reference price Pave. The larger t, the slower
are consumers to adapt to changing price levels. Both
parameters are used to fit the model to observed
consumption anomalies. The result is consistent with
observations on a multi-year scale, even though in
individual years simulated anomalies can differ from
reported ones in magnitude and sometimes in sign
(online supplementary figure S6), as may be expected
from this simplified representation which neglects e.g.
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further price effects with different lag times, spatial
and temporal differences in price transmissivity, and
confounding factors present in the reported data, such
as substitution effects with other food commodities.
The value of �0.1 for ed is similar to the domestic
short-run elasticity of �0.11 estimated by [5] for the
USA during the 2007/08 price spike.

The FlexCons model is first run with constant
year–1975 input data for a number of time steps until a
stationary price is reached, and then with varying
input from 1975–20165. The sensitivity of the model to
variations in the different parameters is shown in
online supplementary figures S7 to S13. We note that
the calibration of the model—adjusting the free
parameters to find the best match with observed data,
as described above—was performed (jointly for the
FixCons and the FlexCons model) only on the period
1975–2013. The years 2014–2016 were only added to
the analysis once the parameters had been fixed at the
values reported in table 1. This extension thus serves as
an out-of–sample test of the model calibration.
Together with the application to corn in the appendix,
we therefore offer two types of ‘out-of-sample’ tests
(across time and across crop types) to lend support to
the model formulation and parameter estimates.
3. Results
3.1. Supply-demand dynamics
We first run the FixCons model (consisting of
equations (3) through (6)) time-forward with annual
global wheat production and consumption from 1975
to 2016 taken from reported data. Results are shown in
figure 2 (violet lines). Given that both annual
production and consumption are prescribed, the
FixCons model matches reported storage almost
perfectly by design. Notably, the variations in price
are also captured to a large extent by this production-
consumption driven model (figure 2, bottom); the
Pearson correlation coefficient is 0.81. The agreement
of simulated with observed annual prices is similar to a
previous model study for 1982–2010 [17], but the
advantage of our model is its consistency: production,
consumption and storage all match reported values,
and the difference between production and consump-
tion is precisely balanced by storage changes and thus
carried forward through the simulation (stock-flow
consistency).

A key parameter of this model is the ‘target’
inventory level of the consumer-side representative
storage holder, Imax,c (seefigure 1). That is, in the limit of
very low prices, the storage holder would buy enough
5 Since data refer to agricultural years, the ending storage level and
consumption for year 2016 are in fact forecasts, as of 17 January
2017, by USDA for the agricultural year 2016/17. For the same
reason, no observed price is available for 2016 (i.e. the agricultural
year 2016/2017), and the correlation coefficients between simulated
and observed prices reported below refer to the period 1975–2015

6

grain tofill their inventories up to this level, to safeguard
against future price rises. We find that the overall
downward trend in real prices since the 1970s can only
be reproduced if this target level is assumed to decline,
relative to average consumption (supplementary figure
S5). This assumption is consistent with the observed
decreasing trend in public stock-keeping, only partially
being compensated by private stocks [21].

Our model also offers an opportunity to further
decompose the different contributions to annual price
variability. If annual-scale variability in consumption
is eliminated by prescribing each year’s final con-
sumption to the 11–year running average of observed
consumption, the simulated price and stocks series are
somewhat shifted but most year-to–year variations in
both stocks and prices are still reproduced (online
supplementary figure S14). This indicates that the
dominant portion of annual-scale variability in prices
and stocks is due to variability in production;
consistent with the greater amplitude of variability
in production than in consumption (see online
supplementary figures S1 and S2). On the other
hand, the importance of dynamic storage in repro-
ducing past price changes is illustrated in a scenario
where storage is artificially kept fixed, i.e. no surplus or
deficit is carried over into the next years storage (figure
3). Results are inferior to the model with dynamic
storage both in terms of the overall price trend and in
terms of the magnitude and direction of price change
in many individual years or episodes. In particular,
price peaks often begin too early, pointing to the
missing buffer effect of storage.

In order to isolate the part of annual price
variability that is driven by changes in annual
production, and to exclude any other potential
drivers, we now relax the observational constraint
on consumption. Only the long-term trend (11 yr
moving window) of consumption is prescribed, to
ensure long-term balance of production and con-
sumption; the drivers of this trend, such as population
growth or long-term changes in diets, are assumed
unrelated to short-term price fluctuations. Actual
consumption in each year is computed internally
through a simple iso-elastic relation with the
simulated price anomaly (equation (7)).

The resulting ‘FlexCons’ model (orange lines in
figure 2) matches reported prices similarly well as the
FixCons model, with a Pearson correlation coefficient
0.88. In addition, variations in stock levels as well as
consumption are also largely reproduced. Systematic
variationof thedifferentparameters shows that thebasic
shape of the model results is rather insensitive to the
exact choice of parameters (supplementary informa-
tion). Within the bounds of parameter uncertainty, this
model thus provides a self-consistent estimate of the
effect of production variability on grain prices,
excluding any other short-term effects such as cross-
market speculation, or rapid demand-side responses to
biofuel policies or prices of other commodities.
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Figure 2. Model results for wheat. Global, annual stock levels (top), consumption anomalies with respect to the 11 yr running average
(middle), and world market price (bottom). Annual consumption anomalies are prescribed from data in the FixCons model version
(violet) and computed endogenously in the FlexCons model version (orange). Black lines show reported values. Annual price data
(black line in bottom panel) are aggregated from reported monthly data as averages from July of the year indicated to June of the
following year, to represent crop years rather than calendar years. The difference between the black and violet lines in the middle panel
is due to the offset of 2.7 mmt per year added to reported consumption values to match reported stock variations (see main text and
online supplementary figure S1). The grey shading indicates the ‘out-of-sample’ validation period 2014–2016 which was added after
the calibration of model parameters.
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We note that since annual production is taken
from data, the model does not control for the feedback
of previous prices on production through farmers
adapting acreage and farm inputs. Here we only
explore the effect of production on prices. We also
point out the consistent prediction of price and stocks
trends during 2014–2016 in both model versions,
which lends support to the parameter values estimated
for 1975–2013. Moreover, statistical properties (auto-
correlation and skewness) of reported annual prices
are closely reproduced by our model (table 2).

3.2. Trade policies
The model (in both the FixCons and FlexCons
versions) overestimates wheat prices in the late 1990s
and early 2000s—especially in 2003—while under-
estimating them from 2007 on, and especially
7

after 2009. This is in agreement with previous studies
that found that prices during these times are difficult
to explain based solely on actual production and
consumption. Because our model explicitly includes
storage, we can represent, in a simplified fashion, two
mechanisms that have been proposed as potential
drivers of recent food price spikes, and in fact also of
the missing spike in 2003: Export restrictions and
import policies.

Table 3 shows a summary of major trade policy
events that have been cited in relation to recent wheat
price variability. These fall into two categories: Export
restrictions by major wheat producing countries; and
changes in stock-holding and import policy by large
consumer countries. We first consider the latter,
demand-side policies. A potential driver particularly of
the price rise in 2010 and 2011 has been identified in



Table 2. Descriptive statistics for annual wheat price timeseries 1975–2013.

Autocorrelation

lag 1 lag 2 lag 3 Skewness

With trend

Observed (World Bank) 0.86 0.72 0.70 1.03

FlexCons modela 0.85 0.74 0.68 1.17

Detrendedb

Observed (World Bank) 0.32 �0.31 �0.36 0.42

FlexCons modela 0.29 �0.13 �0.36 0.39

FlexCons model, randomized productionc 0.28 �0.02 �0.13 0.12

a driven by reported production and consumption values, as described in main text, and without trade policies
b removing 11 yr running mean from observed and simulated price series before calculating autocorrelation
c driven by a 5000 yr long random sample based on the observed production distribution. No trade policies
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Figure 3. Fixed-storage scenario. Solid lines are as in figure 2 (top and bottom panel). Dashed lines show results of a simulation with
the FixCons model where stocks are, at the end of each agricultural year, reset to their starting value. Thus, while annual changes in
production and consumption still get reflected in Ip and Ic , and thus, in the price, no surplus or deficit is carried over into the next
year’s storage.

6 Note that exports are not a direct indicator of changes in stock-
holding policy, since they depend also on prices. We only use major
shifts in Chinese exports and stocks as a motivation for our simple
policy scenario, assuming that they are too large to be just market
responses to price signals, and seeing as exports peaked during times
of stable and low world prices. A more realistic scenario may be
designed based on analysis of reported policy changes in China and
other countries, but in the present study we explore the effects of this
simple and transparent approximation.

Environ. Res. Lett. 12 (2017) 054005
‘aggressive’ buying strategies of several importing
countries, which attempted to restock their inventories
in reaction to initial price rises and in expectation of
continuing high price levels [9]. Conversely, the period
between 2003 and 2007 was marked by low world
wheat stocks, due largely to significant stock
reductions in China, whose wheat exports began
rising in the 1990s and spiked in 2003 and 2006/2007
(online supplementary figure S15).

We represent these major changes in consumer-
side buying/selling behaviour as changes in the
consumer-side ‘target’ inventory level, Imax,c. As a
8

simplified representation of China’s major reduction
in inventories, we gradually reduce Imax,c by up to 8%
between 2000 and 2006 (see figure 4, inset in top
panel)6. This figure should not be too large given the



Table 3. List of largest wheat producing and consuming countries (by volume in 2013; producing countries listed make up about 80%
of world production; respective share of world exports/imports shown in brackets, with largest exporter/importer in bold; source:
USDA) and major trade policy events since the year 2000.

Countries

Producer EU (19%), China (0.5%), India (4%), USA (19%), Russia (11%), Canada (14%), Australia (11%), Pakistan (0.5%),

Ukraine (6%)

Consumer China (4%), EU (2.5%), India (0%), USA (3%), Russia (0.5%), Pakistan (0.3%), Egypt (6%), Turkey (2.5%), Iran (3%)

Trade policy events

2000–2007 China: Historically large exports, peaking in 2003 and again in 2006-07; stocks reduce from 100 mmt in 2000 to 40 mmt

in 2003 (USDA; supplementary figure S15)

2007 Export restrictions/bans India, Russia, Ukraine, Argentina, Kazakhstan [5]

2010 Export ban Russia [9]

2011 Unusual purchases by China, Indonesia, Egypt, and other North African and Middle East countries; EU, Russia, Turkey

lift import levies [9]
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Figure 4. Results for the FlexCons model with trade policy changes starting in year 2000. Trade policy scenarios include reduced or
enhanced demand by importing countries, or reduced exports by producing countries (inset in the top panel; blue and red bars show
the fraction by which Imax,c and dtrade, respectively, are reduced or enhanced; see main text). Grey triangles and country acronymsmark
major drought events which led to shortfalls in wheat production and likely triggered the ensuing trade policy responses [5, 9]. Results
without trade policy changes are shown for comparison (dashed lines).
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fact that China’s share of the global wheat stock was
about 40% in 2000, but had dropped to about 20% by
2004 [23].

Chinese exports then stopped rising in 2007 and
sharply dropped in 2008.We assume that in the light of
the emerging food price crisis, any efforts to reduce
nationals stocks were presumably halted, and therefore
reset Imax,c to its baseline value during 2007–2010. In
the wake of the 2010/11 price spike, surging wheat
purchases by many importing countries were
reported, which were interpreted as attempts to
restock inventories. As a simplified representation of
these policy changes, we raise Imax,c to 5% above the
baseline from 2011 onwards.

Restrictions placed on wheat exports by several
important producer countries have been suggested as
another possible driver contributing to the wheat
price rises in 2007/08 and 2010/11. Just as consumer
countries’ precautionary imports, these restrictions
are widely regarded as policy responses to concurrent
or anticipated supply shortages, related to severe
droughts in Australia, India, and Ukraine before and
during 2007/08, and in Russia, China and the USA
during 2010/11, that reduced wheat harvests [5, 9].
Specifically, export restrictions or bans were effective
in Argentina, Russia, Ukraine, Kazakhstan, and India
for part or all of the period between late 2006
and early 2008. Russia again banned wheat exports
in 2010.

Seen from a world-market perspective, export
restrictions effectively make a part of the total supply
unavailable for international trade7. In our model, this
can be represented by temporarily withholding part of
the producer-side stocks from the world supply
function. As a simplified representation of the
reported export restrictions or bans described above,
we reduce the fraction of producer-side stocks
available for trade, dtrade, to 0.97 in 2007 and 2010
(with dtrade ¼ 1 in all other years; cf equation (4).
I.e. we assume that 3% of global producer-side stocks
are unavailable to international trade in 2007 and
again in 2010, whereas at other times all stocks can be
traded. These numbers are likely no overestimation
given that the countries which banned or restricted
exports during the 2007/2008 price spike together
made up about 25% of world exports [5].

Model results with these trade policy measures are
shown in figure 4 for the relevant period. Compared to
the case without trade policies, observed prices since
2000 arematchedmuchmore closely. In particular, the
simulated peak in 2003 is greatly reduced, and
substantial price rises are now simulated in 2007
and 2010. We also find an improvement in simulated
storage and, in some years, consumption, during these
7 They also reduce demand on the world market as some or all of the
demand in the restricting country is satisfied through domestic
supply. However, for major exporting countries, the net effect of an
export restriction will still be a reduction in world market supply
relative to world market demand.
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periods. While without trade policies, ending stocks
were overestimated during 2000–2006, they are now
closely reproduced, and the underestimation after
2009 has also been reduced. The pronounced negative
consumption anomalies in 2007 and 2010 are now
reproduced as well (figure 4, middle). The fit is not
perfect; notably, consumption is still too high, and
therefore stocks too low, in 2008 and 2009, hinting at
the limits of our simple representation of annual
consumption in the FlexCons model. Nonetheless,
these results demonstrate that a substantial portion
of observed variability can be explained on the basis of
production changes and idealized representations of
trade policy changes, without accounting for any other
potential drivers.
4. Discussion and conclusions

We have presented a simple model of global, annual
grain supply and demand that incorporates storage
into the supply and demand functions. We have
applied the model to the recent four decades of wheat
supply and demand, and demonstrated that a
substantial part of the observed annual price variability
can be explained solely by variations in production
and resulting changes in storage and consumption. To
our knowledge, this is the first attempt at reproducing
such a long section of observed prices with a stock-
flow consistent quantitative model.

The inclusion of dynamic storage not only ensures
stock-flow consistency but also substantially improves
the simulation of historic year-to–year price changes,
especially when it comes to the timing of price peaks,
as illustrated by a scenario with fixed storage. In
addition, the representation of storage in the model
makes it possible to account for mechanisms like
export restrictions and import policies, and we have
demonstrated that these mechanisms, together with
the production shocks that likely triggered them, can
explain a large part of the recent observed price
variability including the major peaks in 2007/2008 and
2010/2011. Our study is thus the first to reproduce this
period of enhanced price variability within a simple
supply-demand model.

We note that both the model—in particular, the
representation of final consumption—and the trade
policy scenarios applied above may be refined,
potentially improving the fit of the model to reported
data. On the other hand, we do not expect a perfect fit.
Mechanisms that were intentionally neglected here,
such as interactions between the wheat market and
other markets, likely did play a role in past wheat price
variations, and can be expected to explain at least part
of the remaining discrepancies between model and
data. The present study merely shows that those
factors may not have been of primary importance on
the annual timescale. In particular, while speculation
does not seem to play a major role for annual prices, it
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may be expected to have a larger effect on monthly or
shorter timescales.

In our simulations we have assumed that all of the
reported wheat production and consumption is
available for trade on a global market (except when
we applied export restrictions). In reality, at any given
time many producers and consumers will be isolated
from the world market, be it due to policy regulations,
infrastructure, or other barriers or preferences. Of the
four most important food grains wheat, maize, rice,
and soybeans, the fraction traded internationally is
greatest for wheat (about 18% during the 2000s), and
smallest for rice (about 7%) [24]. However, the
amount that is available for international trade cannot
simply be inferred from realized trade (reported
exports and imports), since the latter is a function of
price; thus our simplifying assumption of 100%
availability. Price in our model is in fact invariant with
respect to proportional changes in quantity supplied
and demanded, as long as Imax,c is also changed
proportionally, and the changes are applied uniformly
over the simulation period (see equations (4) and (6)).
That means, for example, consistently considering
only half of the reported production and consumption
amounts would not change the simulation results.
Conversely, changes over time in the fraction of total
production and/or consumption available for inter-
national trade do affect results, as we have demon-
strated for the trade policy scenarios.

We also note that in reality, there is not always a
clear distinction between producer-side and consum-
er-side storage. In our model, stocks move from
producer-side to consumer-side storage as soon as
they are sold on the world market; applied to the real
world, that would mean that depending on the
ownership and on the owner’s intended use, a
particular quantity of grain in some storage facility
may be considered either as producer-side or
consumer-side stock, no matter where it is physically
located. The distinction is however a useful modelling
concept, because it allows storage to buffer price
movements on both sides of the market. It is
important to realize that the short-term price
elasticity of world market demand is higher than
just that of the—relatively inflexible—final demand
(just as the short-term price elasticity of world market
supply is higher than that of farm-level production);
and that this price elasticity depends on storage. This
fact is reflected in our model formulation.

Our results enable a quantitative review of
previous, qualitative explanations of recent grain
price variability. They suggest that cross-market
mechanisms, such as speculative demand moving
into the wheat market as other markets collapsed, may
not be critically necessary for explaining the observed
sharp rises in annual world prices, but may, when
present, rather have further amplified the already
substantial price excursions caused by supply-demand
mechanisms. This would also imply that production
11
shocks, together with protective responses of grain
market participants, have a potential of sparking price
spikes large enough to seriously threaten food security.
This makes potential future increases in yield
variability due to climate change [25, 26] a particular
concern.

Beyond the present results, our model offers
multiple opportunities for future research. For
example, it may be particularly interesting to combine
the model with crop growth and macroeconomic
models to assess the food security and livelihoods
implications of different climate change, agricultural
management, and policy scenarios.
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Appendix: comparison with competitive
storage approach

The effect of storage on commodity prices has
previously been modelled using the competitive
storage approach [18, 27–29] or cobweb-type models
[30, 31]. Both approaches have been applied to
random supply shocks and are able to reproduce many
statistical properties of observed price series. The
competitive storage model was, in a refined version,
also applied to actual historical wheat supply and
demand data, and shown to reproduce the approxi-
mate shape of the historical price series, though not
the magnitudes of the price changes [19]. The model
presented here is conceptually and computationally
simpler than the competitive storage model, and
explicitly designed to enable a quantitative review of
the potential drivers of price variability discussed
above.

The competitive storage model is derived from
the assumption of profit-maximizing speculative
behavior by a risk-neutral storage holder (agent)
[29]. The representative agent is assumed to be a
‘price-maker’, that is, their own storage decision in a
given time step influences their expectation of the
next time step’s price. The agent takes storage only if
the expected future price is higher than the current
price (arbitrage condition). In comparison, in our
model, the representative producer agent behaves like
a ‘price-taker’, i.e. their future price expectation
(expressed by the parameter Pmax, p) does not depend
on their own storage decision (and, in the basic
model version examined in this paper, is in fact
constant). This also means that it does not strictly
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observe the arbitrage condition when compared with
the actual price series8: storage is often or always
taken even in years that are followed by decreasing
prices.

Thus, the representative agent in our model does
not behave like a single profit-maximizing speculator
with rational expectations. However, observed global
prices and stocks do not, either: substantial stocks are
carried through even when prices are falling (e.g.
compare the black lines in the top and bottom panels
of figure 2). The rationale behind our model is that the
representative agent should approximate the collective
behaviour of the numerous actual storage holders,
which in reality may not all follow the same objectives
and have access to the same information. In particular,
while some (e.g. large commercial storage firms) may
come close to the theoretical, profit-maximizing,
price-making speculator with rational expectations,
others may be too small to have a discernible influence
on world price [32], or may have non-commercial
objectives (e.g. strategic reserves), or may require
minimum working stocks (e.g. processing industry).
Far from explicitly including all these cases, we show
here that a simple and transparent global model with
plausible assumptions about supply and demand
functions can reproduce their collective behaviour
rather closely. This is not only true for the annual
values of price, storage, and consumption, as shown
above, but also for statistical properties like autocor-
relation of prices (table 2), which are reproduced by
our model with a similar accuracy as by a recent
application of the competitive storage model [19].

We note that our model can be extended: e.g.
rather than keeping Pmax,p constant, it may be set to
increase with decreasing stocks, thus reflecting the
behavior of ‘price-makers’. Moreover, the model could
at little computational cost be extended to multiple
agents, whose parameters could then be chosen to
reflect different types of behavior. It is therefore a
simple and transparent tool for exploring various
supply- and demand-related effects on prices, com-
plementing more sophisticated methods like the
competitive storage model.
Illustrative application for corn (maize)

As a form of ‘out-of–sample validation’, we apply the
FixCons model to corn (online supplementary figure
S16), using the same set of parameter values as chosen
for wheat (table 1).While simulated prices are generally
too high, annual price variations (difference over
preceding year) are already in considerable agreement
with observations, and the Pearson correlation between
simulated and reported prices is 0.71. In fact, one may
8 Note, however, that it does observe the arbitrage condition
internally: No storage is taken if current price is above the expected
future price, Pmax,p. The difference is in how the price expectation is
formed.
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expect the values of Pmax,p , Pmax,c , and Imax,c to be
different for different crops, since there is no reasonwhy
average prices and target storage levels should be
identical across different crops. Adjusting these crop-
specific parameters would likely improve themodel’s fit
to observed corn prices. We note here that the fact that
much of the corn price variability is reproduced even
without adjusting any parameters, lends support to the
model structure and the values chosen for the
more internal parameters, a and b (which are related
to the behaviour of the storage holders andmay depend
less on the specific crop).
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