ENVIRONMENTAL RESEARCH
LETTERS

LETTER « OPEN ACCESS You may also like
. . '] . . - Genetic Variability in West Timor Landrace
Satellite detection of rising maize yield LT In Wes Timor Landrace

Evert Y Hosang, Syamsuddin, Marcia

heterogeneity in the U.S. Midwest Pabendon et al.

- Intercropping of maize-mungbean to
increase the farmer’s income

To cite this article: David B Lobell and George Azzari 2017 Environ. Res. Lett. 12 014014 Syafruddin and Suwardi
- Effect of maize sweet potato intercrop over
sole cropping system on weed infestation
G Z Nayan, F O Takim, C O Aremu et al.

View the article online for updates and enhancements.

BREATH
BIOPSY

Main talks

Early career
sessions

confere nce gm’é 6th November

Join the conference to explore the latest
challenges and advances in breath research,,\

you could even present your latest work! Posters

Register now for free!

This content was downloaded from IP address 3.147.36.213 on 12/05/2024 at 14:27


https://doi.org/10.1088/1748-9326/aa5371
https://iopscience.iop.org/article/10.1088/1755-1315/484/1/012007
https://iopscience.iop.org/article/10.1088/1755-1315/484/1/012007
https://iopscience.iop.org/article/10.1088/1755-1315/484/1/012054
https://iopscience.iop.org/article/10.1088/1755-1315/484/1/012054
https://iopscience.iop.org/article/10.1088/1755-1315/445/1/012007
https://iopscience.iop.org/article/10.1088/1755-1315/445/1/012007
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvkfJQOqt_-Q-Yemh6a1-eY7IwtTaIOGRBICwWVJtMbQfdKDAxx2ooO1mbQ3WZW3gWpEZbHHPrZ-WdAU5TNQBW5POGo1X7pRq2TUcKCgi0a59-L2KP2vcZc2zUBiyKr8aRX2fsGwzv6rHPpifw14S6C0BrM8dJBDH0PW8oDd6DyD6CMNsKF_IrFMRfkhExDfFXiPmuCUNkO8_FXtwAIfv4BP1cW-Xe7KJG7ipPFCICd-EJFmWCFpvYdiuDVzDCwej0IjHYEFPK76eEt86vmrSuA9I0MxEOcaHVN-NV_z3FNsv46MIShJHQkZZ_zV7EJgZUwu8xalQwvVRkz-An0jQgG5mOuKA&sig=Cg0ArKJSzFejbduiLl2k&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/about/events/breath-biopsy-conference-2024/%3Futm_source%3Diop%26utm_medium%3Dad-lg%26utm_campaign%3Dbbcon-bbcon24-reg%26utm_term%3Diop-journal

I0P Publishing

@ CrossMark

OPEN ACCESS

RECEIVED
2 September 2016

REVISED
29 November 2016

ACCEPTED FOR PUBLICATION
13 December 2016

PUBLISHED
17 January 2017

Original content from
this work may be used
under the terms of the
Creative Commons

Attribution 3.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

Environ. Res. Lett. 12 (2017) 014014

Environmental Research Letters

LETTER

doi:10.1088/1748-9326/aa5371

Satellite detection of rising maize yield heterogeneity in

the U.S. Midwest

David B Lobell and George Azzari

Department of Earth System Science and Center on Food Security and the Environment, Stanford University, Stanford, CA 94305,

USA
E-mail: dlobell@stanford.edu
Keywords: remote sensing, crops, yield gaps

Supplementary material for this article is available online

Abstract

The future trajectory of crop yields in the United States will influence food supply and land use
worldwide. We examine maize and soybean yields for 2000-2015 in the Midwestern U.S. using a
new satellite-based dataset on crop yields at 30m resolution. We quantify heterogeneity both
within and between fields, and find that the difference between average and top yielding fields is
typically below 30% for both maize and soybean, as expected in advanced agricultural regions.
In most counties, within-field heterogeneity is at least half as large as overall heterogeneity,
illustrating the importance of non-management factors such as soil and landscape position.
Surprisingly, we find that yield heterogeneity is rising in maize, both between and within fields,
with average yield differences between the best and worst soils more than doubling since 2000.
Heterogeneity trends were insignificant for soybean. The findings are consistent both with recent
adoption of precision agriculture technologies and with recent trends toward denser sowing in
maize, which disproportionately raise yields on better soils. The results imply that yield gains in
the region are increasingly derived from the more productive land, and that sub-field precision
management of nutrients and other inputs is increasingly warranted.

Introduction

Maintaining yield progress in the major grain belts of
the world is imperative for meeting growth in global
demand for crop products without substantial
cropland expansion. In the Corn Belt of the United
States, which supplies more than one-third of global
production of both maize and soybean (USDA 2016),
yield progress has been fairly linear for both crops over
the past few decades (figure S1 stacks.iop.org/ERL/
014014/mmedia), with an annual yield increase of
"1.5% for maize and 0.9% for soybean and no obvious
signs of yield stagnation (Grassini et al 2013, Fischer
et al 2014). Yet concerns have been raised for future
prospects based on observations that (i) annual rates
of gain in crop yield potential (i.e. yield achieved under
best possible management) are below 1% for both
crops (Fischer et al2014) and (ii) average yields appear
to be within 25% of estimated yield potential (van
Wart et al 2013, Grassini et al 2015, Ruffo et al 2015).
A gap below ~30% typically indicates that further

management changes will have modest effects on
average vields, and because yield gap closing has
contributed roughly half of yield gains for most major
crops (Fischer et al 2014), small yield gaps thus may
serve as an indicator of slowing future yield gains.
Indeed, many areas that exhibit gaps of 20%—-25% of
average vields have already witnessed yield stagnation
(van Wart et al 2013, Fischer et al 2014).

The fact that linear yield gains have continued in the
Corn Belt despite small gaps represents a conundrum.
It may be that prior studies have underestimated yield
potential, and thus yield gaps, or that the apparent
historical threshold of 20%-25% is being surpassed
because of modern technologies such as precision seeders
that make approaching maximum yield more economi-
cal. It is equally possible that the signs of stagnation are
imminent but not yet statistically apparent.

To shed light on the nature of yield gaps and yield
gains in the region, here we examine the magnitude
and trends of yield heterogeneity (YH) since 2000.
Studying YH represents a complimentary, more

© 2017 IOP Publishing Ltd
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empirical approach to model-based estimates of yield
gaps (van Wart ef al 2013, van Ittersum et al 2013),
and heterogeneity in yield trends can also help to
understand the nature of recent yield progress.

Traditionally, assessing YH between or within
individual fields has been extremely difficult. In the
US, the USDA publishes data only on county average
yields, and individual farmer data remains private.
Although many studies have looked at YH within
single fields (Kaspar et al 2003), a regional perspective
has been lacking. Here, we use a recently developed
approach, named SCYM (‘scalable crop yield map-
per’), to map maize and soybean yields from Landsat
imagery within Google Earth Engine (Lobell et al
2015). Yield estimates were derived throughout the
Corn Belt for Landsat pixels judged to contain maize
or soybean based on USDA’s cropland data layer
(CDL; Boryan et al 2011). Using individual field
boundaries from the USDA Farm Service Agency
common land unit layer (USDA 2008), we then
examine YH both within and between fields for each
county. We focus on the states (Iowa, Indiana, and
Illinois) and years (2000-2015) that comprise the
longest record with both CDL and Landsat surface
reflectance imagery in Earth Engine, resulting in a total
of over 5 billion individual yield estimates.

Methods

Crop yields were estimated using the scalable crop
yield mapper (SCYM) approach described in detail in
recent work (Lobell et al 2015, Azzari et al 2016) and
outlined in figure S2. Briefly, surface reflectance
images from Landsat 5, 7 and 8 sensors were accessed
on Google’s Earth Engine platform. Reflectance in
green and near-infrared (NIR) wavelengths were used
to compute the green chlorophyll vegetation index
(Gitelson et al 2003):

GCVI = NIR/Green — 1 (1)

The maximum value of GCVI was computed for
each of two windows during the growing season.
These were then combined with 1km resolution
gridded weather data (Thornton et al 2014) to predict
yields using a regression equation which is pre-trained
on simulations from a crop model. In this case, we
used the APSIM-maize and APSIM-soybean crop
models (Holzworth et al 2014). The simulated yields
were regressed against the simulated values of GCVI,
which in turn were based on crop-specific equations to
translate simulated leaf area index into GCVI (Nguy-
Robertson et al 2012). One advantage of GCVI is that
it does not saturate at high values of leaf area compared
to other common indices.

Yields were only predicted for Landsat pixels
judged to contain the corresponding crop, based on
the CDL (Boryan et al 2011). The accuracy of the CDL
classifications vary by year, and are reported in
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metadata files for each state-year (www.nass.usda.gov/
Research_and_Science/Cropland/metadata/meta.php).
Generally, accuracies for maize and soybean are above
95% both for producer’s and user’s accuracy.

Importantly, SCYM is ‘calibrated” using only crop
model simulations, and not any ground-based
observations. Previous work has evaluated the
accuracy of SCYM estimates at both the field and
county scales in the U.S. (Lobell et al 2015, Farmaha
et al 2016, Azzari et al 2016). Here we focus on two
aspects of performance. First, we examine the ability of
SCYM to estimate average yields for each county over
the study period, by comparison with official yields
reported by the USDA (NASS 2015). Second, we focus
on the ability of SCYM to measure spatial heteroge-
neity within each county, since this is a primary
objective of this study. To do this we employ a
previously published dataset on vyields for 100
randomly selected fields per county per year, based
on farmer reports to the USDA Risk Management
Agency (RMA) (Lobell et al 2014). Although we no
longer have access to geo-location information for the
fields because of changes in RMA policy, we can
compute within-county measures of heterogeneity for
both SCYM and the RMA data for the time period in
which these two datasets overlap (2000-2012).
Specifically, we calculate the difference between the
95th percentile and mean of field-averaged yields for
each county-year.

In order to average SCYM estimates for individual
fields, as well as to assess within field heterogeneity,
boundaries of individual fields were obtained from
public datasets on common land units (USDA 2008),
and a random sample of 2000 fields were selected in
each county. Overall yield heterogeneity as well as
average within-field heterogeneity was calculated for
each county and year using equations (2) and (3):

YHo = Overall county yield heterogeneity
= Y95 - Yavg (2)

YHjg = In-field yield heterogeneity
Yoo Yos ikA;

where Yo refers to the overall 95th percentile of yield
across pixels ina county, Y, refers to the average yield in
a county, Y5 ; refers to the 95th percentile of yield in a
specific field i, A;is the area of field 4, and nis the number
of fields considered. When calculating heterogeneity, no
distinction was made between rainfed and irrigated
fields, as very few maize or soybean fields in this region
are irrigated (Grassini et al 2015).

We note that although yield heterogeneity is useful
as a measure of yield gaps because the highest yielding
fields are often close to the potential under best
possible agronomic management, the link between
yield heterogeneity and yield gaps is not straightfor-
ward (Lobell et al 2009). Simply comparing the
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Figure 1. Map of average SCYM maize yield estimates in the study region, 2000-2015. Inset (a) compares average county maize yields
with USDA reports. ‘Uncalibrated’ show raw SCYM estimates averaged over 2000-2015, while ‘calibrated’ show estimates corrected
using the best-fit line (dashed). Solid line shows 1:1. Inset (b) compares maize ‘yield gaps’ estimated from calibrated SCYM estimates
and a database of farmer-reported yields from RMA. Here ‘yield gaps’ are defined as the difference between the 95th percentile and
mean of yields across fields within a county. These values are computed for each year with overlap between the two datasets

top-yielding areas to average yields could understate
yield gaps if even the top-yielding farmers are still well
below potential, for example if the economic optimum
rates of inputs are far below the yield-maximizing
level. Conversely, this comparison could overstate
yield gaps if the yield potential on most fields are not as
high as on the highest yielding areas. The agreement
between our measures of YH and prior model-based
estimates of yield gaps in the region (van Wart et al
2013, Grassini et al 2015, Fischer et al 2014) indicate
that YHo, is overall a reasonable estimate of yield gaps,
although this agreement is not essential for the
interpretation of our results.

Results and discussion

Comparison of SCYM estimates with other datasets

Average SCYM estimates for maize and soybean are
displayed for the study region in figures 1 and 2,
respectively. Average countywide SCYM yields over
this period 2000-2015 correlated well with USDA
county statistics (NASS 2015), explaining 67% and
74% of spatial variability for maize and soybean,
respectively (figures 1 and 2). For both crops, SCYM
tended to overestimate true yields, with larger bias at
higher yield levels. This likely results from the fact that
SCYM is calibrated using APSIM crop model
simulations, and these simulations may understate
losses from various factors (e.g. pests or diseases) or
underestimate leaf area associated with a given yield.
Nonetheless, the approach captures the majority of

spatial variability in reported yields, and the bias is
readily corrected by calibrating SCYM estimates using
the overall relationship between SCYM and county
yields. These calibrated estimates are shown in figures 1
(b) and 2(b), and are used throughout the remainder of
the paper to minimize the effect of bias. That is, the
equations represented by the dashed lines in figures 1(a)
and 2(a) were used to translate raw SCYM yields to
calibrated SCYM yields. However, we note that most
results reported below differ only slightly when using
uncalibrated estimates, because most of the bias drops
out when calculating differences between two yield
estimates. Moreover, we emphasize that a single
calibration is done for the entire dataset, not separately
for each county.

The SCYM estimates also are able to capture spatial
differences in the within-county yield heterogeneity
evident in the RMA data (figures 1(c) and 2(c)). For
maize, the measures are highly correlated with RMA
(R*=0.55) and fall close to the 1:1 line. For soybean, the
correlation is higher (R* = 0.66) but SCYM tends to
understate yield heterogeneity relative to RMA. Overall,
the RMA data indicate that SCYM estimates of
heterogeneity predominantly reflect true yield hetero-
geneity rather than noise, and can discriminate between
counties with low vs. high heterogeneity. The satellite-
based measures of heterogeneity have the added
advantages that they are (i) available for a much larger
sample of fields than the public RMA data, (ii) available
for more recent years, and (iii) allow inspection of
within-field heterogeneity, since a typical field contains
hundreds of 30 x 30 m pixels.
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Figure 2. Map of average SCYM soybean yield estimates in the study region, 2000-2015. Inset (a) compares average county soybean
yields with USDA reports. ‘Uncalibrated” show raw SCYM estimates averaged over 2000-2015, while ‘calibrated’ show estimates

corrected using the best-fit line (dashed). Solid line shows 1:1. Inset (b) compares soybean ‘yield gaps’ estimated from calibrated
SCYM estimates and a database of farmer-reported yields from RMA. Here ‘yield gaps’ are defined as the difference between the 95th
percentile and mean of yields across fields within a county. These values are computed for each year with overlap between the two

datasets (2000-2012), with the average across years shown in the plot.
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Magnitude of between and within-field yield
heterogeneity

YH, and YHjp calculations for a single county are
illustrated in figure 3, along with maps of average YHq
and YH;; for 2000-2015 for all counties. These maps
indicate four notable features. First, YHo is typically
below 40% for both crops, supporting the notion of
relatively modest yield gaps in this region (Grassini
et al 2015, Fischer et al 2014, Lobell et al 2009, van

Wart et al 2013). Second, soy YH is generally smaller
than maize YH, with a production-weighted average
YHo of 27% across the region, compared to 35% for
maize. This suggests that soybean yields are even closer
to their yield potential than maize in this region, as
argued previously (Fischer et al 2014), although an
important caveat is that SCYM estimates of heteroge-
neity appear more biased downward for soybean than
maize (figure 3(c)).
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for soybean.

Third, YHr is commonly half or more of YH.
This finding suggests that conditions which vary
within fields, namely soil conditions and landscape
position, are relatively important drivers of yield
variability, above and beyond factors that only vary
across fields, such as farm ownership or management.
Moreover, it emphasizes the importance of fine-scale
heterogeneity in these soil and landscape factors, as
argued by (Brandes et al 2016), which limits the utility
of coarse resolution soil maps.

Fourth, YH, is significantly larger in the lower
yielding counties that span the southern edge of all
three states (figures 3(d) and (h)). These counties lie
below the regions of major glacial till and are
characterized by shallower and more heterogeneous
soil conditions that are less favorable to crop growth.
The steep increase in YHq for these counties again
indicates the importance of soil conditions in driving
YH in the region. A negative relationship between
percentage yield gaps and average yields has also been
recently observed in Australian wheat systems
(Gobbett et al 2016), though in that study the absolute
yield gaps (in t ha™') were larger in higher yielding
areas. Here, we find that both relative and absolute
yield gaps are highest in lower yielding counties.

Trends of between and within-field yield
heterogeneity

Over the sixteen year record of Landsat data used in
this study, both YHp and YHpp exhibit widespread
increases (figure 4). Nearly every county has experi-
enced an increase in maize YHq and YH; i, sometimes

with as much as a 15 percentage point increase in the
measure of heterogeneity over the study period.
Changes in YH for soybean are more mixed than for
maize, with the majority of counties still showing
increases but many showing decreases.

Although figure 4 displays trends in two specific
measures of heterogeneity (YHo and YHpg), the
overall increase in heterogeneity is also readily
apparent when examining the full yield distributions
over time. For example, figure 5 displays the histogram
of yields for the entire study area for the first three and
last three years of the study for each crop. For maize,
there is a clear rightward shift in the upper half of the
distribution, but little change at the lower end. This
results in a clear widening of the distribution,
indicative of greater yield heterogeneity. This figure
also indicates that overall yield gains have largely
resulted from increases in yields at the upper end of the
distribution, rather than from a uniform shift of the
distribution to the right. Soybeans show a much less
dramatic shift in the yield distribution.

Many factors cause yields to vary within and
between fields within a county, and increases in
heterogeneity indicate that one or more of these
factors have been growing in importance over time. To
explore the importance of one factor for which
widespread (albeit imperfect) data exist, we calculated
yields and yield changes as a function of soil properties
reported in the gridded SSURGO database (National
Resource Conservation Service 2014). The gridded
SSURGO data is provided at 10 m, and therefore we
first aggregated it to the 30 m resolution of the yield
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Figure 5. Histograms of maize and soybean yields across the study region for the first three and last three years of the study period.
Maize yields exhibit a widening of the yield distribution, consistent with the county trends shown in figure 4, whereas soybeans show
mainly a (small) shift in the distribution to the right but little widening. Vertical lines indicate the 5th and 95th percentiles of the

P Letters
0.8
2000 2000
0.20 ,\
0.6
>0.15 >
7 B
S S 04
A 0.10 2015 [a)
0.05 0.2
0.00 - | N\ 0.0
5 10 15 20 1 2 3 4 5 6 7

Soy Yield (tha)

g
s 20 (a) Top vs. Bottom NCCPI
g
9] — Maize
2 15 — Soy
a
k]
2
>-
> 1.0
c
=}
Q
Q
c
£ 05
=
(0]
(=2
©
g 0.0
2000 2005 2010 2015

Year

storage).

Figure 6. (a) Average within-county yield difference between pixels with high and low NCCPI values for each year. Gray lines show
values for individual years and colored lines indicate linear trends. (b) same as (a) but for RZNAWS (root zone available water

20 (b) Top vs. Bottom RZNAWS
—— Maize
1.5 — Soy

PR

0.5

0.0

Average Within—County Yield Difference (t/ha)
5

2000 2005 2010 2015

Year

estimates. Two key soil attributes were considered:
USDA’s national commodity crop productivity index
(NCCPI), an integrated measure of land suitability,
and total root zone available water storage (RZNAWS).
For each soil attribute, we computed the distribution
of values across the study region and identified
‘favorable’ and ‘unfavorable’ soils as those with values
above the 80th percentile or below the 20th percentile.
For NCCPI, the values identified were 85 and 48,
whereas for RZNAWS the values were 293 and
154 mm. (The value of 154 mm is nearly identical
to the 152 mm (6 inches) threshold used to define
‘droughty’ soils by the USDA (National Resource
Conservation Service 2014).)

Using these thresholds, for each county we
calculate the yield differences between pixels with
‘favorable” and ‘unfavorable’ soils, and the change in
these differences over time. Although the gSSURGO
data are far from perfect, for instance with obvious
discontinuities at county borders, any errors would
cause us to be overly conservative in assessing
yield impacts of soil factors as long as the errors
were uncorrelated with our vyield estimates. The
average within-county yield difference was positive in

all years for both maize and soybean (figure 6),
indicating unsurprisingly that yields are higher on the
better soils within each county. More surprising, we
find that within-county differences between high and
low NCCPI have been steadily growing for maize
(p < 0.01), but not for soybean. For maize, the
average yield difference between pixels in the top and
bottom 20% of NCCPI more than doubled from
roughly 0.5 ton ha~" in 2000 to over 1.0 ton ha—' by
2015. Results were similar for RZNAWS, though less
significant for maize (p =.17).

What factors are driving increased yield
heterogeneity?

Any proposed explanation for the observed increase in
yield heterogeneity should be consistent with the
above observations that (i) increases are evident both
within and between fields, (ii) the increases are much
more apparent in maize than in soybean and (iii)
maize yield differences between ‘poor’ and ‘good’ soils
appear to be growing over time. For example, we do
not consider errors in the SCYM estimates as a
plausible explanation, since any artifacts that are
changing over time (e.g. from scan-line gaps in

6
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Landsat 7 imagery) should be seen equally regardless
of crop or soil type. Two explanations seem
particularly likely, though it is difficult to determine
how much each contribute to the overall trends.

First, a major trend in recent years has been the
adoption of variable rate technologies (VRT), particu-
larly since 2010 (Erickson and Widmar 2015). These
techniques attempt to precisely distribute inputs such as
fertilizers and seeds throughout a field, rather than
applying them uniformly. VRTs are often input-neutral,
in that the total amount of inputs for a field changes very
little from prior practices, but with some parts of the
fields receiving much more inputs than other parts. If
better parts of a field are more responsive to inputs,
farmers adopting VRT will tend to increase inputs to the
better parts of their fields and reduce inputs in other
parts. In this way, adoption of VRT would tend to
exacerbate yield gradients within fields.

A second important trend that would lead to higher
heterogeneity is the continued increase in sowing
density. A significant driver of yield gains in maize over
the past decades has been the combination of stress-
tolerant hybrids and denser sowing (Tollenaar and Wu
1999, Duvick 2005), and high sowing density is known
to be most effective in raising yields under conditions of
ample soil water and nutrients and favorable (cooler)
temperatures (Ruffo et al 2015, Lobell et al2014, Duvick
2005). Thus, even if this management change was
applied uniformly by farmers, it would be expected to
result in increased yield heterogeneity.

A third potential explanation for rising heteroge-
neity could be that certain weather conditions that lead
to more heterogeneity have been changing over time.
To evaluate this explanation, we computed for each
county the correlation between YHq and two weather
measures known to be important for crop yields in the
region: total precipitation for June-August (RAIN),
and average daytime vapor pressure deficit during the
key month of July (VPD). Conditions of high VPD
and/or low RAIN are known to stress crops and reduce
yields (Lobell et al 2014). We find that these conditions
are also likely to increase YHp in most counties
(figure S3), with generally positive correlations between
YHo and VPD, and negative correlations between YHq
and RAIN. However, we also find that trends in these
conditions were typically small over the study period,
and as a result calculating trends in YHqy while
simultaneously accounting for both VPD and RAIN
has very little effect on the estimated trends in YHq
(figure S3). Thus, we conclude that weather trends have
been far less important than management changes in
driving increased heterogeneity.

The data available for the current study do not
allow us to discern the relative contribution of VRT
and sowing density to heterogeneity increases. Both of
these explanations are consistent with the criteria laid
out, as they both would affect heterogeneity within
fields, disproportionately affect better soils, and affect
maize more than soybean (Adoption of VRT is not
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reported by crop, but is anecdotally applied more to
maize than soybean. Soybean has not experienced the
same change in sowing density as maize (Lobell et al
2014).) Alternative explanations, such as changes in
management driven by crop prices or weed resistance,
appear less consistent with the criteria, but cannot be
ruled out with current datasets.

In either case, the growing difference between
yields on good and poor soils (figure 6) indicates that
maize yield gains since 2000 are coming dispropor-
tionately from better soils. This trend of ‘the rich
getting richer’” suggests that renewed effort is needed
for raising yields in more marginal conditions. At the
same time, the large and rising heterogeneity within
fields also indicates that the incentives for precision
agriculture (including VRTs as well as conversion of
parts of fields to perennials (Brandes et al 2016)) is
growing, because the economic and environmental
cost of managing the entire field as a single unit is
growing.

Conclusions

The combination of public Landsat imagery, cloud
computing platforms such as Google Earth Engine, and
robust algorithms such as SCYM present new oppor-
tunities for studying agricultural landscapes. Whereas
prior work has had to rely on county-level aggregates or
occasional datasets on field aggregates, it is now possible
to examine 16 years of sub-field heterogeneity across the
Corn Belt. The data used in this study were derived
entirely from public sources, and the approach could be
readily repeated in other regions. This is particularly
promising in light of the recent growth of the
microsatellite industry, which provides data capable
of resolving fields in the smallholder systems that
predominate in much of the world.

Among the insights gained from this new dataset,
two stand out as particularly noteworthy. One is that a
substantial fraction of overall yield heterogeneity
derives from within-field variation. This result under-
scores the importance of soil constraints in this region,
presumably because management skill or incentives
are not very heterogeneous across farms. Second, the
results indicate a significant increase in maize YH in
recent decades, with larger YH both within and
between fields. This trend reflects a preferential rate
of yield progress in favorable soil conditions, which
likely results both from the adoption of variable rate
technologies and the disproportionate benefit of
denser sowing on better soils. Whether yield progress
on better soils can continue to sustain aggregate yield
growth in the region (figure S1) remains to be seen. At
the same time, the rising benefit of employing tools of
precision agriculture combined with their declining
cost suggests the possibility of rapid improvements in
reducing mis-applications of inputs and associated
runoft and leaching of nutrients from agriculture.
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