
     

PAPER • OPEN ACCESS

Policies for agricultural nitrogen
management—trends, challenges and prospects
for improved efficiency in Denmark
To cite this article: Tommy Dalgaard et al 2014 Environ. Res. Lett. 9 115002

 

View the article online for updates and enhancements.

You may also like
The nitrogen footprint of Ukraine: why
personal consumption matters
Sergiy Medinets, Allison M Leach, Tetiana
Pavlik et al.

-

Reducing uncertainty in nitrogen budgets
for African livestock systems
M C Rufino, P Brandt, M Herrero et al.

-

Towards applying N balance as a
sustainability indicator for the US Corn
Belt: realistic achievable targets, spatio-
temporal variability and policy implications
S Sela, P B Woodbury, R Marjerison et al.

-

This content was downloaded from IP address 3.142.171.180 on 27/04/2024 at 03:17

https://doi.org/10.1088/1748-9326/9/11/115002
https://iopscience.iop.org/article/10.1088/1748-9326/ad1e7d
https://iopscience.iop.org/article/10.1088/1748-9326/ad1e7d
https://iopscience.iop.org/article/10.1088/1748-9326/9/10/105008
https://iopscience.iop.org/article/10.1088/1748-9326/9/10/105008
https://iopscience.iop.org/article/10.1088/1748-9326/ab1219
https://iopscience.iop.org/article/10.1088/1748-9326/ab1219
https://iopscience.iop.org/article/10.1088/1748-9326/ab1219
https://iopscience.iop.org/article/10.1088/1748-9326/ab1219
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjst-APElAVE2y9M5R_TQl2xQgJqcjRaecJ_irxJl9BCVykLUFD22iP3xEMfj9OORZysac_OpHFbBolWyybqd3REGa14XiKANrx9yP-LBNr81y6PhDcgOqXhizRswPrZhFJ8cf2c4G6MIXpCuyNK3S0Wlsxjc7UUGPeC6HIdlO6B8VLvlLRqZ2muV6c0X8AIeG2bkWb59XiS3kI7n_fO_zHLEk1E-VG_ImgXfQubPD3VJ9a2jAs6ZoVh7haxYlhEhrfKj6Bm_52HHt5gis107ONjeUsspieyZwtMzRBATVF8Wbk0riMYLBYLm9-1dvJ_pOXzq968iE66QWC6UaYOsPgRB2ABaRA&sig=Cg0ArKJSzC0atkK4JB-d&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/breath-biopsy-complete-guide/%3Futm_source%3Djbr%26utm_medium%3Dad-b%26utm_campaign%3Dbb-guide-bb-guide%26utm_term%3Djbr


Policies for agricultural nitrogen
management—trends, challenges and
prospects for improved efficiency in
Denmark

Tommy Dalgaard1, Birgitte Hansen2, Berit Hasler3, Ole Hertel3,
Nicholas J Hutchings1, Brian H Jacobsen4, Lars Stoumann Jensen5,
Brian Kronvang6, Jørgen E Olesen1, Jan K Schjørring5,
Ib Sillebak Kristensen1, Morten Graversgaard1, Mette Termansen3 and
Henrik Vejre7

1Aarhus University, Department of Agroecology. Blichers Allé 20, DK-8830 Tjele, Denmark
2Geological Survey of Denmark & Greenland—GEUS. Lyseng Allé 1, DK-8270 Højbjerg, Denmark
3Aarhus University, Department of Environmental Sciences, Frederiksborgvej 399, DK-4000 Roskilde,
Denmark
4University of Copenhagen, Department of Food and Resource Economics. Rolighedsvej 25, DK-1870
Frederiksberg C, Denmark
5University of Copenhagen, Department of Plant and Environmental Sciences. Thorvaldsensvej 40,
DK-1871 Frederiksberg C, Denmark
6Aarhus University, Department of Bioscience.Vejlsøvej 25, DK-8600 Silkeborg, Denmark
7University of Copenhagen, Department of Geosciences and Natural Resource Management. Rolighedsvej
23, DK-1858 Frederiksberg C, Denmark

E-mail: tommy.dalgaard@agro.au.dk

Received 31 July 2014, revised 8 September 2014
Accepted for publication 24 September 2014
Published 3 November 2014

Abstract
With more than 60% of the land farmed, with vulnerable freshwater and marine environments,
and with one of the most intensive, export-oriented livestock sectors in the world, the nitrogen
(N) pollution pressure from Danish agriculture is severe. Consequently, a series of policy action
plans have been implemented since the mid 1980s with significant effects on the surplus,
efficiency and environmental loadings of N. This paper reviews the policies and actions taken
and their ability to mitigate effects of reactive N (Nr) while maintaining agricultural production.
In summary, the average N-surplus has been reduced from approximately 170 kg N ha−1 yr−1 to
below 100 kg N ha−1 yr−1 during the past 30 yrs, while the overall N-efficiency for the
agricultural sector (crop + livestock farming) has increased from around 20–30% to 40–45%, the
N-leaching from the field root zone has been halved, and N losses to the aquatic and atmospheric
environment have been significantly reduced. This has been achieved through a combination of
approaches and measures (ranging from command and control legislation, over market-based
regulation and governmental expenditure to information and voluntary action), with specific
measures addressing the whole N cascade, in order to improve the quality of ground- and surface
waters, and to reduce the deposition to terrestrial natural ecosystems. However, there is still a
major challenge in complying with the EU Water Framework and Habitats Directives, calling for
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new approaches, measures and technologies to mitigate agricultural N losses and control
N flows.

Keywords: Denmark, nitrogen management, nitrogen policy development, nitrogen surplus,
nitrogen use efficiency, reactive nitrogen, regulation

1. Introduction

In contemporary political debates it is often argued that the
development of a green economy, with high levels of envir-
onmental protection, and the promotion of low-emission
production chains, is an efficient pathway to sustainable
economic growth (Carter 2007, The Commission on Nature
and Agriculture 2013). In line with this it is argued that
environmental protection and pollution mitigation are com-
patible with the benefits of economic growth, and that the
costs are less than the environmental and resource costs of not
protecting the environment resources (Stern 2007,
OECD 2011, Jacobs 2013). This perspective implies that
green growth can be promoted through correcting for envir-
onmental market failures, not only by market based incen-
tives, but also by regulation that requires minimum efficiency
standards. This may be particularly relevant for agriculture
and the related bio-based production sectors (Parajuli
et al 2014), where OECD (2011) emphasizes that ‘an
understanding of how growth occurs (production methods) is
at least as important as how much growth takes place’.

Sustainable production methods imply a focus on all
aspects of the agricultural production (Gu et al 2011). This
paper deals with nitrogen (N) as a critical nutrient in agri-
culture. With N being central both as an input factor affecting
agricultural production and as a critical component for pol-
lution of the aquatic, marine, terrestrial and atmospheric
environments (Sutton et al 2011), N policy and regulation is
crucial for a sustainable production.

Denmark is here taken as an example of how concerns
for agricultural production can be balanced against environ-
mental protection concerns. It is one of the most intensively
farmed regions in the world, where more than 60% of its land
surface is used for agriculture, it has a food export that is
more than twice the national consumption (FAO 2014), and
has one of the most well-developed environmental regulation
systems in the world (van Grinsven et al 2012).

For centuries, Denmark has been a major food supplier to
the neighbouring countries, first with live steers to Germany
and surplus cereals to Norway, and subsequently with butter
and bacon to Britain and other overseas countries, following
the introduction of cooperative dairy and slaughterhouses in
the late 1800s (Bjørn 191748-9326, Odgaard and
Rømer 2009). Initially the food production surplus was driven
by biologically fixed N inputs from grass-clover and pulses
(Kjaergaard 1994, Dalgaard and Kyllingsbæk 2003) and a
significant expansion of the proportion of land ploughed
(Dam and Jakobsen 2008). However, the largest expansion in
the food production took place after world war II, and was
driven by synthetic N-fertilizer inputs, increasing from
15 kg N ha−1 agricultural land in 1945 to 143 kg N ha−1 when
it peaked in 1983 (Dalgaard and Kyllingsbæk 2003, Dalgaard

et al 2009), and falling to the 74 kg N ha−1 it is today (Sta-
tistics Denmark 2012).

The expansion of agricultural N inputs after world war II
gradually led to a parallel increase in agricultural N surpluses,
and significantly increased N leaching to groundwater (Han-
sen et al 2011). With more than 60% of the land farmed and a
7500 km long coastline with shallow estuaries and coastal
waters, this has resulted in severe environmental problems,
and according to the EU Nitrate Directive Denmark has
designated the whole territory as nitrate vulnerable. Increas-
ing groundwater nitrate concentrations exacerbated the pro-
blems since the drinking water supply in Denmark is almost
100% groundwater based and, consequently, approximately
15% of the land was designated as nitrate vulnerable
abstraction areas in 2005 (Hansen and Thorling 2008).

From 1985 and onwards the following series of political
action plans to mitigate losses of N and other nutrients were
implemented (updated from Dalgaard et al 2005, Kronvang
et al 2008, Mikkelsen et al 2010):

A. 1985 Action Plan on nitrogen, phosphorus and organic
matter (NPo)

B. 1987 Action Plan for the Aquatic Environment I (AP-I)
C. 1991 Action Plan for Sustainable Agriculture
D. 1998, 2000 Action Plan for the Aquatic Environment II

(AP-II)
E. 2001 Ammonia Action Plan
F. 2004 Action Plan for the Aquatic Environment III

(AP-III)
G. 2009 Green Growth Plan
H. 2011 Draft Plans for River Basin Management Plans

(RBMPs), implementing the EU Water Framework
Directive (WFD)

As a result of the early attention to marine pollution, the first
action plans were based on both national and international
political initiatives. Already in 1972 Denmark, France,
Iceland, Norway, Portugal, Spain, and Sweden signed the
Oslo Convention, prohibiting the direct dumping of harmful
substances at sea. After the inclusion of among others the
United Kingdom, The Netherlands and Germany, this treaty
was amended in 1981 and is today included in the OSPAR
(1992) ‘Convention for the Protection of the Marine
Environment of the North–East Atlantic’. The Danish action
plans have subsequently been used to implement the EU
Nitrates Directive of 1991 (The Council of the European
Communities 1991), and the WFD in year 2000 (The
European Parliament and the Council of the European
Union 2000). Moreover, at an international level the
ambitions of reducing nutrient loads to the environment are
also important parts of treaties in relation to the HELCOM
Baltic Marine Environment Protection Commission (The
Helsinki Commission 2008), The Marine Strategy Framework
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Directive (The European Parliament and the Council 2008),
and the from 1983 and onwards enforced UN Convention on
Long-range Transboundary Air Pollution (CLRTAP 1979,
Sutton et al 2014).

These initiatives and actions have led to significant
reductions in N surplus from Danish agriculture (figure 1).
The development in N surplus aligns well with the imple-
mentation of action plans and also with nitrate concentration
in groundwater.

The objective of the present paper is to review and dis-
cuss listed developments in N management and environ-
mental impacts in Denmark and the different types of policy
action, pinpointing trends, challenges and prospects for
improved future actions. We present a typology of the policy
actions and the related effects on N surplus and N efficiency.
Moreover, we assess the effects on the specific N loadings to
the environment with special emphasis on loadings to the
aquatic and atmospheric environments. Finally, we synthesize
and discuss the relevant N flows cascading from agriculture to
the environment, via stocks of N in soils, water, atmosphere
and biomass, and through the various oxidation steps of
reactive nitrogen (Nr); i.e., in the form of nitrate (NO3

−),
ammonia (NH4), nitrous oxide (N2O), nitrogen dioxide
(NO2), etc, with their impacts on nature and environment,
production, consumption, economic costs, benefits and public
health.

2. Materials and methods

2.1. Nitrogen data

Information on agricultural N inputs and outputs were col-
lected, with focus on the period from 1990 until today, but

also including longer time series back in time. In the analyses
of N flows and balances, we delineated the system boundary
to comprise the entire primary production of the Danish
agricultural sector, including cropland, livestock and grazing
lands, but excluding processing industry (slaughter houses,
flour mills etc). This means that inputs include chemical
fertilizers (all imported, since no national production), feed-
stuff (mainly imported concentrates) and urban and industrial
waste products used as soil amendments, but not animal
manures, which are entirely produced and recycled within the
agricultural sector, as no national export or import of animal
manures take place in Denmark (contrary to some other
European countries, e.g. The Netherlands). Outputs accounted
for include cash crops (cereals, seeds etc sold), milk, eggs,
meat and live animals exported, but not fodder crops pro-
duced and fed to animals within the agricultural sector.
National and regional data are collected from Statistics
Denmark (1968, 1969 and 1961–2012) and supplemented by
farm and field scale data available via the Danish Research
Register for Agriculture, FRJOR (2014), including geo-coded
information about all Danish livestock, manure and housing
systems, fertilizer use, standard yields and the crops grown on
all commercial farms.

Values for N fluxes into the environment are queried
from the National Monitoring and Assessment Programme for
the Aquatic and Terrestrial Environment (NOVANA),
including the discharge at 178 near-coast gauging stations
covering 57% of the entire land area of Denmark. Total
nitrogen (TN) concentrations are measured at 118 monitoring
stations based on discrete sampling at a frequency of 12–26
times per year (mean: 18 samples per year) (Windolf
et al 2011). The runoff and loading of TN from the ungauged
areas is then calculated utilizing a national model (DK-QN)
(Windolf et al 2011), and annual loads of TN from point
sources are provided from national databases under the
NOVANA programme (Jensen et al 2012).

Simultaneously, N depositions were monitored in the
form of wet depositions (bulk samplers) and dry depositions
estimated from measured ambient air concentrations and dry
deposition velocities determined on the basis of meteor-
ological data derived by MM5 model calculations performed
within the Danish THOR system (Ellermann et al 2010, 2012,
Brandt et al 2000). Depositions to water systems were esti-
mated as average values from the island based monitoring
stations, and assumed representative for marine conditions,
while terrestrial depositions are estimated as average values
from the land based monitoring stations. In the Danish
NOVANA programme, dry deposition of ammonia is fur-
thermore computed using the Danish Ammonia Modelling
System (DAMOS: Geels et al 2012, Hertel et al 2013) applied
on a routine basis to 129 selected nature areas around the
country and verified by comparisons to results from campaign
measurements (Sommer et al 2009). The DAMOS model
consists of a combination of the long-range transport model
Danish Eulerian Hemispheric Model (DEHM: Chris-
tensen 1997, Frohn et al 2001) and the local-scale plume
model OML-DEP (Hertel et al 2006, Sommer et al 2009). We
did not take account of bi-directional ammonia fluxes in the

Figure 1. Relation between the nitrogen (N) surplus from Danish
agriculture and the 5 yr moving average nitrate (NO3

−) concentrations
in Danish oxic groundwater samples (updated from Hansen
et al 2011). The vertical lines labelled A–H indicate the timing of the
series of major Danish action plans to reduce nitrogen pollution of
the aquatic or atmospheric environment (for further details, see text
and table 2).
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calculations, because deposition of local ammonia represents
less than a third of the nitrogen deposition on land (and less at
sea) and including bi-directional fluxes would only change
the results a few per cent, but would require much more
detailed input data. The present ammonia emission inventory
for Denmark is based on information at single farm level and
accounts for local agricultural practice that plays a significant
role for the temporal variation in emissions (Hertel
et al 2012). The inventory is based on information from the
above national databases (Nielsen et al 2011). A standardised
ammonia emission for each livestock farm and associated
fields is then estimated based on information on animal type/
number and type of crops. The final inventory includes: the
total annual ammonia emission from identified point sources
(farms, storages etc) in Denmark, and from area sources, i.e.,
field emissions from the growing of crops as well as emis-
sions resulting from the application of manure and mineral
fertilizer. The area sources are distributed in a 100 × 100 m
grid covering all of Denmark (Plejdrup and Gylden-
kaerne 2011), and the temporal variation in emission is
described by 15 additive functions reflecting different agri-
cultural activities and a 16th function describing the con-
tribution from traffic (Skjøth et al 2004). Examples of
emission distributions are presented in Geels et al (2012).

Data on nitrate concentrations in groundwater, from
certified professional laboratories, was queried from the
national Danish geological and hydrological database JUPI-
TER. A subgroup of 194 points in oxic groundwater, where
the groundwater recharge age has moreover been determined
using the chlorofluorocarbon (CFC) method, allows the
comparison of long-term changes in N surplus in agriculture
with changes in nitrate content of oxic groundwater (figure 1).
In addition, nitrate trend analyses in 152 individual mon-
itoring points were performed (figure 7, left), and 11 518
samples from 3757 oxic monitoring points, sampled from
1967−2011, were used to create a national overview (figure 7,
right). The CFC analyses were performed according to the
procedure of Laier (2005) and Hinsby et al (2008) as
described in Hansen et al (2011).

The national emissions of nitrous oxide were calculated
using the standard IPCC emission factor approach (Nielsen
et al 2013). These calculations use national inventories of N
in fertilizers and manures applied as well as N in various
types of manure storages and estimates of ammonia volatili-
zation and nitrate leaching.

Changes in soil organic matter content of agricultural
mineral soils was monitored by sampling in 1986, 1997 and
2009 in a Danish nationwide square grid net (7 × 7 km) and
analysed for soil organic carbon content (Taghizadeh-Toosi
et al 2014). Soils were sampled in three layers, 0–25 cm,
25–50 cm and 50–100 cm. The measured changes in soil
carbon content were converted to changes in soil N by
assuming a carbon to N ratio of 10 for the labile soil organic
matter (Thomsen et al 2008).

The costs of the measures implemented in previous
action plans are based on ex-post and ex-ante analyses made
from 2003 until today looking at the cost-efficiency of the

measures both before and after implementation (Jacobsen
2004, 2012b, Jacobsen et al 2004, Børgesen et al 2009).

2.2. A typology for nitrogen management policies

To analyse the trend in N management policies over years, the
major measures implemented in Denmark 1985–2014 are
listed and classified according to the following matrix
(table 1).

The first category, command and control (C&C), is the
classic regulation type, where a certain action or pollution
practice is forbidden by law, controlled by the authorities, and
fined if the law is violated. In contrast, the second category
marked-based regulation (MBR) includes all types of MBR
and governmental expenditure that directly affect the market
and thereby the economic optimum for production and hence
pollution. This category covers both: (i) market-based
instruments where the management and pollution behaviour
are regulated via market incentives, typically via a green tax
(for example N-taxation) under the polluter pays principle
(Carter 2007), (ii) other types of MBR (for example N quotas
combined with manure trading possibilities), and (iii) gov-
ernmental expenditure, that in the form of subsidies affects
the market in a similar way to taxes, but by encouragement
rather than inhibition. Governmental expenditure is not
necessarily under the polluter pays principle (for example,
most of the EU agri-environmental policy measures are under
this category, as they are designed to promote environmen-
tally friendly production practices, but financed by the EU
member states budgets and not via a specific farm tax; Buller
et al 2000). Finally, the remaining types of policy measures
are classified as information and voluntary action (IVA). This
includes knowledge production and communication of
information about more sustainable N-management practices
and technologies via research and extension services (which
may be subsidized), and actions by ‘individuals or organiza-
tions doing things to protect the environment that are neither
required by law nor encouraged by financial incentive’, and
which ‘the government can encourage through a range of
communicative strategies’ (Carter 2007).

The typology further distinguishes between general ver-
sus geographically targeted regulation, which is especially
relevant for N management policies, because both the risk of
N losses, the pressure of N load to the environment, and the
sensitivity of the environment depend strongly on local
geology, soil, climate and recipient ecosystems (Blicher-
Mathiesen et al 2014). ‘General regulation’ measures are
implemented equally in all parts of Denmark, whereas ‘geo-
graphically targeted regulation’ measures are implemented
differently (i.e. localized) depending on specific geographical
conditions (for instance, with different N regulations for dif-
ferent watersheds, and different regulations depending on the
sensitivity of the receiving environment to N losses, see
Jacobsen et al 2007).

Finally, the regulation type can be either N input based
(for example, regulation of fertilizer inputs) or N output based
(for example, maximum ammonia emissions to a defined
habitat area).
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2.3. Nitrogen surplus and efficiency

In line with OECD (2000), the main indicators used in the
present paper comprise N surplus and N use efficiency (NUE,
or just N-efficiency). As mentioned above, system boundary
comprises the entire primary production of the Danish agri-
cultural sector, including cropland, livestock and grazing
lands, and the N surplus and NUE. The agricultural N surplus
is defined as N input minus N output in agricultural products
from the agricultural sector (equation (1)), while N efficiency
is defined as N output in agricultural products per unit N input
(equation (2))

= −
≅ +

+ −

N surplus N input N output
N leaching NH emission

denitrification soil N change, (1)
3

− =N efficiency (N output) (N input). (2)

Annual values for N inputs and N outputs are derived
from national agricultural statistics (1968, 1969 and
1961–2012) according to Vinther and Olsen (2013) and
Kyllingsbæk (2000). N inputs include N in commercial fer-
tilizers and urban and industrial waste materials spread to the
fields, N in imported concentrate feedstuffs like soybean cake,
meat and bone meal (banned from year 2000), fodder urea,
fish products, etc, and N derived from the atmosphere. The
latter includes estimated values for net N deposition and
biological N fixation via legumes and free-living micro-
organisms. N outputs include N in: (i) animal products,
embracing eggs, milk, meat, live animals or livestock
received by offal destruction plants, and (ii) plant products in
the form of cereals for food products, straw for energy pur-
poses etc, seeds for manufacturing and sowing, beets for
sugar production, potatoes, and other fruits and vegetable
products.

N surplus can be used as a proxy for N losses from
farming, assuming no change in the soil N pool, and covers a
number of N loss components (see equation (1)). In general,
the largest N loss component is the leaching of nitrates
(Dalgaard et al 2011a). N leaching is of special importance in
relation to ground and surface water pollution. Other N loss
components are gaseous N (ammonia, di-nitrogen, nitrous
oxides etc) and particulate N (mainly organic matter). Some
of the surpluses may temporarily accumulate in farm product
stocks, as biomass or in soil organic matter, but over time and
as the soil system approaches steady state, N surplus and N

loss will converge, although this may take many decades or
even centuries. It must be noted that in the present paper N
surpluses and N efficiencies are calculated for the whole
Danish agricultural system and cannot be directly compared
with results calculated at other scales.

3. Results

3.1. Trends in nitrogen policies and management

The major N policy measures implemented in Denmark are
presented in table 2. C&C regulation was implemented first,
followed by a mix with MBRs including increased govern-
mental expenditures along with the more IVA based
measures.

From the beginning, all measures were implemented as
‘general regulation’, i.e., with equal norms and standards for
all parts of the country. The first exception to this was in 1990
with the implementation of environmentally sensitive areas
(ESAs) which was designated with the major aim to reduce N
pollution (MAFF 2004), and with EU co-financed subsidies
to reduce N-fertilization of grasslands (Buller et al 2000).
Originally, regional authorities were responsible for the des-
ignation of these areas. In this way they were geographically
targeted (but with the same fixed subsidy classes for the
whole country, and with subvention opportunities for farmers
living inside the designations), and for farmers it was
voluntary whether they signed up to the scheme or not.
Further geographical targeting was implemented in 1998 with
the AP-II agri-environmental subsidy schemes for (voluntary)
construction of wetlands and afforestation in designated areas.
Another initiative in 1998 was the initiation of the detailed
Danish groundwater mapping programme on approximately
40% of the land surface aiming at establishing site-specific
groundwater protections zones based on assessments of the
nitrate vulnerability of the aquifers (Thomsen et al 2004,
Hansen and Thorling 2008).

Until the AP-III in 2004 all regulation was carried out on
the input side. The first exception to this was the designation
of buffer zones set around ammonia sensitive habitats, fol-
lowed by special restrictions for emissions from new live-
stock buildings to designated nature areas. Even though the
1991 Nitrates Directive aimed to reduce the ‘end of pipe’
NO3

− concentration in leached water to below 50 mg L−1, the
regulation was implemented on the input side in the form of

Table 1. Typology for the classification of N policy measures. Each of the combinations could be either N input based (for example
regulation of mineral fertilizer inputs) or N output based (for example maximum ammonia emissions to a defined habitat area).

General regulation Geographically targeted regulation

Input based Output based Input based Output based

Command and control (C&C) X X X X
Market-based regulation and governmental
expenditure (MBR)

X X X X

Information and voluntary action (IVA) X X X X
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Table 2. The major N policy measures, implemented over the past 30 years with the Danish action plans (AP) in 1985 (NPo), 1987 (AP-I), 1991 (AP for a more sustainable agriculture), 1998 (AP-
II), 2001 (ammonia AP), 2004 (AP-III) and 2009 (Green Growth AP), classified into the table 1 policy typology. Localized measures represent the geographically targeted types of table 1, and
brackets indicate that the measures fit only partly to the typology class. Until more recently, nearly all regulations focused on the N input side, but from 2004 and onwards output-based regulation
also appears.

Year N measures imposed:
C&C: command and

control
MBR: market-based regulation and gov-

ernmental expenditure
IVA: information and volun-

tary action

1985 Max. stock density. X — —

Mandatory slurry tank floating barriers. X — —

No runoff from silage clamps and manure heaps. X — —

Min. slurry capacity and ban on winter spreading of slurry for spring crops
(including subsidies to invest in slurry tanks etc).

X (X) —

1987 Mandatory fertilizer and crop rotation plans. X — —

Min. proportion of area with winter crops. X — —

Mandatory manure application within 12 h. X — —

1991 Statutory norms for manure N utilization. X — —

Max N applied to crops equalling economic optimum. X (X) —

Subsidies to low-N grasslands in environmentally sensitive areas. — (X) (localized) (X)
1998 Max. N applied 10% below economic optimum. X (X) —

6% obligatory catch crops. X — —

Subsidies to more organic farming, wetlands, extensification and
afforestation.

— X (localized) (X)

2001 Promotion of low excretion livestock feeding. — — X
2004 More catch crops. X — —

Tightened ammonia restriction (e.g. broadcasting banned), and special
restrictions near sensitive nature areas.

X (localized) (output-
based)

— X

Subsidies to promote better manure handling and animal housing (BAT). — X X
2009 Buffer zones around streams, lakes and NH4 sensitive habitats. localized (output-based) — —

Tax on mineral P in feed. — X —

Max. N applied ≈15% below economic optimum. X (X) —

Optimized feed practice promotion. — — X
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restrictions on the livestock density and manure applied to the
fields (van Grinsven et al 2012). It was found that the direct
N-effect of reduced livestock density was low, but it has
helped to avoid very high livestock intensity resulting in
national or regional nutrient surplus, as found in The Neth-
erlands, Belgium (Flanders) and parts of France (Brittany).
The key measures in Action Plan II were a higher required
fertilizer equivalency of animal manure N, and reduced stat-
utory fertilization N-norms (Jacobsen 2004).

In the future, and in particular with the further imple-
mentation of the EU WFD, this regime is expected to change
dramatically, requiring both new types of regulation sup-
ported by considerable research and development to make the
measures more geographically specific (The Commission on
Nature and Agriculture 2013).

3.2. Trends in nitrogen surplus and efficiency

In this study, we analyse the overall N use efficiency of the
entire agricultural sector per se, and have not intended to
analyse NUE of agricultural subsystems, like crop or live-
stock production, separately. Overall agricultural N balances
will be a key determinant for environmental impacts, and in
that sense, temporal trends and dynamics in N surplus and
NUE for the agricultural sector will be better linked to the
environmental N indicators, like aquatic environment N
levels, which we compare against in the paper. The drawback
is, that the NUE becomes dependent on the specific Danish
ratio of livestock to crop production, which makes it difficult
to compare against other countries with a different ratio, but
has the advantage that national registry data can be utilized to
a much larger extent for the inventory.

When the development in total agricultural N inputs and
N outputs in products is calculated (figure 2) it is clear that
especially the input of N to the agricultural sector has been
reduced since the implementation of the action plans (from
662 Gg N when it peaked in 1983 to 448 Gg N in 2012). Seen
over the period from 1990 to 2010, the N input was reduced
by 34%, mainly through reduction in the application of syn-
thetic fertilizer N, while the N output in products was only
reduced by 15% in the same period and, consequently, the
total N surplus was reduced by 45%, from 437 Gg to 241 Gg.

This means that over the past 25 years the average N
surplus has been reduced from approximately
170 kg N ha−1 yr−1 to below 100 kg N ha−1 yr−1 for agri-
cultural, while the overall NUE for the agricultural sector has
increased from around 20–30% to 43% (figure 2). However, it
is worth noting that this increase in NUE appeared after a
period where the NUE was reduced from 30% in 1950 to
below 20% in 1983—its lowest ever level. However, it is fair
to say that the present NUE of more than 40% is high, con-
sidering the high level of animal production in Danish agri-
culture (Denmark is one of the world’s largest exporters of
animal products, and the export of animal products grew by
39% from 33 kg N ha−1 in 1990 to 46 kg N ha−1 agricultural
land in 2010). It is true that during the two world wars the
NUE was even higher (peaking at around 60% during WW1
from 1914 to 1918, and 40% during WW2 from 1939 to
1945), but this represents an unsustainable situation caused by
a severe shortage of fertilizer inputs (represented by the drop
in N-inputs on figure 2, left), and a similar drop in the pro-
duction of plant products (Dalgaard and Kyllingsbæk 2003).

N input to crop production in the form of imported fer-
tilizers and atmospheric N from biological N-fixation and
deposition has been reduced from the mid 1980s (figure 3),
with an important turning point when the import of synthetic
fertilizers peaked in 1983 with 143 kg N ha−1 and a total N
input from fertilizers and the atmosphere of 162 kg N ha−1

agricultural land. However, the total N input from fertilizers
and atmosphere did not peak until 1989 with 169 kg N ha−1

(142 kg N ha−1 from fertilizers and 27 kg N ha−1 from atmo-
spheric fixation and deposition), but was reduced by 50%
over the period 1990–2010. Over the same period the import
of feed was sustained (equal figures of 71 kg N ha−1 in both
1990 and 2010), whereas the N output in the form of plant
products was halved from 48 kg N ha−1 to 24 kg N ha−1, and
the animal production as mentioned above increased by 39%.
It must be noted that there are a large annual variation,
especially in the plant production figures, but overall it must
be assumed that the decreased output of grain cereals and
other plant products was primarily caused by an increased use
of domestically harvested plant products for livestock feed, so
that these do not appear as product outputs in the inventory.
Simultaneously, a smaller decrease in domestically harvested

Figure 2. (a) Total sum of N inputs to and sum of N output in products from Danish agriculture, and (b) overall nitrogen use efficiency
(N-efficiency) for Danish agriculture over the period 1900–2012. For definitions, see equations (1) and (2).
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N was observed by Blicher-Mathiesen et al (2013), from
128 kg N ha−1 harvested in 1990 to 107 kg N ha−1 harvested
in 2010, among other things because of a changed
cropping pattern, crop use and the overall reduced N-fertili-
zation level.

3.3. Nitrate leaching and emissions to the aquatic environment

The dominant source of TN loadings to coastal waters in
Denmark is agriculture, which based on calculations for the
period 2007–11 contributed 70% of the TN loadings, fol-
lowed by background losses (21%), and emissions from point
sources (9%) (Nielsen et al 2011, Windolf et al 2011).

The water runoff from Denmark to coastal waters showed
large inter-annual variations during the period 1990–2012,
with the driest year being 1996 and the wettest 1994 (figure 4,
top). A similar pattern can be seen for the TN loadings to
Danish coastal waters showing the lowest and highest values
in the same two years (figure 4, bottom). The TN loading
from all sources to coastal waters has decreased from an
average of ca. 100 Gg N in the period 1990–94 to ca. 59 Gg N
in 2012 (figure 4, centre). The export coefficient of TN from
the entire Danish terrestrial area thus decreased from
23.3 kg N ha−1 to 13.7 kg N ha−1 during these two periods
(41%). The point source contribution to TN loadings in
Denmark has decreased significantly due to improved treat-
ment of especially urban wastewater during the period
1990–2012 (figure 4, mid). The emission from all point
sources amounted to an average of 19.6 Gg N during the
period 1990–4 and had in 2012 been reduced to 5.7 Gg N,
corresponding to a reduction of 71% (Wiberg-Larsen
et al 2013). The flow weighted concentration of TN shows a
decline from an average of 7.1 mg N L−1 in 1990–4 to
3.9 mg N L−1 in 2012 (46%). Most of the reduction in TN
loadings to coastal waters shown in figure 4 is derived from a
reduction of TN emissions from diffuse sources, mainly
agricultural sources.

3.4. Atmospheric ammonia volatilisation and deposition

Deposition of atmospheric N to Danish terrestrial areas varies
significantly between different parts of the country (figure 5)
but also very locally due to differences in local agricultural
production and the type and roughness of the surface.

Figure 3. Developments in the form of net N inputs to and net product N outputs from Danish Agriculture, average per hectare agricultural
land. Inputs include livestock feed (i.e. imported concentrates), plant fertilizers (imported since no Danish fertilizer production) and
atmospheric N inputs (deposited + biologically fixed), and N outputs include animal products (i.e. milk, egg, meat) and cash crop products
(sold from the agricultural sector, so not including fodder products utilized for livestock feed).

Figure 4. Annual total volume of runoff (top), annual total N loading
(centre), and annual flow-weighted total N concentration in Danish
surface water outflow to the sea (bottom). (Based on Wiberg-Larsen
et al 2013).
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For 2012, the atmospheric deposition of ammonia was
found to vary from 0.5 to 15 kg N ha−1 yr−1 (figure 5, left),
and total N deposition from 8 to 23 kg N ha−1 yr−1 (figure 5,
right). Total atmospheric N deposition to Danish terrestrial
areas has been calculated at 60 Gg for 2012 (Ellermann
et al 2013). This gives an average annual deposition of
14 kg N ha−1 yr−1, which is an N input above the critical loads
for many of the sensitive ecosystems in Denmark (Hertel
et al 2013). The deposition varies over the country due to a
general South–North gradient in concentration contributions
from long-range transport from source areas in Central Eur-
ope, but also due to local differences in ammonia emissions
over Denmark and to differences in precipitation. The largest
depositions are thus found in Southwestern Denmark where
the livestock production is high and so is precipitation.
Uncertainties on the model calculations are estimated to be up
to ±40% for the averages in the grid cells. This uncertainty
has been derived from comparisons with measurements from
the routine monitoring stations in Denmark. Generally an
integrated monitoring approach is applied where models and
measurements are used in combination (Hertel et al 2006).

In comparison, the total annual atmospheric N deposition
to Danish marine waters has been calculated at 81 Gg N,
which gives an average deposition of 7.7 kg N ha−1 yr−1 in
2012 (the area of Danish marine waters measures
105 000 km2) (Ellermann et al 2013).

Both measurements and model calculations show a
decrease in deposition to Danish land surfaces of about 25%
over the time period from 1989 to 2009 (figure 6, top), and a
decrease of about 20% in depositions to water surfaces
(figure 6, bottom), with an apparent continuous downward
trend in the measured depositions over the whole period
1989–2012. The displayed series of DEHM modelled
depositions are on a 17 × 17 km resolution (Christensen 1997,
Frohn et al 2001), and are about 20% overestimated for the
land surfaces and about 10% overestimated for the water
surfaces. Nevertheless, the modelled depositions reproduce

well the development over the years. This indicates that the
emission inventories reflect the actual development and that
the model responds correctly to the development. Better
agreement has been found when DAMOS has been applied

Figure 5. The deposition of atmospheric ammonia (left) and total atmospheric nitrogen (right) computed for 2012 in kg N ha−1 yr−1. The
displayed data represent the average deposition for the grid cells. Deposition rates vary for different surface types and in the displayed data
this is handled by weighting depositions according to the fraction covered by each surface type. Grid cells are 6 km× 6 km, except for the
outer part of the domain where the resolution is 17 × 17 km. (Based on results from JH Christensen, Aarhus University, and Ellermann
et al 2013).

Figure 6. Development in measured and modelled atmospheric N
depositions to land surfaces (top) and water surfaces (bottom) during
the time period 1989–2012 (modelled only shown up to 2009).
‘Measured’ deposition is constructed from measured wet deposition
(bulk samplers) and dry deposition velocities applied to measured
ambient air concentrations of gaseous and particulate nitrogen
compounds. Part of this data has previously been depicted in
Ellermann et al (2010).
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and the OML-DEP model has calculated depositions in a
400 × 400 m resolution (Sommer et al 2009, Geels et al 2012,
Hertel et al 2012), but such simulations cannot be made for
the entire 20 yr, national time series.

In total, about 97% of the present Danish NH3 emissions
originate directly from agriculture and only 3% from non-
agricultural sources (with 80 of the 97% from manure man-
agement, 9% from other soil based activities, and 8% from
other agricultural activities). In contrast, the Danish emissions
of NOx primarily originates from other industries, and only
indirectly from agriculture (with about 47% from the transport
sector, 21% from energy industries, 19% from non-industrial
combustion and the remaining 13% from manufacturing
industries, construction and other types of activities. The
agricultural N policies shown in table 2 have primarily
affected the ammonia-based emissions (and depositions), and
thus only a minor part of the total depositions in figure 5.
However, in the livestock-intensive country of Denmark these
lower emissions from agriculture have contributed sig-
nificantly to reducing total N depositions; and for local
depositions to sensitive nature areas the effects of agricultural
N mitigation measures have been particular decisive.

The ammonia emission from agriculture has been
reduced from 97 Gg NH3 in 1990 to around 66 Gg in NH3

(more than 30%), when looking at the total NH3 emission as
included in the NEC directive reporting (Nielsen et al 2013b).
This reduction has been possible both as a side effect of the
measures to reduce N-losses to the aquatic environment and
because of a trend to implement new technologies. The
technology change has been widespread and this has also
meant that the cost of increasing utillization and lower NH3

emission has been relative low as the technologies were easy
available (Jacobsen 2012c).

3.5. N in groundwater

Nitrate has been found in the oxic part of the groundwater
throughout Denmark, with large geographical variations, and
a tendency for higher concentrations on the sandy soils in
Western Denmark, and in areas with a high livestock density
(figure 7, right, Hansen et al 2012). Data from the

Groundwater Monitoring Programme (191748-9326–2009)
show that the nitrate concentration of 25 mg L−1 is exceeded
at approximately 79% of the oxic monitoring points, and the
groundwater and drinking water standard of 50 mg L−1 is
exceeded in approximately 48%. Since the 1980s the overall
national upward trend of the nitrate concentrations in oxic
groundwater has been reversed. In addition there is a ten-
dency for the frequency of very high nitrate concentrations in
oxic groundwater to decline. Locally, nitrate trend analyses in
monitoring wells have shown a complex pattern with both
upward and downward nitrate trends depending on the age of
the groundwater and local agro-hydro-geochemical condi-
tions (figure 7, left; Hansen et al 2012). Therefore site-spe-
cific groundwater mapping and protection plans are being
carried out in order to further protect drinking water resources
from nitrate pollution.

3.6. Nitrous oxide emissions

According to the national inventory of greenhouse gas
emissions, N2O emissions were reduced from 17.1 Gg N in
1990 to 11.2 Gg N in 2011. About half of the estimated
emissions originate from soil following application of ferti-
lizers and manure, whereas the other emissions come from
manure storages and indirect emissions from volatilized
ammonia and leaching of nitrates. The reduction in fertilizer
use and in losses of N therefore contributed to the reduction in
estimated N2O emissions. It should be noted that the emission
factors applied generally is slightly higher than found in
experimental studies in Denmark (Chirinda et al 2010, Rees
et al 2013).

3.7. Changes in soil carbon

The average soil organic carbon stock in 0–100 cm of Danish
agricultural mineral soils was 137Mg C ha−1, which assum-
ing a C : N ratio of 10 corresponds to 13.7Mg N ha−1

(Taghizadeh-Toosi et al 2014). The changes in soil organic
matter over the period from 1986 to 2009 varied between soil
types, most likely linked to different land use and manage-
ment. Loamy soils dominated by cereal crops lost soil organic

Figure 7. Left: three age groups of upward and downward nitrate trends in oxic groundwater at 152 CFC-dated groundwater measuring
points. Right: interpolated map of the nitrate concentration in the Danish oxidized groundwater based on 3757 analyses performed from
1967−2010. Average values from each measuring point are used in the interpolation (based on results from Hansen et al 2012).
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matter from the entire soil profile to 100 cm depth corre-
sponding to annual N loss of 124 kg N ha−1, whereas sandy
soils gained N at an average rate of 51 kg N ha−1. As an
average of all agricultural mineral soils, there was a small and
non-significant annual reduction of 20 kg N ha−1.

4. Discussion and conclusions

4.1. The development in N-measures and their effect

Some of the most effective Danish policy measures for N
mitigation have focused on a better utilization of N in man-
ures and lower fertilization N-norms (Grant and Waagepe-
tersen 2003, Børgesen et al 2009, 2013). This has been driven
by the implementation in Denmark of statutory norms for the
minimum utilization of N in organic fertilizers (figure 8),
combined with strict maximum limits for how much N (plant-
available N in organic as well as mineral fertilizers) can be
applied. This means that farmers must keep an account of
their N-application based on a state-defined norm system,
document their use of manure and mineral fertilizers in
mandatory fertilizer and crop rotation plans, and adhere to
prescribed minimum substitution rates of mineral fertilizers
with manure (Petersen and Sørensen 2008, MAFF 2013).

A central question is; why the C&C related measures
were implemented first—before the combination of more
MBR and IVA types of measures, and why they were so
effective? Especially for the manure related measures, a
central answer to this seems to be that it was simply eco-
nomically worthwhile for the farmers to comply with the new
restrictions, as the new technology was not too costly
(Jacobsen 2004). Already in the late 1970s the benefits of
better manure utilization was documented (Højmark and
Fogh 1977, Skriver 1978). Therefore the farmers’ associa-
tions from the very start supported the development, test and
implementation of new low-emission technologies for manure
management for application of via the extension services
(Skriver 1989). It can thus be argued that the C&C measures

in the first action plans were effectively combined with
farmers’ voluntary actions. However, according to table 2
these IVAs were not directly a part of the official measures
implemented, but may partly explain the reversing trend of N
surplus and nitrate in oxic groundwater before the first action
plan was implemented in 1985 (Hansen et al 2011). Such
IVA schemes should therefore arguably be more widely
supported (Petersen et al 2014). However, simultaneously it
should be mentioned that around 1985–90 the inter-farm
variation in manure N use efficiencies was very large (Grant
et al 1995), and that the C&C measures had a significant
effect, especially for farms with a low NUE and only little
response to voluntary action. Moreover, in Danish agriculture
the tax system and subsidies to restore housing and manure
systems are important for the investments in new and more
environmental friendly production systems (DLR 1990). This
has provided strong incentives for farmers to increase the
fertilizer value of manures, and development and imple-
mentation has continuously driven forward with the gradually
increasing regulatory pressure (table 2).

From 1991 and onwards, an N quota system was
implemented consisting of statutory norms for the N fertili-
zation of defined combinations of crops, soil types, climate
zones etc, and these norms were not to be exceeded for the
farm as a whole. This quota was initially calculated to tally
with the economically optimum N fertilization rate based on
data from a large number of annual N fertilizer response
experiments (Mikkelsen et al 2010). However, from 1998, the
N quota was as part of a political agreement in parliament
reduced below the economic optimum (initially 10% below
the optimum, currently around 15% below the optimum crop
N fertilization level in terms of production economy). This
sub-optimal N application regime has meant that farmers have
been very focused on utilizing their available N quota on the
crops which gives the highest economic return. The sub-
optimal N-quota means that higher utilization of N in e.g.
manure has a value which is higher than the price of mineral
N. This encourages the use of technologies that lead to a
higher utilization than the minimum requirements (figure 8)
e.g. through lower ammonia emissions. In this way, the reg-
ulations have affected both the production value and the
market for manure and for land to receive the manure. The
Danish legislation has prevented very high concentrations of
livestock by coupling livestock production with requirements
for agricultural land. In consequence, the N quota system has
not lead to much ‘on paper only’ re-distribution of manure, in
contrast to what has been a problem with for instance the
corresponding Dutch regulations. The Netherlands have
therefore found it necessary to monitor each truck load of
manure with GPS and to install official weighing stations,
which is fairly costly (Van der Straeten et al 2011), and also
in other countries as for instance Italy, France and Scotland
(Dalgaard et al 2012) high livestock concentration have led to
considerable hot spots for N-losses.

In summary, the N-measures have from the mid 1980s
until today (2012) helped reduce the N surplus by around
40% if measured per ha, or by more than 50% if measured by
kg N (because the agricultural area declined during the

Figure 8. Development of statutory norms for the minimum fertilizer
substitution rate for total-N in manure compared with N in synthetic
mineral N fertilizers (mainly ammonium-nitrate) in Denmark
(Petersen and Sørensen 2008).
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period). Over the same period, N-leaching from the root zone
has also been approximately halved (Grant and Waagepe-
tersen 2003, Dalgaard et al 2005, Børgesen et al 2009, 2013).
Although the N surplus was reduced by more than 50% from
1990 to 2011, the total N loadings to the aquatic environment
and the N-deposition from ammonia were reduced by less
(roughly 42% and 25%, respectively). This shows the need to
understand the relationships between the different N pools
and flows, including the denitrification of N, and the buffers
of N in biotic N pools (soils and biomass) as well as the
retention in ground- and surface water aquifers before it enters
the aquatic environment and the atmosphere. Modelling such
effects is outside the scope of the present paper but is an
integral part of the further work in the DNMARK (2014)
research alliance, where time-series for all relevant N flows
and stocks will be calculated for the period 1990–2010
(Hutchings et al 2014), and scenarios for selected N mitiga-
tions options will be modelled and demonstrated (Dalgaard
et al 2014).

4.2. Socio-economy and public health

According to Jacobsen (2009, 2012a, 2012b) total annual
costs of the major Danish N action plans to date are roughly
€600 million. About €340 million of these annual costs relate
to the agricultural measures from AP-I onwards (table 3). The
rest primarily covers costs related to industry and sewage
treatment plants outside agriculture.

In general, measures were chosen partly on their N
mitigation cost-effectiveness, partly on other benefits which
politicians wanted to promote. A significant reason for the
success of the Danish policies is that, when designing the
policies, efforts have been taken to reduce the costs to
farmers. In summary, the most cost-effective measures in AP-
II have been the requirements for catch crops (obligatory % of
cropped area to be undersown by grass or other species, to
reduce N-leaching after main crop) and constructed wetlands,
increased utilization-efficiency for N in animal manures, and
improved feeding practices (lowering excretion of N in
manure). The least cost effective measures have been land set-
aside and increased area under grass, as well as the require-
ment for reduced animal density (Jacobsen 2009). Other
benefits besides N mitigation (such as biodiversity and

climate protection) are not included in the calculation, and
this is the main reason why area-related measures generally
have the lowest cost efficiency.

In recent assessments of the costs and benefits of N
regulation in agriculture, Andersen et al (2013) found that
large economic benefits are related to drinking water health
impacts, rather than to improvements in surface water quality
as such. Nitrate in drinking water has been suspected of
negatively affecting human health, for example by causing
cancer (Schullehner and Hansen 2014) although no clear
evidence has as yet been found (Jensen 1982, De Roos
et al 2003, Ward et al 2005). An assessment of social costs of
the health effect (in this case colon cancer) due to nitrate in
drinking water in 11 EU member states, estimated that Den-
mark had the largest percentage of the population (16.2%)
exposed to elevated nitrate concentrations (>25 mg L−1) (van
Grinsven et al 2010). The social costs associated with the loss
of healthy life years were at 6.6 euro per capita—more than
twice the average of the 11 EU member states assessed.
However, a new assessment by Schullehner and Hansen
(2014) reveals that only approximately 5.1% of the Danish
population was exposed to nitrate concentrations >25 mg L−1

in 2012, and further investigations on the actual health effects
are needed.

As expected, the N measures related to agriculture have,
over time, become gradually more expensive per kg reduced
N loss. The current costs are around €3–4 per kg N lost to the
environment, and the lower crop yields caused by N fertili-
zation below the economic optimum has over time led to
higher costs than estimated in 2004. New solutions to meet
the requirements in the EU Habitats Directive, the Marine
Strategy Framework Directive and the WFD are therefore
called for. The vision for future regulation is to be able to
implement measures where the N mitigation benefit is the
highest, and allow for increased production elsewhere, i.e. on
arable land with higher N retention capacity. The Danish N-
policies have so far been national and input based. However,
the WFD requires local and output-based approaches with
management at the river basin scale, analyses of cost-effec-
tiveness, and measures targeted where the effect is the high-
est, calling for a new regulation regime. However, more
targeted regulation requires more detailed data, there will be
more uncertainty in the effects estimated, and some measures

Table 3. Estimated costs of agricultural measures in the different N action plans (APs) and the first version of the River Basin Management
Plans (RBMP) of the EU Water Framework Directive to reduce N losses from agriculture (Jacobsen et al 2004,
Jacobsen 2009, 2012a, 2012b). The administrative costs are not included.

Ex-ante costs (mill. € yr−1) Ex-post costs (mill. € yr−1)

AP-I for the aquatic environment (1987) 84 Not calculated
AP for a more sustainable agriculture (1991) 134 Not calculated
AP-II (1998–2003) 92 70
AP-III (2004–2015) 22 21
Green Growth AP and RBMP 1.0 (2011) 41 48a

Total 340 NA

a

Of the €48 million total costs the agricultural sector pays €18 million and the public sector including EU €30 million
annually. The plan has been altered in 2014 and so a re-estimation of the costs has not been carried out yet. The costs for
the agricultural sector of RBMP 1.0 are likely to be lower as some measures are dropped (e.g. targeted catch crops).
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might be placed in the wrong place. Therefore, knowledge
about the uncertainty related to the estimates is important
(Refsgaard et al 2014), and the choice of modelling and
monitoring framework will be critical for the identification of
sensitive (high risk of N loss) and robust (high capacity for N
retention) areas in regard to nitrate vulnerability of surface
waters. Regardless of whether empirical or mechanistic
models are applied for estimating the effect of specific mea-
sures, combination with output monitoring (e.g. drainage
water monitoring of N concentrations) are likely to produce
the most reliable guidance Furthermore, experiences on how
to better integrate the different types of regulation in table 2,
with a more localized and output based approach, will also be
important.

Over the coming years (2014–7) pilot studies of the
implementation of new, local RBMPs will be carried out in
selected pilot areas in connection to the DNMARK (2014)
research alliance. It is expected that these studies can help
drive N-regulation towards more output based and localized
regulation, facilitate better N-management, and overall
improve the cost-effectiveness and mitigation effect. Over the
past 30 yrs the table 2 mix of policy measures has helped to
increase the overall NUE from 20–30% to around 40–45%.
According to Dalgaard et al (2011b), it should be possible to
continue this development in the coming decades, but this
will require a continuous implementation of new technologies
and management practices. The pilot areas can be used to
demonstrate this and facilitate the locally-adapted actions
needed for farmers to comply with policy requirements
without incurring excessive costs. In this way we hope to
develop a greener economy and develop solution scenarios
for the further sustainable management of N.

4.3. Overall conclusion

Losses of N from Danish agriculture have been reduced
significantly over the last three decades through regulation
that obliges all farmers to consider manure and fertilizer as a
valuable resource. However, further reductions are required,
especially to comply with the EU WFD. Applications of N to
crops are now well below the economic optimum and a fur-
ther general reduction of N supply to crops would be very
expensive. A change of paradigm is therefore planned, with
severe restrictions placed on applications to land vulnerable to
nitrate leaching to the aquatic environment and a potential
easing of restrictions in other areas. The lesson for other
countries is that general regulation can be usefully applied to
control widespread excessive applications of N but that once
this has been achieved, and if further reductions are neces-
sary, a switch to more spatially targeted measures is required.
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