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Abstract
An understanding of the role of hydro-climatic and geographic regimes on regional actual
evapotranspiration (AET) change is essential to improving our knowledge on predicting water
availability in a changing climate. This study investigates the relationship between AET
change for a 60 year period (1951–2010) and the runoff sensitivity in 255 undisturbed
catchments over the US. The runoff sensitivity to climate change is simply defined as the
relative magnitude between runoff and precipitation changes with time. Runoff sensitivity can
readily explain the conflicting directions of AET changes under similar precipitation change.
Under increasing precipitation, AET decreases when runoff is increasing more rapidly than
precipitation based on the water balance. Conversely, AET increases when runoff is
decreasing more rapidly than precipitation. This result indicates that runoff sensitivity to
climate change is a key factor for understanding regional water availability change at the
catchment scale. In addition, a stepwise multiple regression analysis and a geographically
weighted regression analysis show that the portion of evergreen forest and the mean elevation
of a catchment may play a secondary role in the spatial pattern of the AET change, and the
relative importance of such explanatory variables may change over space.

Keywords: actual evapotranspiration, runoff sensitivity, water availability, geographically
weighted regression
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1. Introduction

Understanding a change in regional water availability in
a warming world is a global challenge for supporting
sustainable human society and ecosystem services (Barnett

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

et al 2005, Milly et al 2005). Intensification of the hydrologic
cycle with global warming resulting from the increased
concentration of CO2 may alter precipitation patterns and
terrestrial evaporation and transpiration processes, potentially
threatening water security (Ohmura and Wild 2002, Bates
et al 2008, Huntington 2006, Shi et al 2013, Guimberteau
et al 2013). Recent studies attempted to explain historical
AET changes based on direct and indirect indicators such
as pan evaporation (Brutsaert and Parlange 1998, Roderick
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and Farquhar 2002), precipitation (Hobbins et al 2004), solar
radiation (Teuling et al 2009, Wild et al 2005), and soil
moisture (Jung et al 2010). The complementary relationship
between apparent potential evaporation (e.g. pan evaporation)
and terrestrial AET led to the observed decrease in pan
evaporation during the second half of the 20th century,
a significant indication of increased terrestrial AET in
water-limited regions (Brutsaert and Parlange 1998, Roderick
and Farquhar 2002, Golubev et al 2001, Brutsaert 2006).

The main driver of AET dynamics in the land–water
cycle can vary regionally (Zhang et al 2001). In Europe,
solar radiation is much more important in explaining AET
change than precipitation, while in central North America,
precipitation change is more important than solar radiation
change for 1986–1995 (Teuling et al 2009). Although
increased solar radiation has been reported since the 1980s
in the US (Wild et al 2005), there is no significant relation
between AET and solar radiation (Teuling et al 2009). In
the US increased precipitation since the 1950s (Groisman
et al 2004) probably made more soil moisture available for
evaporation, which resulted in increased AET. Some evidence
supports the hypothesis of increased AET in large US river
basins (Walter et al 2004, Milly and Dunne 2001). However,
the change of AET under climate change and land cover
change and its implications to the regional hydrologic cycle
still remain unclear at the catchment scale.

This study investigates historical AET trends over the
conterminous US and its relation with regional runoff
sensitivity and catchment characteristics. We seek to explain
different spatial patterns in AET changes at the catchment
scale using a simple water balance equation and graphical
representation. In addition, we explore the effect of static
regional variables on AET trends and how the relation
between AET trends and these explanatory variables might
vary over space. To do this, we employ a multiple
regression analysis to identify the significant main drivers
and a geographically weighted regression (GWR) model to
investigate spatial dependency and spatial autocorrelation in
the AET trend.

2. Materials and methods

A region’s AET, if undisturbed by anthropogenic activities,
can be estimated by a simple water budget as precipitation (P)
minus runoff (Q) (equation (1)). The storage term fluctuations
in soil infiltration and deep percolation can be negligible over
an annual time scale (1S = 0 in equation (1)) (e.g., Zhang
et al 2001, Teuling et al 2009, Walter et al 2004, Milly and
Dunne 2001). Based on this assumption, equation (1) can be
expressed in terms of the changes over time (equation (2)).
The equation (2) explains that a runoff change with time
(∂Q/∂t) and a precipitation (or air temperature) change with
time (∂P/∂t) control AET change with time (∂AET/∂t). This
study considers runoff sensitivity as the relative magnitude
between runoff change with time (∂Q/∂t) and precipitation
(or air temperature) change with time (∂P/∂t). Thus, high
runoff sensitivity indicates that the long-term linear trend of

Figure 1. Linear trends in (A) annual AET and (B) annual
precipitation for water years 1951–2010 (n = 60) for 255
undisturbed basins in the continental US. The non-parametric
Mann–Kendall trend test is used to evaluate the statistical
significance of the trends (P < 0.05).

annual runoff (∂Q/∂t) is steeper (greater absolute value) than
annual precipitation (∂P/∂t) (or air temperature).

P = Q+ AET+1S (1)

∂AET/∂t = ∂P/∂t − ∂Q/∂t. (2)

Annual AET was calculated as annual precipitation (mm)
minus annual runoff (mm) for 255 catchments (see figure 1) in
the conterminous US for water years (1 October–30 Septem-
ber) 1951–2010 (n = 60). The 255 USGS streamflow gauging
stations were selected based on a criteria of having 60 water
years of complete daily streamflow records from 2057 stream-
flow sites having unregulated catchments accessed from
Geospatial Attributes of Gages for Evaluating Streamflow,
version II (GAGES II, http://water.usgs.gov/GIS/metadata/
usgswrd/XML/gagesII Sept2011.xml) (Falcone 2011). In the
US during the last 50 years increasing irrigation has
significantly affected AET change (Guimberteau et al 2012).
To minimize anthropogenic effects on AET changes we used
the 255 catchments with unimpaired flow conditions (no sig-
nificant diversions nor controlled by dams). The catchments
chosen represent a wide range of physiographic regions in
terms of climate, geology, soils, topography, and land use
across the conterminous US (see the supplementary table
available at stacks.iop.org/ERL/8/044002/mmedia). We cal-
culated annual runoff using daily streamflow data for 255 sites
obtained from the USGS National Water Information System
(http://waterdata.usgs.gov/nwis/sw). Monthly precipitation
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and maximum and minimum air temperatures from the
parameter-elevation regressions on independent slopes model
(PRISM) 4 km × 4 km grid spacing dataset (www.prism.
oregonstate.edu) were obtained to estimate annual precipita-
tion and mean air temperature. PRISM annual precipitation
and mean air temperature datasets are nationwide, spatially
consistent, and temporally complete (1895 to the present)
(Daly et al 1994). Gridded annual precipitation totals and
annual mean air temperatures (the mean of maximum and
minimum air temperatures) were spatially averaged over the
255 catchments for each water year from 1951 to 2010. A
minimum of four PRISM grid points were used for estimating
the area-averaged value of each catchment so as to reduce bias
(weather noise) from a single grid point. Annual precipitation,
mean temperature, and runoff data were normalized for each
site by their mean and standard deviation to estimate a
standardized score of a linear slope.

For selecting significant explanatory variables (pre-
dictors), we used a stepwise regression method based
on F tests for explanatory variable selection with F ≤
0.05 as inclusion and F ≥ 0.10 as exclusion criterion.
Multicollinearity was checked using a variance inflation factor
(VIF) of 5 as a critical threshold (Haan 2002), and any
redundant variables were removed for analysis accordingly.
All 91 candidate explanatory variables were associated with
catchment characteristics of climate (37), hydrology (18), land
cover (16), soil (11), and topology (9). These variables were
obtained from the GAGES II data (Falcone 2011).

To identify the spatial relationship between the AET
trend and significant explanatory variables of the multiple
regression analysis, we used geographically weighted
regression (GWR) models available in ArcGIS 10.0. As a
local statistic, GWR models yield different coefficient values
for each study basin, and are well suited to identify how
local factors affect the spatial variation in the AET trend
(Chang et al 2012, Fotheringham et al 2002). We used the
adaptive kernel with Akaike Information Criterion (AIC)
estimated bandwidth in creating weight metrics because of
the inhomogeneous distribution of the catchments in the US.
The adjusted coefficient of determination (adjusted R2) and
AIC were used for comparing ordinary least square (OLS) and
GWR models to identify which model could interpret AET
trends better. GWR models have been used for understanding
spatial patterns of water use (Wentz and Gober 2007), water
quality (Chang and Psaris 2013), and runoff trend (Chang et al
2012).

3. Results

Overall, annual AET over the past 60 years increased across
the US, although it declined in some catchments (figure 1(A)).
Our result supports the previous findings of AET trends
during the past 60 years (Hobbins et al 2004, Walter et al
2004, Milly and Dunne 2001). Nationwide AET has increased
annually +6.5 mm/decade computed as the difference
between increased annual precipitation (+7.6 mm/decade)
and increased annual runoff (+1.1 mm/decade) based on
their mean annual values for the study basins. The AET

trend is comparable to values obtained from large river
basins in the US; +6.9 mm/decade for the Mississippi
river basin (Milly and Dunne 2001), +3.9 mm/decade to
+18.6 mm/decade for six large river basins and the Southeast
basins (Walter et al 2004). These trends might be interpreted
that increased AET resulted in lower rate of increased
runoff even though precipitation increased at a higher rate.
Locally, AET shows positive trends in 191 basins (75%),
although only 49 basins (19%) are significant at the 0.05
significance level (figure 1(A)). The spatial pattern of AET
trends (figure 1(A)) generally coincides with precipitation
trends that exhibit increasing trends throughout the US with
some exceptions in the Pacific Northwest, California, and the
Midwest (figure 1(B)). In 73 basins (30%), AET and annual
precipitation have opposite trends, indicating that their AET
could be influenced by secondary drivers.

The 255 catchments are clustered into six different groups
(figure 2(A)), based on the runoff sensitivity to precipitation
change. However, the runoff sensitivity to air temperature
change does not portray any apparent clustering (figure 2(B)),
indicating that air temperature may not be a good predictor
for explaining AET spatial patterns. Two groups (a) and (f) in
figure 2(A) support the general hypothesis that precipitation
change leads to AET change (e.g., Hobbins et al 2004). The
two groups show low runoff change (∂Q/∂t) to precipitation
change (∂P/∂t), indicating that these groups have low runoff
sensitivity to precipitation change. However, groups (b) and
(e) in figure 2(A) have high runoff sensitivity and opposing
AET and precipitation trends. This is because increasing
runoff (+∂Q/∂t in equation (2)) is steeper (greater) than
increasing precipitation (+∂P/∂t in equation (2)) ((b) in
figure 3(A)). Group (e) in figure 3(A) shows that the
difference between precipitation and runoff widens with time
because runoff is decreasing more rapidly than precipitation
(−∂Q/∂t > −∂P/∂t in equation (2)), resulting in increasing
AET. Some basins in (b) in figure 2(A) show an increase in
AET despite high runoff sensitivity. These basins have smaller
runoff magnitudes compared to their precipitation magnitudes
(runoff to precipitation ratios below 20%). Located in the
Great Plains and Midwest, the basins have negligible runoff
trends in relation to precipitation change. The trends of (c)
and (d) in figure 2(A) can be understood by contradictory
trends between precipitation and runoff. The contradictory
trends include increased AET under increased precipitation
((c) in figure 3(A)), and decreased AET under decreased
precipitation ((d) in figure 3(A)). Most of these groups
are randomly distributed over the continental US, although
group (e) dominates in the Pacific Northwest and group (a)
dominates in the Great Plains (figure 3(B)).

The multiple regression analysis identifies annual
precipitation and annual runoff trends, the portion of
evergreen forest in a drainage area, and mean elevation as
significant predictors of AET trends (p < 0.01). The multiple
regression model explains 67% of the variance in AET trends
with a significant F level (168.6). However, a regression
model using only annual precipitation trend as an independent
variable explains 14% of the variance in AET trends
(p < 0.001, F = 43.8), and a regression model using only
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Figure 2. Relation among linear trends of (A) annual AET, runoff,
and precipitation and (B) annual AET, runoff, and mean
temperature. Squares (increasing slope of AET) and circles
(decreasing slope of AET) show the direction and magnitude of the
linear trend of AET for each of the 255 basins. The six lower-case
letters in (figure 2(A)) indicates: (a) increasing AET with increasing
precipitation and runoff, (b) decreasing AET with increasing
precipitation and runoff, (c) increasing AET with increasing
precipitation but decreasing runoff, (d) decreasing AET with
decreasing precipitation but increasing runoff, (e) increasing AET
with decreasing precipitation and runoff, and (f) decreasing AET
with decreasing precipitation and runoff. Red dashed line indicates
equal slopes for annual runoff and precipitation. The number
(0.0364) indicates the magnitude of the reference symbol in the
legend.

annual runoff trend explains 15% of the variance (p <

0.01, F = 6.2). Including both variables into the regression
model can explain up to 63% of the variance in AET trends
(p < 0.001, F = 215.9), indicating that runoff sensitivity is a
key diagnostic criterion of AET change at a catchment scale.

It is well established that AET is closely linked with
vegetation characteristics (Zhang et al 2001). In this study,
the portion of evergreen forest in a drainage area is detected

as a significant explanatory variable of the spatial pattern
of AET trends. However, the portion of other vegetation
types such as deciduous and mixed forest is not significant.
The evergreen forest predictor is negatively correlated with
the AET slope in basins where AET is decreasing (n =
64, Pearson’s correlation coefficient is −0.56, p < 0.01).
Whereas, there exists a positive correlation between the
evergreen forest predictor and the AET slope in basins where
AET is increasing (n = 191, Pearson’s correlation coefficient
is 0.47, p < 0.01). Such a contrasting relation suggests that
other spatial factors might influence AET trends from basin
to basin, which provides a rationale to use spatial techniques
such as GWR that capture the spatially varying relationships
between dependent and independent variables.

Maps of GWR coefficients for the four predictors show
distinct spatial patterns (figure 4). Annual precipitation trend
coefficients are higher in the West and Northeast than
inland regions, suggesting that marine influence (possibly
high advective winds) may have a positive effect on
increasing AET trends (figure 4(A)). Annual runoff and
annual precipitation trends are highly inversely correlated
(figure 4(B)). Evergreen forest land cover coefficients are
generally positive in the Midwest, Southeast, and Western
US (with the exception of southern California) (figure 4(C)).
The coefficient is negative in the Great Plains and the
Northeast. The mean elevation coefficient map also exhibits
an interesting spatial pattern (figure 4(D)). Elevation has a
negative effect on AET trends in most of the western US
and portions of the Midwest and the Northeast, suggesting
that higher elevation areas may be experiencing the depletion
of moisture available during the summer as a result of early
snowmelt. In contrast, most lowlands along the Mississippi
river (where mean elevations are significantly lower than other
basins) portray positive coefficients.

4. Discussion and conclusion

Our result demonstrates that identifying internal drivers
(runoff sensitivity) can improve an understanding of long-
term AET dynamics at a catchment scale and predicting
regional water availability. Some studies quantified catchment
runoff sensitivity using a water–energy balance framework
(Renner et al 2012, Renner and Bernhofer 2012) and the
Budyko framework (Roderick and Farquhar 2011). However,
there is still no robust method of estimating runoff sensitivity
across all catchments. In the future, runoff sensitivity might
be altered episodically due to wildfire, deforestation and
other anthropogenic effects, and gradually due to natural
climate variability and global warming (Barnett et al 2005).
In snowmelt-dominated regions, snowpack and snowmelt
buffer against interannual precipitation change, resulting in
relatively lower runoff sensitivity to precipitation change
than in more rainfall-dominated regions. Although there
is relatively little agreement among global climate models
regarding the magnitude and direction of precipitation
change, these models consistently project warmer climate
in the 21st century (Randall et al 2007). If snowpack is
reduced (or eliminated) in snow-dominated or snow-rain
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Figure 3. (A) Linear trends in precipitation and runoff annual time series for six basins representing six different groups ((a)–(f) in
figure 2(A)). s1 is the slope of annual precipitation and s2 is the slope of annual runoff. (B) The spatial distribution of the six groups. Red
circle indicates the locations of the six basins.

transient regions by future warming, runoff sensitivity will
increase. Long-term prediction of water availability based
on historical observations in snow-dominated regions will

become more difficult to make because current snow-runoff
forecast procedures assume stationarity (Milly et al 2008).
However, it is not entirely clear how global warming is
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Figure 4. The spatial variation of the geographic weighted regression coefficients of four explanatory variables (A) annual precipitation
trend, (B) annual runoff trend, (C) the portion of evergreen forest in a drainage area, and (D) mean elevation. Blue circle indicates a positive
coefficient and red circle indicates a negative coefficient.

directly responsible for changes in AET and water availability
(figure 2(B)). One possible reason is that a global warming
signal is weaker than the variation of precipitation over
the past 60 years. Continuous direct observations of AET
(e.g., flux measurement by eddy covariance technique (Jung
et al 2010)) and its indicators will be a clue for unveiling the
relationship between the trend in terrestrial AET and global
warming.

The dynamic relationship between AET and streamflow
in a drainage basin is closely related to a nexus of water,
energy and carbon cycles (Teuling et al 2009, Jung et al
2010). Despite the importance of AET in these cycles, their
interactions remain unknown. Our finding demonstrates that
the portion of evergreen forest in a drainage area significantly
contributes to annual AET trends. This result reconfirms
that vegetation type is an important indicator of predicting
regional AET trends, although deciduous forest and other
vegetation are not significant. However, the lack of long-term
observation of forest cover change may underestimate the
effect of vegetation on historical AET trends in this study.
Also, we did not consider the effect of carbon dioxide (CO2)
concentration on plant transpiration. To date, there is little
agreement on the effect of higher CO2 concentration in the
atmosphere on transpiration from vegetation. One hypothesis
projects the decline of transpiration because the stomata of
leaves will open less to take up the same amount of CO2 for
photosynthesis (Gedney et al 2006, Betts et al 2007), while

another hypothesis suggests that transpiration will increase
due to increased plant growth resulting in increased leaf area
(Bates et al 2008).

However, spatial analysis in our study indicates that the
relationships between AET trends and explanatory variables
vary spatially, indicating that the driving forces of AET trends
for each basin might be different. A regional approach is
useful for understanding the dynamics of changing water
availability. Our spatial analysis results suggest an insight
for understanding long-term AET trends at the catchment
scale based on runoff sensitivity metrics and heterogeneous
hydrologic landscape characteristics. The spatial pattern of
AET trends can be explained by the complex combination of
runoff trends, precipitation trends, portion of evergreen forest
cover, and mean elevation at the basin scale. The changing
signs of GWR coefficients suggest that the mechanisms of
AET trends are not the same over space. By appreciating such
local relationships across the continental US, we can plan
for locally specific water budgets and thus sustainable water
resource management strategies. Additionally, this study may
contribute to improve our knowledge on the runoff response
of an ungauged basin according to future climate change and
land cover change.

Trend detection studies are often sensitive to dataset
selection, data period, and detection methods, indicating that
different conclusions might be drawn with different datasets,
time periods, and methods (Bae et al 2008). Additionally, the
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trend analysis can be affected by changes in measurement
techniques, measurement errors, varying station density, and
changes in catchment land-surface characteristics. Therefore,
considering these possible uncertainties in our results
can provide a more accurate assessment of future water
availability.
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