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Abstract
Wind power, a renewable energy source, can play an important role in electrical energy
generation. Information regarding wind energy potential is important both for energy related
modeling and for decision-making in the policy community. While wind speed datasets with
high spatial and temporal resolution are often ultimately used for detailed planning, simpler
assumptions are often used in analysis work. An accurate representation of the wind speed
frequency distribution is needed in order to properly characterize wind energy potential. Using
a power density method, this study estimated global variation in wind parameters as fitted to a
Weibull density function using NCEP/climate forecast system reanalysis (CFSR) data over
land areas. The Weibull distribution performs well in fitting the time series wind speed data at
most locations according to R2, root mean square error, and power density error. The wind
speed frequency distribution, as represented by the Weibull k parameter, exhibits a large
amount of spatial variation, a regionally varying amount of seasonal variation, and relatively
low decadal variation. We also analyzed the potential error in wind power estimation when a
commonly assumed Rayleigh distribution (Weibull k = 2) is used. We find that the assumption
of the same Weibull parameter across large regions can result in non-negligible errors. While
large-scale wind speed data are often presented in the form of mean wind speeds, these results
highlight the need to also provide information on the wind speed frequency distribution.

Keywords: global wind, Weibull distribution, power density method, wind energy, wind
resources

1. Introduction

Wind power, a renewable energy source, has the potential
to reduce greenhouse gas emissions and local air pollutants
associated with the burning of fossil fuels. The wind energy
market is growing rapidly, with a capacity of roughly 1.8%
of global electricity demand in 2009, and could exceed 20%
by 2050 with ambitious efforts (Wiser et al 2011). It has been
reported that wind energy can supply several times present
world electricity consumption (Hoogwijk et al 2004, Archer
and Jacobson 2005, Zhou et al 2012).

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

Accurate estimation of wind energy, especially for
large areas, is important in both the science community
for energy related modeling and the policy community for
decision-making (Zhou et al 2012). Evaluating the wind
energy potential over large areas involves large data sets
and associated computational requirements. It is useful,
therefore, to represent wind speed through probability density
functions with a few key parameters. For example, Jowder
(2006) compared the Weibull and Rayleigh functions in
fitting the wind speed frequency distribution in Kingdom of
Bahrain. As summarized by Carta et al (2009), a number of
various probability density functions such as Weibull, gamma,
lognormal, and Rayleigh have been used to represent wind
frequency distribution (Kaminsky 1977, Mihelić-Bogdanić
and Budin 1992, Lun and Lam 2000, Seguro and Lambert
2000, Tar 2008, Chellali et al 2012).
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The Weibull distribution function has been widely used
in the analysis of wind energy resources because of its good
performance and few parameters (Kaminsky 1977, Lun and
Lam 2000, Chellali et al 2012). A number of methods have
been developed to estimate Weibull parameters (Seguro and
Lambert 2000, Weisser 2003, Akdağ and Dinler 2009, Costa
Rocha et al 2012, Saleh et al 2012). The maximum likelihood,
graphic, moment, Chi-square, and regression methods are
commonly used in fitting wind speed frequency distribution
using the Weibull function (Seguro and Lambert 2000,
Dorvlo 2002, Akdağ and Dinler 2009). The performance
of these methods varies with study area, experiment, and
evaluation rules (Akdağ and Dinler 2009). Akdağ and Dinler
(2009) compared graphic, maximum likelihood, and moment
methods, and proposed a new power density (PD) method,
which we use below.

Although the frequency distribution of wind speed has
been extensively studied in various regions, an improved
understanding of its spatial variation at the global level is
still lacking. As we will show below, the statistical properties
of the global wind speed data, in addition to mean wind
speed information, are also of importance for wind energy
evaluation and development. As we verify below, wind speed
variability can be usefully summarized in most areas by the
parameters of a Weibull distribution. Such analysis will lead
to better understanding of wind speed data and also help the
comparison between different wind speed datasets, including
reanalysis datasets such as those examined in this work. In
this work, we estimate spatially explicit Weibull parameters
over global land areas and investigate the reliability of these
estimates, spatial and temporal trends, and implications for
wind power estimates.

2. Method and data

2.1. Method

The Weibull function is widely used due to its simplicity
and ability to closely mirror the distribution of observed
wind speeds. The probability density function f (x; λ, k) of a
Weibull random variable x is given by,

f (x; λ, k) =
k

λ

( x

λ

)k−1
e−(x/λ)

k
(1)

where k is the Weibull shape parameter, λ is the scale
parameter. Physically, the scale parameter (λ) is proportional
to the mean wind speed, while the shape parameter (k)
determines the width of the distribution, with narrower speed
distributions for higher k values.

The mean wind speed can be written as:

v̄ = λ0(1+ 1/k) (2)

where v̄ is the mean of wind speed, and 0 is the gamma
function.

In this study, we chose the power density (PD) method
developed by Akdağ and Dinler (2009) to estimate the
Weibull parameters. They found that the PD method can
produce accurate estimates of Weibull parameters with less

computation, and we find this to be the case here, and
it might be better than graphic, maximum likelihood, and
moment methods (Akdağ and Dinler 2009). For application
in wind energy studies, this method is also more suitable
given its focus on wind power density. In addition, the Weibull
parameters can be easily estimated if only power density and
mean wind speed are known.

According to the PD method by Akdağ and Dinler (2009),
the Weibull k parameter can be estimated as,

k = 1+
3.69

E2
pf

(3)

where Epf is the energy pattern factor. The energy pattern

factor is based on the mean of wind speed cubed (v3) and the
cube of mean wind speed (v̄3) as below,

Epf =
0(1+ 3/k)

0(1+ 1/k)3
=

v3

v̄3 . (4)

With the Weibull shape parameter (k) estimated from
equation (3), the scale parameter (λ) can be determined from
equation (2).

2.2. Wind speed data

Several types of wind speed datasets are available to evaluate
global wind resources. These datasets are distinguished by
differences in their methodology and spatial and temporal
resolution (Wiser et al 2011, Zhou et al 2012). After
evaluation of a number of global datasets, in this study we
use 10 m wind speeds from the NCEP climate forecast system
reanalysis (CFSR) (Saha et al 2010, Zhou et al 2012). While
wind turbines operate at higher heights (Drechsel et al 2012),
we use 10 m height wind speed because it is generally
available from many datasets, allowing comparison. It is not
clear, however, if the character of wind speed statistics would
change with height, or if such changes would accurately be
captured by reanalysis methodologies. This could be a topic
of future work.

The CFSR reanalysis data has a spatial resolution of
0.3125◦ lat/lon and provides hourly values of wind speed for
the time period from 1980 to 2009. The PD method is also
useful for this large dataset because binning and solving linear
least squares or iterative procedures are not necessary. Zhou
et al (2012) identified some biases such as the underestimation
of wind potential at wind class 5 and higher in this data set,
however, and we return to this issue in the discussion.

3. Results

3.1. Global wind speed distribution

Wind speed frequency distribution, in terms of the Weibull
shape parameter (k), shows large spatial heterogeneity at the
global level (figure 1(a)). The value of the shape parameter is
larger than 2 in large portion of global land area (figure 1(c)).
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Figure 1. Weibull shape parameter k (a), scale parameter λ (b), and histogram of the Weibull shape parameter in seven regions and globally
(c). A large shape parameter indicates a narrower distribution compared to a lower shape parameter.

It also varies across regions1 regarding magnitude and
distribution (figure 1(c)). Regions of Africa and Australia
generally show large shape parameter with a peak around
values of 2.4, and Africa also shows largest regional variation
(90% range of 1.9–3.0) within region. A large shape parameter
indicates a narrower frequency distribution. Therefore, wind
speeds in these areas, at least in this data set, are relatively
stable compared to regions with a lower shape parameter. As
a key parameter impacting wind energy estimation, this large
spatial heterogeneity should be borne in mind when evaluating
the wind energy using mean wind speed.

The spatial variation of the Weibull scale parameter (λ)
shows a pattern similar to the mean wind speed (figure 1(b)).
The scale parameter is a function of the mean wind speed
and Weibull k (equation (2)) and is determined largely by the
mean wind speed, as 0(1 + 1/k) shows a narrow range from
0.88 to 0.92 for shape parameter varying from 1.5 to 4 as
observed in this study at the global level. The Weibull wind
speed distribution is completely characterized by the mean
wind speed and shape (k) parameter. The sensitivity of wind
power to mean wind speed has been discussed in Zhou et al
(2012). For these reasons the following analysis will focus on
the Weibull shape parameter.

3.2. Evaluation

To understand the reliability of Weibull distribution in fitting
time series wind speed data, we evaluated accuracy using
three metrics: R2, root mean square error (RMSE), and
power density error (PDE) (%). High R2 and low RMSE

1 We group globe into seven regions according to the commonly defined
seven continents with Antarctica removed and with the Former Soviet Union
separated from Eurasia. They are Africa, North America, South America,
Europe, Australia, Former Soviet Union, Asia, and the Former Soviet Union.

values indicate a good fit between the data and the Weibull
distribution in terms of wind speed. A low PDE value denotes
good performance of the Weibull distribution in representing
power density. These metrics can be expressed as (Akdağ and
Dinler 2009),

R2
= 1−

∑N
i=1(yi − xi)

2∑N
i=1(yi − ȳ)2

(5)

RMSE =

[
1
N

N∑
i=1

(yi − xi)
2

]0.5

(6)

PDE(%) =

∣∣∣∣Pdw − Pdts

Pdts

∣∣∣∣ (7)

where N is the number of bins (here, N is 100 for wind speed
from 0.1 to 10 m s−1 with bin width of 0.1 m s−1), xi and yi are
the frequencies of calculated wind speed data from Weibull
distribution and reanalysis time series data, Pdw is the power
density calculated from Weibull distribution, and Pdts is the
power density calculated from hourly reanalysis data.

According to all three metrics, Weibull distribution
estimated using the PD method fits the data well (figure 2).
Most areas at the global level show a R2 better than 0.93
(figure 2(a)). In terms of RMSE, still, most areas show a
low value indicating the high reliability of the fitted Weibull
distribution (figure 2(b)). Power density errors (PDE%) are
under 1% over most parts of the globe (figure 2(c)). In
areas with large shape parameter values such as northeastern
part of Africa, the Weibull distribution does not capture the
reanalysis wind speed data quite well. This may indicate that
the wind speed frequency distribution here is too complex to
be fitted by the Weibull distribution. Tuller and Brett (1984)
find, for example, that areas with frequent calm periods or
asymmetric wind patterns are less likely to be fitted by a

3
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Figure 2. Evaluation of a fitted Weibull distribution using the PD method: R2 (a), RMSE (b), PDE (c), and their relationship to mean wind
speed (d).

Weibull distribution. Alternatives for such regions include a
bimodal probability distribution, proposed for La Ventosa,
Mexico (Jaramillo and Borja 2004), or the general probability
distribution presented by Ramı́rez and Carta (2006). A
sector-wise fitting method might improve the estimation of a
Weibull distribution in those (relatively few) areas not well
fitted by a Weibull distribution, especially in the areas with a
bimodal probability distribution (Achberger et al 2002).

The performance of the Weibull distribution and
associated parameters shows a relationship with mean wind
speed in terms of R2 (figure 2(d)). Grid cells with higher
mean wind speed tend to have lower R2 magnitude while
RMSE and PDE are distributed more evenly over the range
of wind speeds. The results indicate that the two-parameter
Weibull distribution is not necessary more biased in more
economically viable wind areas (large speed) compared to
low wind speed areas in terms of wind power density, at least
when fitted using the PD method, although the R2 magnitude
in terms of wind speed tends to decrease in these areas.

3.3. Decadal and seasonal trends

The wind speed distribution shows small temporal changes
over 10-year periods. Compared to the base time period

(1980–1989), the shape parameter is somewhat different in
1990–1999 and 2000–2009 in space (figures 3(a) and (b)).
Some areas, for example, the west coast of Africa, show
a consistently increasing trend, while other areas such as
Eastern Europe, show an inversed pattern in 1990–1999 and
2000–2009 (figures 3(a) and (b)). At any given point in space,
changes of order 0.1 of the k parameter are common, and
it reaches up to 0.2 (99% range at the global level). The
change of shape parameter of the Weibull distribution will
have different impacts on the wind energy potential in areas
with different mean wind speed, as discussed in section 3.4
on implications. When evaluated at the regional level, the k
parameter shows a small difference over these three periods
(figure 3(c)).

Seasonal2 changes in the wind speed distribution are
larger than the decadal changes over 1980–2009 (figure 4).
This is to be expected, as weather patterns vary in a
consistent manner by season. While there are some consistent
differences by season, these are smaller than the spatial
differences. At a given point in space the k value can vary
by more than 1.0 (99% range at the global level) between

2 Northern Hemisphere season names are used in this letter.
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Figure 3. Decadal change of Weibull shape parameter compared to 1980–1989: 1990–1999 (a), 2000–2009 (b), and decadal (c) and
seasonal (d) change at the regional level. The ovals show two example areas discussed in the letter.

seasons. When evaluated at the regional level, the change of
k parameter varies greatly among regions (figure 3(d)). For
example, in the Former Soviet Union, the Weibull k shows a
large variation across seasons while in Asia the distribution of
the Weibull k is consistent across four seasons. The seasonal
changes in wind shape parameter at the grid and regional level
are both much smaller than the changes seen across space.

The relatively small variations in wind statistical
properties over time, as compared to much larger spatial,
and often seasonal, changes, are consistent with the common
industry practice of using at least one year of direct
measurement data to characterize potential wind turbine sites
(MEASNET 2009).

3.4. Implications

Power generation for the same mean wind speed can be very
different for different Weibull shape parameters (figure 5).
There are a number of factors influencing actual power
production including different turbine power curves and
others such as turbine height and turbine density. As an
illustrative calculation, we compared wind power generated
from a reference 1.5 MW GE turbine (GE 2009) for a range of
mean wind speeds from 4 to 12 m s−1 by varying the Weibull
shape parameter. When mean wind speed is large (greater than
about 6 m s−1), the wind power generated with a small shape
parameter (<2) is smaller than the case of the commonly
assumed Rayleigh distribution (Weibull k = 2), while wind

power generation with a large shape parameter (>2) is larger
as compared to Rayleigh. The opposite is true when the mean
wind speed is smaller than 6 m s−1. This motivates us to
investigate the possible bias of wind power estimation at the
global level with the commonly used Rayleigh distribution
(Hoogwijk et al 2004).

Wind power is under- or over-estimated by using mean
wind speed and k = 2, Rayleigh distribution (figure 6). The
bias (under- or over-estimation) is calculated as the percentage
difference between the energy produced using a Rayleigh
distribution and a Weibull distribution with calculated k. At
the global level, wind power was overestimated by an average
of 6%, varying from underestimation by 20% (5% quantile)
and overestimation by 30% (95% quantile). At the regional
level and globally, wind energy is generally overestimated by
assuming k = 2 except in Europe. The largest overestimation
occurs in Africa and Australia, with an average of more than
15%, and the overestimation can even reach more than 35%
(95% quantile) in Africa. The average bias is smallest in Asia
and Europe, but it can still be overestimated by 10%–20%
(95% quantile) in Europe and Asia. The bias in the estimation
of wind power varies greatly in space because of the large
spatial heterogeneity of the Weibull shape parameter. We see
that bias due to an assumption of k = 2 becomes larger at
smaller scales: while only 6% globally this increases to 15%
in certain continental-scale regions, and up to 30–35% in
smaller areas. The larger the deviation of shape parameter
from 2, the higher possible bias in the estimation of wind

5
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Figure 4. Seasonal patterns of the shape parameter of the Weibull distribution: spring (a), summer (b), autumn (c), and winter (d).

Figure 5. Wind power from an example 1.5 MW reference turbine (see text) generated with different shape parameters for mean wind
speeds from 4 to 12 m s−1.
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Figure 6. Possible bias in estimation of wind energy potential using the Weibull shape parameter (k = 2) at the grid (a) and regional level
(b). The 5% and 95% quantile ranges across all grid cells in a region are included in (b).

power. Some caution is advised in these areas when analyzing
wind power using a Rayleigh distribution (e.g. Hoogwijk et al
2004), although any potential error in this respect has to
be weighted against the quality of the wind speed, or even
reanalysis, data.

4. Discussion and conclusions

In this study, we estimated the shape and scale parameters of
the Weibull distribution for wind speed frequency at the global
level using the power density method and reanalysis wind
speed data. To the extent that the reanalysis data provides an
accurate statistical representation of wind speeds, these results
indicate that the Weibull function can accurately represent
the frequency distribution of wind speeds in most areas. The
Weibull shape parameter, k, shows large spatial heterogeneity
from 1 to 4, while the decadal and seasonal changes are
much smaller. Given the relatively low inter-decadal change,
it is likely reasonable to estimate the wind power using data
series of less than a decade in terms of wind speed frequency.
However, more importantly, the commonly assumed Rayleigh
distribution, with Weibull shape parameter of 2, should be
used carefully for wind energy analysis. This also implies
that mean wind speed alone does not supply sufficient
information for the analysis of wind power, and that its use
may introduce non-negligible bias in many areas: information
on the distribution of wind speed is also needed. We find
that, in most areas, specification of the mean wind speed and
Weibull k parameter would be sufficient to characterize wind
speed for wind resource estimation.

These findings need to be taken as indicative, however,
because the accuracy of global reanalysis datasets in terms of
near-surface wind speeds is not well quantified. Zhou et al
(2012), for example, found a substantial underestimation of
wind speeds in the United States by the CFSR data used
here. Evaluation of global datasets in terms of wind speed,
power density, and implications for wind power production, is
needed. The implications for wind power of mis-specifying
the Weibull k parameter, are smaller at a global level than

most other uncertainties involved in wind resource estimates,
but can be comparable to other uncertainties at continental
or smaller regions (Zhou et al 2012). A high priority is
the development of methodologies that allow the impact of
small-scale terrain features to be included in global wind
resource datasets. Also, at smaller scales, the spatial and
temporal patterns of the Weibull k parameter may change due
to mesoscale and microscale effects. These effects deserve
further investigation, especially in regional studies.

These results also suggest that Weibull parameters would
also be a useful way to compare the statistical properties of
different wind datasets, such as the reanalysis dataset used
here. It would also be of substantial benefit to compare the
statistical properties of reanalysis datasets to observations.
Given the spatial heterogeneity found in this work, such
comparisons will, however, be complicated by the different
spatial scales involved. Observations are generally at a
collection of specific points, while model datasets are average
values over a, often relatively large, grid cell. Analysis using a
hierarchy of models with different resolutions would be useful
to determine how discrete observations can be used to evaluate
if reanalysis, and more spatially detailed wind resource
models, accurately capture wind statistical properties.

As global wind data improves, the statistical properties
of that data will need to be examined. It will be particularly
important to focus on the statistical properties of the higher
wind areas, which are of greatest relevance for wind energy
development. While better wind speed data will be needed
for wind energy analysis, we find here that the available data
indicates that the statistical properties of wind fields are likely
to vary quite substantially over space, and that not accounting
for this variation can result in biases in estimates of wind
potential.
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