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Abstract
The observed dramatic decrease in September sea ice extent (SIE) has been widely discussed
in the scientific literature. Though there is qualitative agreement between observations and
ensemble members of the Third Coupled Model Intercomparison Project (CMIP3), it is
concerning that the observed trend (1979–2010) is not captured by any ensemble member. The
potential sources of this discrepancy include: observational uncertainty, physical model
limitations and vigorous natural climate variability. The latter has received less attention and is
difficult to assess using the relatively short observational sea ice records. In this study
multi-centennial pre-industrial control simulations with five CMIP3 climate models are used
to investigate the role that the Arctic oscillation (AO), the Atlantic multi-decadal oscillation
(AMO) and the Atlantic meridional overturning circulation (AMOC) play in decadal sea ice
variability. Further, we use the models to determine the impact that these sources of variability
have had on SIE over both the era of satellite observation (1979–2010) and an extended
observational record (1953–2010). There is little evidence of a relationship between the AO
and SIE in the models. However, we find that both the AMO and AMOC indices are
significantly correlated with SIE in all the models considered. Using sensitivity statistics
derived from the models, assuming a linear relationship, we attribute 0.5–3.1%/decade of the
10.1%/decade decline in September SIE (1979–2010) to AMO driven variability.

Keywords: sea ice extent, Atlantic multi-decadal oscillation, Arctic oscillation, Atlantic
meridional overturning circulation, Arctic, climate variability

S Online supplementary data available from stacks.iop.org/ERL/7/034011/mmedia

1. Introduction

Satellite monitoring since the late 1970s has shown that
total Arctic sea ice extent (SIE) has been declining, and
at an accelerating rate since the 1990s (Serreze et al
2007). This decline in SIE is predicted to continue until
the Arctic is seasonally ice-free at some point in the 21st
century (Boe et al 2009b, Wang and Overland 2009). The

Content from this work may be used under the terms
of the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 licence. Any further distribution of this work must maintain
attribution to the author(s) and the title of the work, journal citation and DOI.

observed September SIE trend is not captured by the World
Climate Research Programme’s (WCRP’s) Coupled Model
Intercomparison Project phase 3 (CMIP3) multi-model mean,
which was used to project 21st century sea ice decline for
the Intergovernmental Panel on Climate Change (IPCC) 4th
Assessment Report (AR4) (Stroeve et al 2007).

Observational uncertainty, climate model insensitivity
and vigorous natural variability have all been suggested
as potential sources of discrepancy between observed and
CMIP3 modelled trends (Serreze et al 2007, Kattsov et al
2011). If natural variability has played a large role in the
observed decline, it is possible that it is a statistically rare
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Figure 1. Normalized AMO index (Enfield et al 2001), AO index
(calculated from Allan and Ansell (2006)), September and March
SIE (Meier et al 2007). The time series were detrended (apart from
the AO index), then passed through a 10 year low pass filter.

event which is simply not captured by the relatively small
size of the CMIP3 ensemble (Kattsov et al 2011). Stroeve
et al (2011b) suggest that accelerated decline since 1990
may be a response to natural variability which may not
continue. Boe et al (2009a) demonstrated that, over the
course of the 21st century, the climatological sea ice thickness
and local feedback strength cause some spread in model
sensitivity. However, the satellite observation period for sea
ice (1979–2010) is too short to calculate a value for sea
ice sensitivity to anthropogenic forcing, to compare with
these models (Winton 2011). Thus, understanding the sources
and magnitude of natural sea ice variability is important to
determine the proportion of the observed decline which can
be attributed to anthropogenic forcing, and also to investigate
possible limitations of model simulations. Kay et al (2011)
use multiple simulations of the climate model CCSM4 for
the period 1979–2005 to determine that 44% of the observed
September SIE trend over this period can be explained by
natural variability. In this study we look at the potential
sources of this natural variability.

Atmospheric sources of variability include large-scale
sea level pressure (SLP) anomalies and associated anomalous
winds, which have been associated with sea ice motion (Rigor
et al 2002, Ogi et al 2010). In particular, it has been suggested
that positive phases of the leading mode of winter Northern
hemisphere SLP variability, the Arctic oscillation (AO) are
associated with thinning in the east Arctic and outflow through
the Fram Strait since 1979 (Rigor et al 2002). However a
shift towards a more neutral state followed by the extreme
negative shift in the 2009/2010 winter AO index did not result
in a higher September SIE, rather the third lowest on record,
leading to suggestions that this relationship may be changing
(Stroeve et al 2011a) (see figure 1).

Oceanic sources of variability are also thought to have
had a significant impact on SIE. These include the Atlantic
multi-decadal oscillation (AMO) a 65–80 year oscillation in
North Atlantic sea surface temperature (SST) (Schlesinger
and Ramankutty 1994). This is a major source of natural
variability in the North Atlantic and is thought to be driven
by Atlantic meridional overturning circulation (AMOC)
variability (Delworth and Mann 2000, Zhang 2007). Mahajan
et al (2011), using a 1000 year integration of GFDL-CM2.1,

found areas of significant anti-correlation between both the
AMO and AMOC indices and Arctic sea ice concentration in
all seasons. There is also evidence of a low frequency AMO
like oscillation in historical observations of sea ice conditions
in the Nordic and Arctic Marginal seas (Polyakov et al 2003,
Divine and Dick 2006). The AMO index has shifted from a
negative to positive state over the period of satellite sea ice
observation, indicating that natural variability in the AMO
could be responsible for some of the observed trend in SIE
(see figure 1).

In this letter we use five CMIP3 coupled general
circulation models (GCMs) with pre-industrial forcing to
investigate the impact of the AO, AMO and AMOC on SIE.
The methods, models and data sets are described in section 2.
In section 3, we present results from a correlation analysis
between the indices of climate variability and SIE. Based on
these results, we use a linear regression model in section 4 to
estimate the impact of the AMO on March and September SIE
over the period 1953–2010.

2. Methods and data

We perform correlation analyses on observations and
climate model output to investigate which modes of
internal variability may be related to SIE. We use control
simulations, for which external forcing is held fixed, in
order to eliminate the confounding effects of time-varying
forcings. An initial investigation with the HadCM3 and
MIROC3.2.2 models, using subintervals of multi-millennial
length control runs, reveals that O(500) years of data are
required in order to generate statistically robust results (see
figure S1 available at stacks.iop.org/ERL/7/034011/mmedia).
Therefore, in addition to these two models, we use results for
CSIRO-MK3.5, GFDL-CM2.1 and GISS-ER which are the
only models for which suitably long control integrations can
be obtained from the CMIP3 database (Meehl et al 2007).

The winter AO index is defined as the principal
component of the leading Empirical Orthogonal Function
(EOF) of the winter (JFM) sea level pressure (SLP) field.
Correlation analysis is performed between the winter AO
index and September SIE from the five GCM simulations. All
five models produce a good representation of the observed AO
pattern (Zhu and Wang 2010).

For the five GCMs, we also perform correlation analyses
between the annual mean AMOC strength (defined as the
maximum of the basin meridional stream function at 40◦N)
and AMO index (defined as the weighted average of Atlantic
SST between 0◦N and 70◦N), and between both of these
indices and March and September SIE. This is in order
to determine the inter-model robustness of the relationships
described by Mahajan et al (2011). Details of the AMOC,
AMO and SIE climatologies in these models are described in
the supplementary material (available at stacks.iop.org/ERL/
7/034011/mmedia).

The significance of all correlations was calculated using
a t-test with Neff−2 degrees of freedom. Neff is the number of
effective degrees of freedom of the combined dataset, e.g. AO
index and SIE. Neff = N/[1+2

∑N
i=1Cindex,iCSIE,i], where N is
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Table 1. Correlation between AO index, AMOC, AMO and September SIE for five GCMs and detrended observations. All correlations are
significant at the 90% level except starred values. The lag time which maximizes the correlation between the variable and SIE is included,
where SIE is the lagging variable.

Model r(AO, SIE) r(AMOC, SIE)(lag) r(AMO, SIE) r(AHT, SIE)(lag)

CSIRO-MK3.5 −0.08∗ −0.40(0) −0.44 −0.59(1)
GFDL-CM2.1 0.11 −0.11(3) −0.31
GISS-ER 0.12 −0.14(0) −0.13 −0.20(−1)
HadCM3 0.05∗ −0.12(2) −0.17
MIROC3.2.2 −0.04∗ −0.17(2) −0.21 −0.31(2)
Observed −0.09 −0.42

the simulation length in years and Cx,i is the auto-correlation
of the time series x with lag i (Livezey and Chen 1983).

Least squares regression analysis was performed to relate
March and September SIE to the AMO index in the GCMs.
The slope coefficients are then used in section 4 to estimate
the impact of the observed AMO on SIE over the periods
1953–2010 and 1979–2010 based on the observed AMO
variability. The observed AMO index used here is that of
Enfield et al (2001), which has been detrended and so can
be thought of as the natural signal. The observed SIE data set
used for comparison is the Meier et al (2007) record which
is primarily based on HadISST, which utilizes early satellite,
airborne and ship observations prior to 1979 (Rayner et al
2003). To account for an inconsistency occurring between
1996 and 1997 where HadISST sea ice concentration is based
on a different product, Meier et al (2007) modify their data set
to use the NASA team sea ice algorithm (Cavalieri et al 2003)
for the whole period post-1979.

SIE trends in the CMIP3 20C3M and A1B simulations
are discussed with respect to natural variability in section 4.
We follow Stroeve et al (2007) in only using those models
whose observed SIE is within 20% of the observed 1953–95
values.

3. Multi-model Analysis

3.1. AO

The correlation between the observed AO index (Allan and
Ansell 2006) and detrended September SIE is −0.09 which is
not significant at the 90% level (see table 1). This indicates
that despite the arguments of Rigor et al (2002) that the AO
affects sea ice dynamics, it does not appear to have had a
detectable effect on the SIE record. There is also no significant
anti-correlation in any of the five GCMs studied here (table 1).
That is not to say that the AO has no effect on ice dynamics
in the GCMs, for example ice depth and concentration in
MIROC3.2.2 do vary significantly with the AO.

We checked for robustness by calculating correlation
coefficients in MIROC3.2.2 over multiple time periods of
the same length as the observations (58 years). Using
a Kolmogorov–Smirnov test we find that the correla-
tions are well approximated by the Gaussian Distribution
N(−0.04, 0.13) (see figure S1 available at stacks.iop.org/
ERL/7/034011/mmedia). Correlations in this sample are as
strong or stronger than the observed correlation (r = −0.09)
in ∼35% of these 58 year subsets. This suggests that either:

(i) There is no long term relationship between AO index
and September SIE, but some short periods will exhibit
correlations of the observed magnitude by chance, or;

(ii) September SIE in the GCMs considered is unrealistically
unresponsive to changes in the surface pressure field due
to missing physical processes.

Based on the observed data and model analysis we
conclude that the former is more likely. Our results are
broadly in agreement with Holland and Stroeve (2011), who
found similarly weak correlations between the AO index and
September SIE in the CCSM3 climate model.

3.2. AMO and AMOC

Mahajan et al (2011) found significant correlations between
the annual AMO index and SIE in GFDL-CM2.1, analysing
annual mean SIE rather than monthly mean values as we
do here. Similarly, we find significant correlations between
the annual AMO and March and September SIE in all five
model simulations. Highly significant correlations were also
found between the detrended time series of the observed
annual AMO index and March (r = −0.42) and September
(r = −0.42) SIE data set.

We also find significant correlations between the AMOC
index and both September and March SIE in all models except
for GFDL-CM2.1, where the September correlation is not
significant (tables 1 and 2). Mahajan et al (2011) did find a
significant correlation in this model, but their analysis only
considered annual SIE rather than monthly as we do here. In
some models, performing the correlation with the SIE lagging
the AMOC index by 1–5 years leads to higher correlations.
The strength of the correlation varies substantially between
the models, as does the lag time leading to the highest
correlation for both September and March SIE. It appears that
as a general rule those models with high (low) r(AMOC:SIE)
have high (low) r(AMO:SIE). Similarly models with high
(low) r(AMO:SepSIE) have high (low) r(AMO:MarSIE).

Of the models considered Atlantic northward heat
transport was only available for 3. In these models, variations
in the overturning impact SIE by varying the northward
heat transport to the high latitudes, where a higher (lower)
AMOC index corresponds with higher (lower) northward heat
transport in the North Atlantic. The strength of the correlation
between the AMOC and SIE is thus related to the variability of
heat transport at the Greenland–Scotland ridge (∼70◦N). For
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Table 2. Correlation between AMOC, AMO and March SIE for five GCMs and detrended observations. All correlations are significant at
the 90% level. The lag time which maximizes the correlation between the variable and SIE is included, where SIE is the lagging variable.

Model r(AMOC, SIE)(lag) r(AMO, SIE) r(AHT70, SIE)(lag)

CSIRO-MK3.5 −0.56(3) −0.57 −0.57(1)
GFDL-CM2.1 −0.17(3) −0.37
GISS-ER −0.18(4) −0.25 −0.20(−1)
HadCM3 −0.26(0) −0.49
MIROC3.2.2 −0.28(5) −0.33 −0.31(3)
Observations −0.42

example CSIRO-MK3.5 has a high correlation between the
AMOC and September SIE (r = −0.4) and relatively variable
heat transport (σ = 24TW) at 70N, but GISS EH has a much
smaller correlation (r = −0.1) and variability is an order of
magnitude smaller (σ = 6TW) (see tables 1 and 2).

Previously, it has been suggested that the AMO is driven
by AMOC variability as their observed cycles are in phase
(Knight et al 2005, Zhang 2007). In all five models considered
here, the AMOC and AMO are significantly correlated with
correlations between 0.1 and 0.5. The lag time leading to
the largest correlation between the AMOC and the AMO is
also variable between the models (0–3 years). As such, the
AMO can be thought of as a surface fingerprint of the AMOC
variability and in this sense it is appropriate to think of the
relationships between SIE and the AMO and AMOC as two
ways to look at the same phenomena.

Through the mechanism described, the AMO can be
thought of as driving sea ice variability. To determine the size
of the effect of the AMO on September and March SIE a
linear regression analysis is performed between annual AMO
and monthly mean SIE. These calculations yield a range of
slope parameters −1.8 to −0.7 × 106 km2 ◦C−1 for March
and −1.5 to −0.4 × 106 km2 ◦C−1 for September with the
GFDL model producing the largest coefficients (see figure 2).
This inter-model spread is likely caused by differences in both
AMO and ocean northward heat transport variability and may
be the result of differing ocean model resolution (see table
S1 available at stacks.iop.org/ERL/7/034011/mmedia). Both
will affect the flow of Atlantic water into the Arctic, which
is important since warmer ocean temperatures lead to more
melting and reduced sea ice growth (e.g. in the Barents Sea:
Årthun et al 2012). The response of SIE to fluctuations in the
AMO is larger in March than September in all models. This
is probably because in March sea ice extends into the North
Atlantic and is thus more affected by anomalous northward
heat transport in the North Atlantic than September sea ice,
which is entirely contained in the Arctic basin and thus only
effected by relatively small anomalous heat transport across
the Greenland–Scotland ridge. However, when expressed in
terms of the percentage of the multi-year monthly mean
extent, α is similar for March and September.

4. Estimating the AMO driven component of sea ice
decline

We use a simple linear model 1SIEAMO = α1AMO to
estimate the component of sea ice decline forced by natural
AMO variability. We estimate α from regression slope

Figure 2. Scatter plots of the annual AMO index and March (left
column) or September (right column) for each simulation. The blue
line is the least squares linear best fit. The slope coefficient (α) and
standard error (Serr) are stated in km2 ◦C−1. Slope coefficients for
all models are significantly different from 0 at the 99% level, using
a student t-test.
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Figure 3. Estimates of the September (a) and March (b) SIE
perturbation, 1SIE, caused by the AMO for the period 1953–2010.
These were calculated from a linear model using the observed AMO
index as a predictor of 1SIE using the sensitivity from five GCMs.
The range of values for 1SIE, taking into account both model and
regression uncertainty are shown in grey.

coefficients, calculated from each of the five GCMs in turn
and use these values together with the observed AMO values
to calculate the SIE anomaly due to the AMO, 1SIEAMO.
By considering the model and regression uncertainty in α we
calculate a range of values for the change in SIE per decade
due to the AMO, calculated as a percentage of the observed
SIE at the start year. Using this method we estimate that,
for September sea ice, a decline of 0.5–3.1%/decade out of
the total observed decline of 10.1%/decade for 1979–2010
is related to the AMO. Over the longer observational period
(1953–2010) this contribution is 0.2–0.5%/decade out of the
6.9%/decade trend (see figure 3(a)).

Repeating this calculation for March, we find the trend
associated with the AMO is 0.6–1.8%/decade of the observed
decline of 2.5%/decade for the period 1979–2010 (see
figure 3(b)). Again this is an order of magnitude larger than
that for the 1953–2010 period, of which 0.1–0.3%/decade of
the observed decline of 1.4%/decade is associated with the
AMO.

As the AMO changed from a negative to positive
phase during the period 1979–2010, the North Atlantic SST
trend is strong and the AMO index increases by 0.48 ◦C,
corresponding with an abrupt decline in SIE (figure 1). During
this time the linear model estimates a strong trend in SIE.
The longer period, 1953–2010 captures nearly a full AMO
cycle, thus the trend in AMO is smaller with an increase in

the AMO index of 0.11 ◦C, causing a smaller SIE trend in the
linear model. These results indicate that some, if not most of
the acceleration in trend between the two periods considered
is due to the AMO, but the observed decline is substantially
more rapid than our estimated range for the AMO driven
component.

The results above indicate that the AMO may explain
some of the discrepancy between observed and modelled
SIE. The September SIE trend in the 20C3M and A1B
CMIP3 ensemble members have a smaller range for the
period 1953–2010 (0.3–4.8%/decade) than for the shorter
1979–2010 period (0.6–9.6%/decade). Focusing on the five
CCSM3 ensemble members, the range of trends for the
model years 1953–2010 is a decline of 3.8–4.2%/decade
compared to 2.5–9.6%/decade (1979–2010). Since the upper
bound of this range increases as well as the lower bound
decreasing in the latter period, this indicates that it is not
simply that larger anthropogenic forcing post-1979 leads to
an accelerated trend, but also that vigorous decadal variability
such as that associated with the AMO can have a strong
effect when SIE trends are calculated over short timescales.
March SIE modelled trends show similar behaviour where
the range widens from −2.4–1.1%/decade (1953–2010) to
−2.0–5.2%/decade (1979–2010) between these periods.

5. Conclusions

Understanding the sources of natural sea ice variability
is important to determine the proportion of the observed
decline in sea ice which can be attributed to anthropogenic
forcing, and also to investigate possible limitations of model
simulations. To this end, we have used long GCM simulations
with constant pre-industrial forcing to investigate the sea ice
variability due to the AO, AMOC and AMO.

We find little evidence for a relationship between the
AO and September SIE in either the observations or the
five models. Further, from modelling we find that over short
periods (≤58 years) there will be apparently significant
correlations between the AO and SIE purely by chance,
indicating the need for long term observations. However,
missing physical processes in the GCMs may cause a lack of
sensitivity to changes in atmospheric circulation.

In agreement with Mahajan et al (2011), we find that a
significant correlation between the annual AMO index and
SIE and is a robust feature of the five models. Correlation
between the AMOC and SIE is also a consistent feature
of all 5 pre-industrial simulations, except for September
in GFDL-CM2.1. In the models considered variations in
the AMO and AMOC are associated with variations in the
North Atlantic heat transported to the Arctic, it is through
this mechanism that North Atlantic variability impacts SIE.
However, the lag time which maximizes the correlation
between AMOC and SIE differs between models. The lack of
long term, century scale monthly sea ice or AMOC estimates
does not allow us to robustly infer this relationship from
observations.

The method used here shows that for the period
1979–2010, 0.5–3.1%/decade of the observed decline of

5
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10.1%/decade is associated with the natural cycle of the
AMO, consistent with Kay et al (2011). During this period
the AMO has moved from a negative phase, associated with
anomalously cold North Atlantic SSTs, to a positive phase,
associated with anomalously warm SSTs. The effect of the
AMO over the extended observational period 1953–2010 is
much smaller since the record both begins and ends in a
negative AMO state. This suggests that despite increased
observational uncertainty in the pre-satellite era, the trend in
SIE over this longer period is more likely to be representative
of the anthropogenically forced component. Looking at
the longer term trends is also more comparable with the
multi-model mean in multi-model ensembles which have
reduced variability as decadal variability in the models
cancels.

Our results are clearly dependent on the models used
for this study, which were chosen for the availability of long
integrations necessary for the calculation of robust correlation
statistics. A larger ensemble of control simulations would
give a better indication of the robustness of the relationships
studied here and of sea ice sensitivity to internal variability. It
is also unclear whether present day control simulations would
exhibit different sensitivity compared to pre-industrial. There
was good qualitative agreement in the models concerning
the nature of the relationship between the AMO and SIE,
however there was some spread in sensitivity. Performing the
same analysis with the CMIP5 models, which include more
elaborate sea ice schemes would be an informative follow up
to this study.
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