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Abstract

Numerical models predict that the recycling rate of atmospheric moisture decreases with time at
the global scale, in response to global warming. A recent observational study (Wentz et al 2007
Science 317 233-5) did not agree with the results from numerical models. Here, we examine
the recycling rate by using the latest data sets for precipitation and water vapor, and suggest a
consistent view of the global recycling rate of atmospheric moisture between numerical models
and observations. Our analyses show that the recycling rate of atmospheric moisture has also
decreased over the global oceans during the past two decades. In addition, we find different
temporal variations of the recycling rate in different regions when exploring the spatial pattern
of the recycling rate. In particular, the recycling rate has increased in the high-precipitation
region around the equator (i.e., the intertropical convergence zone) and decreased in the
low-precipitation region located either side of the equator over the past two decades. Further
exploration suggests that the temporal variation of precipitation is stronger than that of water
vapor, which results in the positive trend of the recycling rate in the high-precipitation region
and the negative trend of the recycling rate in the low-precipitation region.

Keywords: precipitation, water vapor, recycling rate, hydrological cycle

1. Introduction

The hydrological cycle, which involves the atmosphere,
surface and biosphere, has enormous impact on human activity.
The atmospheric branch of the hydrological cycle, in which
water vapor leaves the surface by evaporation and returns to
the surface by precipitation, is a crucial component of weather
and climate.

Besides the effects of regional meteorology (Ye and Fetzer
2009), the temporal variation of the total mass of water vapor
in the global atmosphere is related to atmospheric temperature
by the Clausius—Clapeyron equation under the approximation
that the relative humidity in the atmosphere stays constant.
Different datasets display qualitatively consistent increasing

4 Author to whom any correspondence should be addressed.

1748-9326/11/034018+06$33.00

trends in the total mass of water vapor in the global atmosphere
(Trenberth et al 2005, Wentz et al 2007, Santer et al 2007).
Such increasing trends in water vapor are also simulated in
the numerical models (Bosilovich et al 2005, Held and Soden
2006) even though the mechanism of how water vapor affects
climate change is still not very clear (Held and Soden 2006,
Ingram 2010).

On the other hand, precipitation, which is controlled by
the atmospheric circulation and cloud microphysics, is more
complicated. Consequently, there is no simple relationship
between precipitation and temperature at the global scale
even though surface temperature is correlated with local
precipitation (Trenberth and Shea 2005, Adler et al 2008) and
precipitation extremes (Allan and Soden 2008, Liu et al 2009).
Large discrepancies in the linear trend of global precipitation

© 2011 IOP Publishing Ltd  Printed in the UK
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exist among different studies (Allen and Ingram 2002, Adler
et al 2003, Trenberth er al 2003, Held and Soden 2006, Gu et al
2007, Stephens and Ellis 2008, Adler et al 2008, Liepert and
Previdi 2009, Trenberth 2011, Zhou 2011). A recent letter by
Wentz et al (2007) suggests that the increasing trend with time
was roughly the same for global precipitation (1.4 £ 0.5% per
decade) and total water vapor (1.2 £ 0.5% per decade) during
the period 1987-2006.

The study by Wentz et al (2007) implies that the recycling
rate of atmospheric moisture, which is defined as the ratio
of precipitation to column water vapor, remained constant or
intensified with time. From the perspective of atmospheric
radiative imbalance, it is possible that global precipitation is
increasing at a rate of 1.4% per decade (Liepert and Previdi
2009). However, most other observational studies (Adler et al
2003, Gu et al 2007, Adler et al 2008) and climate models
(Allen and Ingram 2002, Held and Soden 2006, Stephens
and Ellis 2008) suggest that global precipitation is increasing
(~0.2-0.7% per decade) more slowly than in the total mass
of water vapor (~1.4—1.5% per decade) in response to global
warming. In this study, we revisit the temporal variation of
water vapor and precipitation based on the latest version of
global data sets with emphasis on the variation of the recycling
rate of atmospheric moisture that accompanies global warming
during the past two decades (1988-2009).

2. Methodology and data

A useful method of estimating the intensity of the hydrological
cycle in the global atmosphere is to use some simple
parameters, which include recycling rate (Chahine et al 1997),
residence time (Chahine et al 1992, Trenberth 1998), and a
non-dimensional ratio between the precipitation sensitivity and
the water vapor sensitivity (Stephens and Ellis 2008). The
purpose of these parameters is to compare the increasing rates
between the total water vapor and precipitation. Here, we use
the recycling rate of atmospheric moisture (R) (Chahine et al
1997) to compare the temporal variation between column water
vapor (W) and precipitation (P).

R=P/W. (1)
So we have
InR =1n(P/W)
= d(nR)/dr =d[ln P — In W]/dt (2)
= (dR/dt)/R = (dP/dr)/P — (dW/dr)/ W.

Therefore, during a time period we can approximate
equation (2) as below

AR/R = AP/P — AW/W 3)

where AX and X represent the change and mean value of
variable X (i.e., R, P, and W) during the time period. When
the varied percentage of precipitation (AP/P) is larger than
the varied percentage of column water vapor (AW/W), we
have the ratio AR/ R > 0. Otherwise, we have the ratio
AR/R < 0. In physics, the parameter AR/R is the same

as another non-dimensional ratio ¢ = (AP/P)/(AW/W),
which is developed by Stephens and Ellis (2008). It should be
mentioned that the balance described in equation (3) probably
does not hold except for the global mean where the flux
divergence term drops out.

Equation (2) shows that the temporal variation of recycling
rate is determined by the temporal variations of precipitation
and column water vapor. In this study, the latest data sets
from the Special Sensor Microwave Imager (SSM/I) (Wentz
1997, Wentz and Spencer 1998) and the Global Precipitation
Climatology Project (GPCP) (Huffman er al 2009) are utilized
to examine the temporal variations of precipitation, column
water vapor, and recycling rate over the past two decades. The
data set of SSM/I (V 6) has oceanic precipitation and water
vapor from 1988 to 2009 with spatial resolution at 0.25° X
0.25° (latitude by longitude) (SSM/I data are provided by
Remote Sensing Systems from the website: www.ssmi.com/
ssmi/ssmi_browse.html). The latest version of GPCP (V 2.1)
has the global precipitation data from 1979 to 2009 with spatial
resolution at 2.5° x 2.5° (latitude by longitude) (GPCP V 2.1
data are provided by the Earth System Research Laboratory
from the website www.esrl.noaa.gov/psd/data/gridded/data.
gpcp.html). To be consistent with the length of water vapor
data from SSM/I, we only use the GPCP precipitation between
1988 and 2009.

3. Results

The temporal variations of precipitation and water vapor at
the global scale are shown in figure 1. Figure 1(A) shows
two time series of the temporal variations of precipitation
based on a combined global data from SSM/I and GPCP and
the global data from GPCP. The combined global data was
constructed by combining the precipitation data over ocean
from the SSM/I and the precipitation data over land from
GPCP. Figure 1(B) displays the temporal variation of column
water vapor over the global oceans, which is based on the
oceanic data from SSM/I. We calculate the linear trends and
corresponding uncertainties of the time series shown in figure 1
by the least-squares method (Bevington and Robinson 2003).
The linear trend of global precipitation is 0.08 &+ 0.43% per
decade and 0.26 =+ 0.41% per decade for the combined global
data and the GPCP global data, respectively. The linear trend
of column water vapor is 1.01 &£ 0.39% per decade, which is
basically consistent with the value of 1.37 £ 0.72% per decade
from a recent study (Santer et al 2007). We also calculate
the confidence level of linear trends in figure 1 (please refer
to the appendix), which shows that the confidence level of
linear trend in the global precipitation is less than 90% and the
confidence level of linear trend in the oceanic water vapor is
more than 95%. The weak positive trend of global precipitation
(0.08 £ 0.43% per decade and 0.26 + 0.41% per decade) is
much smaller than the linear trend (1.4 £ 0.5% per decade) in
the previous study (Wentz et al 2007). The previous study was
also based on a combined global data from SSM/I (ocean) and
GPCP (land), but a relatively old version of GPCP (V 2) was
used (Wentz et al 2007). Our study (figure 1) is based on a
recent-released version of GPCP (V 2.1) (Huffman et al 2009).
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Figure 1. Temporal variations of global-mean precipitation and
oceanic-mean water vapor. (A) Precipitation (P). (B) Column water
vapor (W). The red line in panel (A) is based on the combined global
data from the latest version of GPCP (V 2.1) (land) and SSM/I (V 6)
(ocean), and the blue line in panel (A) is based on the global data
from the latest version of GPCP (V 2.1). Deseasonalization and
low-pass filter were applied to the time series. Seasonal cycle was
removed by subtracting the monthly mean data. Low-pass filter was
constructed so that only signals with periods longer than six months
were kept.

The new dataset of GPCP has been improved by applying
a new updated climate anomaly analysis method for gauge
data (Schneider er al 2008) and several correction schemes
(Huffman et al 2009). GPCP V 2.1 has better data quality
and more continuous coverage than the old version (Huffman
et al 2009). Therefore, an exploration of the temporal variation
based on the latest GPCP (V 2.1) will be more robust than
the analyses in the previous study based on the relatively old
version. The differences of trend between this study (figure 1)
and the previous study (Wentz et al 2007) are mainly due to the
dramatic drop in the rate of increase of precipitation over land
between the old version (V 2) and the new version (V 2.1) of
the GPCP dataset (Huffman et al 2009).

The weak positive trend with larger uncertainty in
the global precipitation suggests that the linear trend of
global precipitation is not statistically significant, and the
precipitation trend is smaller than the significant linear trend
in the oceanic water vapor. The comparison of linear
trends between precipitation and water vapor implies that the
recycling rate of global atmospheric moisture decreased with
time during the past two decades. Therefore, the linear trends
of precipitation (0.08 £ 0.43% per decade or 0.26 £ 0.41%
per decade) based on the latest and improved precipitation
data are basically consistent with the estimated trends for
precipitation (~0.2-0.7% per decade) from the numerical
simulations (Allen and Ingram 2002, Held and Soden 2006,
Stephens and Ellis 2008), which reconcile the discrepancy
of recycling rate of global atmospheric moisture between the
study by Wentz et al (2007) and the other studies (Allen
and Ingram 2002, Held and Soden 2006, Stephens and Ellis
2008). A consistent view—the slowing in the recycling rate of
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Figure 2. Temporal variations of precipitation, water vapor, and
recycling rate averaged over ocean between 60°N and 60°S.

(A) Precipitation (P). (B) Water vapor (W). (C) Recycling rate (R).
El Nifio-Southern Oscillation (ENSO) signals have been removed
from time series by a regression method based on the Nifio3.4 index.
Note: the linear trend of time series is basically consistent between
the data with the ENSO signals and the data without the ENSO
signals. The recycling rate 1 is defined as the ratio of SSM/I
precipitation to SSM/I water vapor, and the recycling rate 2 is defined
as the ratio of GPCP precipitation to SSM/I water vapor.

global atmospheric moisture in response to global warming—
now emerges. The slowing of the recycling rate of global
atmospheric moisture can be explained from the perspective
of atmospheric energetics (Allen and Ingram 2002). The
physics behind the slowing is complicated, which includes the
modification of the tropical Walker Circulation by changing
the frequency of strong/weak updrafts (Emori and Brown
2005, Vecchi and Soden 2007), suppression of the surface
evaporation (Richter and Xie 2008), and reduction in the
precipitation efficiency by a negative feedback through cloud
radiative heating (Stephens and Ellis 2008).

Due to the lack of global long-term continuous data of
water vapor, we assume that the linear trend of global water
vapor is same as that of oceanic water vapor in the above
comparison between precipitation and water vapor. Such an
assumption was also used in the previous study (Wentz et al
2007). However, it is possible that the linear trend of water
vapor is different between ocean and land (Simmons et al
2010) so that the above assumption is not valid. Here, we
conduct a strict comparison of linear trends between oceanic
precipitation and oceanic water vapor over the past two decades
in figure 2. The retrieval of water vapor and precipitation
near coasts is generally not robust due to the complicated
meteorological situations there. Therefore, the data of water
vapor and precipitation close to coasts (i.e., 1° latitude within
coasts) are not included in this study. The data quality in the
polar region is not very good either because there are very
few in situ observations available to validate the satellite data.
Therefore, only the data of precipitation and water vapor over
ocean between 60°N-60°S are used to discuss the recycling
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Table 1. The linear trends of ocean-mean precipitation (P), column water vapor (W), and recycle rate (R) shown in figure 2 (1988-2009).

Precipitation (P)  Water vapor (W)  Recycling rate (R)

SSM/I. GPCP  SSM/IL Rate 1 Rate2  Units
Linear trend  0.13 0.33 0.97 —0.82 —0.65 % /decade
Uncertainty  0.63 0.54 0.37 1.11 0.51 % /decade

rate of atmospheric moisture during the past two decades in
figure 2.

Figure 2 displays the temporal variations of oceanic
precipitation, water vapor, and recycling rate. Details for
the linear trends of the time series in figure 2 are written in
table 1. As shown in table 1, the positive linear trend of
oceanic precipitation is very weak with large uncertainty. The
linear trend of oceanic water vapor between 60°N and 60°S
is roughly the same as the linear trend of oceanic water vapor
from pole to pole (figures 1(B) and 2(B)). The recycling rate 1
is defined as the ratio of the SSM/I precipitation to the SSM/I
water vapor, and the recycling rate 2 is defined as the ratio of
the GPCP precipitation to the SSM/I water vapor. From table 1,
we find that the linear trend of recycling rate roughly equates to
the difference of linear trends between precipitation and water
vapor, which is consistent with equation (2). The confidence
level of linear trend in the recycling rate 1 is less than 90%,
but the confidence level of linear trend in the recycling rate
2 is more than 90%. The qualitatively consistent oceanic
recycling rate between the recycling rate 1 and recycling rate
2 confirms that the previous conclusion based on the global
precipitation and oceanic water vapor (figure 1): the recycling
rate of atmospheric moisture has decreased during the past two
decades.

In addition to the temporal variation of recycling rate
averaging over globe and ocean, we also explore the spatial
patterns of recycling rate in response to global warming.
Figure 3 shows the spatial pattern of temporal variation of
two recycling rates (recycling rate 1 and recycling rate 2).
As shown in figure 3, the two recycling rates have similar
spatial patterns. The temporal variation of recycling rate is
positive in a narrow band around the equator, which is roughly
the intertropical convergence zone (ITCZ) identified by highly
reflective clouds (Waliser and Gautier 1993). Even though
the confidence level of the linear trend of precipitation in the
narrow band is less than 90%, the positive temporal variation
suggests that the recycling rate of atmospheric moisture has
intensified in the ITCZ during the past two decades. The
recycling rate displays strong negative temporal variation at the
two sides of the ITCZ in the Pacific Ocean with the confidence
level of the linear trend larger than 90%, which suggests that
the recycling rate of atmospheric moisture has slowed down in
these areas. Besides the dominant feature in the tropical region,
figure 3 also shows other positive and negative centers in the
relatively high latitudes. Since the global average of recycling
rate is decreased, it implies that the negative recycling is
stronger (or spatially larger) than the positive recycling rate.

The dominant feature of recycling rate in the tropic
region shown in figure 3 is very interesting. Considering
that the recycling rate of atmospheric moisture is determined
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Figure 3. Spatial pattern of temporal variation of recycling rate
(AR/R) over the time period of 1988-2009. Color represents the
ratio of temporal variation to time mean during one decade. For each
grid point of the global maps, the temporal variation of recycling rate
(AR) over one decade is estimated by the production of linear trend
and time span (one decade). Time mean value (R) is computed for
the time period of 1988-2009. (A) Recycling rate based on SSM/I
precipitation and SSM/I water vapor. (B) Area with confidence level
of linear trend in (A) larger than 90%. (C) and (D) are the same as
(A) and (B) except for the recycling rate based on GPCP
precipitation and SSM/I water vapor.

by precipitation and water vapor (equation (2)), the spatial
patterns of temporal variations in precipitation and water vapor
are also explored. Figure 4 displays the spatial patterns of
oceanic precipitation and water vapor. Figure 4(A) shows
that there are positive temporal variations of precipitation in
the ITCZ, which is a high-precipitation area. In addition,
negative temporal variations of precipitation occur in the
two sides of the ITCZ in the tropic region, which are is
a low-precipitation area. The opposite temporal variations
of precipitation between the high-precipitation and low-
precipitation areas are consistent with a recent study (Allan
et al 2010). It suggests that the precipitation over high-
precipitation areas has intensified during the past two decades.
This intensification provides a new perspective to examine the
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Figure 4. Same as figure 3 except for the temporal variations of
precipitation and water vapor. (A) Precipitation (P). (B) Area with
confidence level of linear trend in (A) larger than 90%. (C) and

(D) are the same as (A) and (B) except for the column water vapor
(W). The precipitation data in panel (A) is from SSM/I. The spatial
pattern of precipitation from GPCP, which is basically the same as
the pattern from SSM/I, is not shown.

amplification of precipitation extremes in response to global
warming (Allan and Soden 2008, Liu et al 2009). The spatial
pattern of temporal variation in precipitation also provides
an observational evidence for a ‘rich-get-richer’ mechanism
from numerical simulations (Chou and Neelin 2004, Neelin
et al 2006), in which the tendency of precipitation increasing
in the ITCZ and decreasing in the neighboring dry region
was suggested. The dynamical processes responsible for the
‘rich-get-richer’ mechanism are probably associated with the
variation of gross moist stability of the atmospheric boundary
layer and the related adjusting of convection and precipitation
(Held and Soden 2006, Chou et al 2009).

The spatial pattern of temporal variation is similar be-
tween recycling rate (figure 3) and precipitation (figure 4(A)).
In addition, the magnitude of temporal variation is much
stronger in precipitation than in water vapor (figure 4).
Globally the trend in precipitation is smaller than that of
water vapor, but regionally the trend in precipitation appears
to dominate in the temporal variation of the recycling rate
of atmospheric moisture (figures 4(A) and (B)). Figure 4
also shows that the spatial patterns of temporal variations are
similar between precipitation and water vapor, which implies
that the temporal variations of precipitation are related to the
temporal variations of water vapor even though the magnitudes
of their temporal variations are different.

4. Conclusions

In this study, we explore the temporal variations of global
and oceanic precipitation, water vapor, and recycling rate
of atmospheric moisture during the past two decades. Our
analyses suggest that a consistent view between observation
and numerical modeling—the global or oceanic recycling
rate of atmospheric moisture has decreased over the past
two decades. Considering that the linear trend of global
precipitation is sensitive to different datasets and different
versions of datasets, we suggest caution in interpreting the
linear trends of time series at the global scale, as pointed
out by some previous studies (Gu et al 2007, Lambert et al
2008, John er al 2009, Huffman ez al 2009). We urge further
examination of this important trend at the global and regional
scales when longer and better global precipitation datasets
become available.

We also explore the spatial pattern of temporal variations
in the recycling rate of atmospheric moisture. Recycling rate
has increased in the ITCZ and decreased in the neighboring
region over the past two decades. Our exploration shows
that the spatial pattern of temporal variations in the recycling
rate is mainly controlled by the spatial pattern of temporal
variations in precipitation whose magnitude is much stronger
than the magnitude of the temporal variations in water vapor.
The spatial patterns of temporal variations in precipitation,
water vapor, and recycling rate enrich our knowledge of
the hydrological cycle, which further provide constraints for
climate models. Correct simulation of these important features
by the climate models will help elucidate the physics behind
the different temporal variations in the wet and dry areas,
paving the way for more accurate prediction of future climate
change driven by anthropogenic activities.

Acknowledgments

We thank S Newman, N Heavens, R Shia, L Kuai, M Line,
X Zhang, and M Gerstell for helpful comments. This work was
partly supported by the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National
Aeronautics and Space Administration. Precipitation data are
from GPCP V 2.1 and SSM/I. Water vapor data are from
SSM/IL

Appendix. Confidence level of linear trend

The confidence levels on the linear trends of the time series of
the precipitation are estimated by the ¢-statistics. For the linear
trend coefficient b calculated from the least-square fitting, the
t-statistics is defined by t = |b/SE(b)| (Box et al 2005). SE(b)
is the standard error of the linear trend b, which is estimated by

SE(b) = (6/+/N1)/4/(1/N2) Y x? (Bevington and Robinson
2003), where o is the standard deviation of the data, N is the
number of degrees of freedom of the data, N, is the length
of the data set, and x; is the time series corresponding to a
number of measurements with Y x; = 0. The number of
degrees of freedom N is estimated by a formula suggested by
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Ni = No[1 — r(Ax)?1/[1 + r(Ax)?] (Bretherton et al 1999),
where r(Ax) is the autocorrelation corresponding to a lag of
time interval Ax. The linear trend is statistically significant
when ¢ is larger than a certain value 7y, which can be found
from the ¢-distribution table (Box et al 2005).
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