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There was a unit error in the header row of table 2 of the article. The unit of ‘Potential minimal heat content’ should be kJ km−2

(instead of kJ year−1 km−2). The table is now reproduced correctly below:

Table 2. Heat content and heating demand estimation for selected cities.

City
Areae

(km2)

Population
densitye

(km−2)
Aquifer
material

Thickness
(m)

Porosityf

(—)

Potential
minimal heat
content
(kJ km−2)

Heating demand
(kJ year−1 km−2)

Capacity for
space heating
(—)

Cologne 405 2528 Gravel, sand 10–30 0.15–0.25 4.8 × 1010–
4.8 × 1011

1.9 × 1010 2.5–25.5

Winnipeg 5302 1429 Carbonate 5–15 0.05–0.1 2.2 × 1010–
2.1 × 1011

4.1 × 1010 0.5–5.6

Shanghai 6200 2646 Sand, clayg 10–20g 0.2–0.3 5.0 × 1010–
3.5 × 1011

2.3 × 109h 22.2–155.1

Tokyo 2187 5874 Sand, clayi 30–70i,j 0.2–0.3 5.0 × 1010–
7.0 × 1011

2.5 × 1010k 5.9–48.3

London 1707 4761 Chalkl 30–40l 0.05–0.2 1.1 × 1011–
5.6 × 1011

9.5 × 1010m 1.4–6.9

Istanbul 1830 6211 Limestonen 10–30 0.05–0.25 4.4 × 1010–
5.0 × 1011

5.5 × 109p 8.0–92.9

Prague 496 2504 Sandstoneq 10–30 0.1–0.3 4.6 × 1010–
5.3 × 1011

9.6 × 109r 4.8–55.0

a City Population (2010). b Spitz and Moreno (1996). c Zhang et al (2007). d The Climate Group of WADE (2005). e Hayashi et al (2009).
f Taniguchi et al (2007). g Data from Agency for Natural Resources and Energy (2009). h Headon et al (2009). i Report: Energy
Consumption in the UK (2007). j Yalcin and Yetemen (2009). k Sectoral Energy Consumption Statistics (2005). l Stulc (1998). m Data from
Czech Statistical Office (2008).
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Abstract
The urban heat island effect and climate change have not only caused surface temperature
increase in most urban areas, but during the last hundred years also enhanced the subsurface
temperature by several degrees. This phenomenon yields aquifers with elevated temperature,
which are attractive though underestimated thermal energy reservoirs. Detailed groundwater
temperature measurements in Cologne (Germany) and Winnipeg (Canada) reveal high
subsurface temperature distributions in the centers of both cities and indicate a warming trend
of up to 5 ◦C. The case-specific potential heat content in urban aquifers and available capacities
for space heating are quantified. The results show, for example, that, by decreasing the 20 m
thick urban aquifer’s temperature by 2 ◦C, the amount of extractable geothermal energy beneath
Cologne is 2.5 times the residential heating demand of the whole city. The geothermal potential
in other cities such as Shanghai and Tokyo is shown to supply heating demand even for decades.

Keywords: geothermal, urban heat island, groundwater, climate change

1. Introduction

Numerous studies and meteorological records have revealed
a dramatic warming trend in most megacities in the last
century (Ferguson and Woodbury 2007, Perrier et al 2005,
Taniguchi et al 2007). This phenomenon is not only due to
the climate change, but, in particular, a result of non-climatic
perturbations, which are mainly caused by local warming due
to urbanization (Oke 1973, Kataoka et al 2009). This urban
heat island (UHI) effect is recognized as a major environmental
issue for most cities (Rizwan et al 2008). The increased
temperature in an urban area compared to the surroundings is
known as UHI intensity (Oke 1973, Magee et al 1999). The
work by Tran et al (2006) revealed large UHI intensity values
through satellite data in most Asian megacities, such as Tokyo
(12 ◦C), Bangkok (8 ◦C), and Shanghai (7 ◦C). Various other

researches (Cermak et al 2000, Ferguson and Woodbury 2004,
Huang et al 2009) demonstrate that the UHI effect also has
a strong influence on the underground temperature. Regional
studies in urban areas from North America (Ferguson and
Woodbury 2007, Wang et al 1994), Europe (Bodri and Cermak
1997, Perrier et al 2005, Yalcin and Yetemen 2009), and Asia
(Taniguchi et al 2007, Wang et al 2009) have indicated 2–5 ◦C
increase of the subsurface temperature. The results from the
research of Beltrami (2001) indicated that the heat flux into
the ground increased by an average of 24 mW m−2 over the
last 200 years in Canada. At a large spatial scale the anomaly
trends of ground surface temperature (GST) agree with those
at the surface (Pollack et al 1998, Huang et al 2000), and
GST directly influences subsurface temperature by thermal
conduction. Factors that cause the urban heat island effect in
the subsurface are similar to the ones that increase surface air
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temperature, such as indirect solar heating by the massive and
complex urban structures, anthropogenic heat losses, and land
use change. In addition, the anthropogenic thermal impacts are
more persistent in the subsurface (Huang et al 2009), because
rather than radiation and advection, slow conduction plays
the most important role in underground heat flow, and it is
influenced by both surface and subsurface processes.

Although in many cases it is still not clear what the
driving forces of enhanced underground temperature are,
whether climate change, land use change, sewage leakage
or groundwater flow (Balke 1977, Beltrami et al 2005), the
wide existence of aquifers with elevated temperature is an
indisputable fact (Ferguson and Woodbury 2007, Taniguchi
et al 2007, Yalcin and Yetemen 2009). The extra heat
stored in urban aquifers is sometimes considered as a kind
of underground thermal pollution. However, as a result of
increasing interest in geothermal use, these high yielding
aquifers are attractive thermal reservoirs for space heating and
cooling. In addition to the general advantages of geothermal
usage, such as minor environmental impact and reduced
greenhouse gas emissions (Blum et al 2010, Saner et al
2010), urban aquifers with higher temperature can improve
the sustainability of geothermal systems. In essence, higher
temperatures mean a higher amount of energy stored, that is,
an increased geothermal potential.

Until now, most research on subsurface temperature has
focused on tracking long term climate change (Beltrami
et al 2005, Kataoka et al 2009), studying groundwater flow
(Cartwright 1979, Taniguchi et al 2003), or identifying human
impact on urban subsurface environment (Huang et al 2009,
Taniguchi et al 2009). There are few works on estimation
of potential and sustainable use of shallow geothermal energy
on the large scale. Balke (1977), Kley and Heekmann
(1981) used similar methods to quantify the recoverable
heat per unit surface and time from ‘groundwater bearing
strata’ in Cologne. Allen et al (2003) concluded that
using hydrogeothermal source for space heating has high
development potential in urban heat islands with high yielding
aquifers. Their calculation was based on data from a single
borehole, and regional groundwater conditions and associated
heat content were not considered. The current study presents
extensive field studies in two cities, Cologne (Germany) and
Winnipeg (Canada), and additional case studies for other
cities such as London and Tokyo. The major objective is to
estimate the regional potential geothermal energy contents in
contrast to available capacities for space heating. Subsurface
conditions are interpreted on the basis of the findings from
comprehensive field measurement campaigns in both city
centers and surrounding rural areas.

2. Aquifer temperature anomalies in Winnipeg and
Cologne

The city of Cologne, lying on the River Rhine, is Germany’s
fourth-largest city with a population of around one million.
The average annual air temperature from 1945 to 2009 was
11 ◦C according to the German weather service (DWD).
Cologne is underlain by quaternary terrace deposits that host

shallow unconfined aquifers (Klostermann 1992). Major
components are sand and gravel with a mean hydraulic
conductivity of 1 × 10−3–5 × 10−3 m s−1 (Losen 1984). The
main aquifer reaches a depth of 30–70 m and is underlain
by a layer of clay and soft coal. Groundwater flows from
southwest to northeast to the river Rhine. The groundwater
level is between 10 and 15 m below the surface. Groundwater
temperature measurements were performed in October 2009
using logging equipment (SEBA KLL-T) with an accuracy
of 0.1 K. We measured 72 wells in a total area of around
140 km2. The area covers business districts, residential
districts, industrial areas, green spaces in the city, and rural
agricultural areas. The measured wells have a diameter
between 0.05 and 0.127 m, and the well depth ranges between
20 and 100 m. Groundwater temperatures were recorded at 1 m
intervals in each well.

Winnipeg is located in south central Canada, and it is the
capital and largest city of Manitoba with more than 0.6 million
inhabitants. According to the climate record of Canada
Environment, the average daily temperature in Winnipeg from
1971 to 2000 is around 2.6 ◦C. The Winnipeg area is underlain
by the Carbonate Rock Aquifer, which can be divided into
two parts, namely the Upper Carbonate Aquifer and the Lower
Carbonate Aquifer (Ferguson and Woodbury 2005). Below
the carbonate aquifer is a continuous layer of shale. The
Upper Carbonate Aquifer occurs at a depth of 15–30 m and
is overlain by silt and clay. The thickness of this layer is
between 5 and 15 m, and the transmissivities range from
2.9 × 10−2 to 2.9 m2 s−1 (Render 1970). Because it generally
has much higher hydraulic conductivities than the Lower
Carbonate Aquifer, it is the primary water supply aquifer in
Winnipeg area (Render 1970). Temperature measurements
were performed in August 2007 in 40 monitoring wells in
Winnipeg and the surrounding areas (Ferguson and Woodbury
2007). Measurement accuracy is 0.1 K and equal to that for
Cologne. Diameter and depth ranges of wells are 0.05–0.125 m
and 20–150 m, respectively. Temperatures were measured at
1–2 m intervals in the water-filled portion of the well.

Collected temperature data for both cities were contoured
by kriging (figure 1). As the reference depth, for the Winnipeg
case 20 m below ground surface was selected. At this depth,
approximately the center of the Upper Carbonate Aquifer,
borehole data are most exhaustive while noise from seasonal
air temperature change is low. In Cologne, for the same
reason, temperatures measured at about 15 m were used
to construct isolines, which were smoothed, and only the
ones on the western side of the river Rhine were considered
here. The measurement results indicate that in both cities
the shallow aquifers in the center are several degrees (3–
5 ◦C) warmer than in the surrounding rural areas. Like the
experience with urban air temperature, the observed subsurface
temperature is correlated with the population density and land
cover (Ferguson and Woodbury 2007). The subsurface beneath
green spaces in the cities has lower temperatures than business
districts in the city centers, and the agricultural areas always
have the lowest underground temperatures.

The natures of typical vertical temperature profiles depend
on location and depth. This is illustrated by selected wells
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a

b

Figure 1. Groundwater temperature contour map. (a) Groundwater
temperature contour map at about 15 m depth beneath Cologne in
2009; (b) groundwater temperature contour map at 20 m depth
beneath Winnipeg in 2007.

in Cologne (figure 2). The lowest temperatures prevail
beneath the agricultural area. Values of 10.8 ◦C at 17 m
depth were measured. The green spaces in the city have
higher temperature, and apparently below 10 m depth the
temperature increases slightly. In the city center, much
higher temperature prevails and profiles vary substantially from
well to well. And in most observation wells, temperatures
at 15 m depth are above 12 ◦C. The highest temperatures
appear in two observation wells, one of which is near a large
underground parking lot and the other next to a dining hall.
Similar patterns of temperature distributions were also found
in Winnipeg (Ferguson and Woodbury 2007), with higher
and more variable subsurface temperatures in the city center
and cooler underground for the green spaces and agricultural
land. Since natural geothermal anomalies are not known for

Figure 2. Temperature profiles of selected wells in Cologne in 2009.

both Cologne and Winnipeg, the underground anthropogenic
thermal loss appears to be the primary cause of the heightened
subsurface temperature.

3. The geothermal potential

Geothermal energy use of shallow aquifers is on the rise, and
anthropogenic anomalies represent increased thermal energy
reservoirs. This is of even more importance for highly
urbanized cities with higher heating demand compared to
the surrounding countryside. The theoretical geothermal
potential (i.e. the potential heat content) below Cologne and
Winnipeg can be estimated. The three-dimensional non-
uniform subsurface temperature distribution is simulated by
measurement data interpolation and extrapolation, at a grid size
of 500 m × 500 m in east–west and north–south directions and
1 m in the vertical direction. On the basis of the temperature
field and known hydrogeological conditions (table 1), the
potential heat content can be estimated using the following
equation, after Balke (1977):

Q = Qw + Qs = V nCw�T + V (1 − n)Cs�T (1)

in which Q (kJ) is the total theoretical potential heat content
of the aquifer, V (m3) is the aquifer volume, n is porosity,
Cw and Cs (kJ m−3 K−1) are the volumetric heat capacity of
water and solid, Qw and Qs (kJ) are the heat content stored in
groundwater and solid respectively, �T (K) is the temperature
reduction of the whole aquifer. According to the German
engineering guideline VDI 4640/1 (2000), Cw, for water, is
4150 kJ m−3 K−1, and Cs has a range depending on sediment
types, and for Cologne and Winnipeg ranges between 2100 and
2400 kJ m−3 K−1. To cover all possible conditions, maximum,
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Table 1. Heat content estimation of the aquifer in Cologne and Winnipeg.

Cologne Winnipeg

Min Max Average Min Max Average

Aquifer thickness (m) 10 30 20 5 15 10
Volume of urban aquifer (m3) 1.4 × 109 4.3 × 109 2.8 × 109 2.2 × 109 6.5 × 109 4.3 × 109

Porosity 0.15 0.25 0.20 0.05a 0.095a 0.06
Volume of water (m3) 2.1 × 108 1.1 × 109 5.7 × 108 1.1 × 108 6.1 × 108 2.6 × 108

Heat content in water (kJ K−1) 8.8 × 1011 4.4 × 1012 2.4 × 1012 4.5 × 1011 2.5 × 1012 1.1 × 1012

Volume of solid (m3) 1.2 × 109 3.2 × 109 2.3 × 109 2.0 × 109 5.9 × 109 4.1 × 109

Volumetric heat capacity of solid (kJ m−3 K−1)b 2100 2200 2150 2100 2400 2250
Heat content in solid (kJ K−1) 2.5 × 1012 7.0 × 1012 4.9 × 1012 4.3 × 1012 1.4 × 1013 9.1 × 1012

Temperature reduction (K) 2 6 4 2 6 4
Potential underground heat content (kJ) 6.8 × 1012 6.9 × 1013 2.9 × 1013 9.5 × 1012 1.0 × 1014 4.1 × 1013

Potential underground heat content (kJ km−2) 4.8 × 1010 4.8 × 1011 2.0 × 1011 2.2 × 1010 2.3 × 1011 9.5 × 1010

Space heating demand (kJ km−2 year−1) 1.9 × 1010 c 4.1 × 1010 d

Capacity for space heating 2.5 25.5 10.7 0.5 5.6 2.3

a Ferguson and Woodbury (2005). b VDI 4640/1 (2000). c Matthess (1994). d Data from Natural Resources Canada (2007).

minimum and mean values were chosen for Cs as well as
for porosity n. The latter values are based on the literature
(Matthess 1994) and field pumping tests conducted by the
regional water association called Erftverband (Voigt and Kilian
2007).

The total aquifer volume was divided into small units
according to the grid size, and the heat content Q of each unit
was calculated with specific �T by subtracting the local or
simulated local temperature from the average temperature in
agricultural area. The sum of Q for the entire area of the 20 m
thick aquifer is between 9.8 × 1012 and 1.1 × 1013 kJ (7.0 ×
1010–7.9 × 1010 kJ km−2 on average in the urban area around
140 km2), which stands for the increased heat content mainly
caused by the urbanization effect in Cologne. For geothermal
use, in principle, the aquifers’ temperature could be technically
decreased to 0 ◦C, but energy extraction is most efficient at
relatively high temperatures. Because of this decrease in
efficiency and also due to environmental potential concerns,
the extractable energy only reflects a decrease of few degrees.
Here, the temperature reduction value was set between 2 and
6 K; the lower value of this range is close to the average
temperature increase in Cologne and the upper value is the
minimum threshold as recommended in legal regulations such
as laws and guidelines of several countries (VDI 4640/4 2004).
Aquifer volume is calculated as the product of approximate
aquifer thickness and urban area where the temperature within
the depth of the aquifer is higher than the one in agricultural
areas. Again, a range of reasonable values, according to field
tests and literature, are considered to reflect the uncertainty in
specifying this parameter.

The space heating demand in Cologne is around 1.9 ×
1010 kJ km−2 year−1, with an average annual unit heating
demand of 50 kWh m−2 and average living space of around
43 m2 (Timm 2008). For long term geothermal use, besides the
potential heat content of the aquifer, natural geothermal flux
from the Earth’s interior has to be considered. For instance,
the natural heat flux density in Cologne is 0.059 W m−2 (Balke
1977), which represents an annual heat supply of around 1.9 ×
109 kJ km−2 and equals 10% of the annual heating demand in
Cologne. However, the annual natural heat supply is less than

3% of the calculated increased heat content due to urbanization
(7.0×1010 kJ km−2); therefore in this case it is not included in
the space heating capacity estimation. The natural geothermal
flux for Winnipeg is only 0.035–0.040 W m−2 (Jessop and
Judge 1971) and would have an even smaller effect on the
calculations performed. The results show that the theoretical
geothermal potential in the urban aquifer of Cologne has a
space heating capacity of 2.5, which means that the minimum
potential extractable heat content is at least 2.5 times the total
annual residential heating demand. For the most optimistic
case, even 25.5 times would be possible. Winnipeg’s heating
demand is almost twice that of Cologne and its population is
smaller. Accordingly, its geothermal potential is at least half of
the annual heating demand, and a maximum capacity of 5.6.

4. Discussion and conclusions

Subsurface warming trends were also discovered in other large
cities with rapid urbanization rates all over the world. The
potential geothermal energy contents in various cities are also
determined using estimated hydrogeological conditions, and
maximum and minimum values of parameters are used in
order to cover the possible range and to reflect the uncertainty
(table 2). The magnitude of the subsurface temperature
reduction is also set to 2–6 K, for the same reason as is applied
in Cologne. Due to the difficulty of getting the specific annual
space heating demand for each city, the values are preliminary
estimates based on national statistical data on space heating,
total population and the city population density (Stulc 1998,
Headon et al 2009). Table 2 indicates that in most cities,
with a variety of populations and climates, the large amount of
thermal energy stored in the urban local subsurface is capable
of fulfilling the annual space heating demand at least for
years. Cities with a longer history of urbanization usually have
influence on the subsurface temperature at greater depth, due
to the early start of additional heat (Taniguchi et al 2007).
They accordingly have higher potential heat content in the
aquifers. In the megacity of Shanghai, the existing heat content
in the urban aquifer is at least 22 times the annual heating
demand of the city. Considering that aquifers are dynamic
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Table 2. Heat content and heating demand estimation for selected cities.

City
Areaa

(km2)

Population
densitya

(km−2)
Aquifer
material

Thickness
(m) Porosityb

Potential minimal
heat content
(kJ year−1 km−2)

Heating demand
(kJ year−1 km−2)

Capacity for
space heating

Cologne 405 2528 Gravel, sand 10–30 0.15–0.25 4.8 × 1010–4.8 × 1011 1.9 × 1010 2.5–25.5
Winnipeg 5302 1429 Carbonate 5–15 0.05–0.1 2.2 × 1010–2.1 × 1011 4.1 × 1010 0.5–5.6
Shanghai 6200 2646 Sand, clayc 10–20c 0.2–0.3 5.0 × 1010–3.5 × 1011 2.3 × 109 d 22.2–155.1
Tokyo 2187 5874 Sand, claye 30–70e,f 0.2–0.3 5.0 × 1010–7.0 × 1011 2.5 × 1010 g 5.9–48.3
London 1707 4761 Chalkh 30–40h 0.05–0.2 1.1 × 1011–5.6 × 1011 9.5 × 1010 i 1.4–6.9
Istanbul 1830 6211 Limestonej 10–30 0.05–0.25 4.4 × 1010–5.0 × 1011 5.5 × 109 k 8.0–92.9
Prague 496 2504 Sandstonel 10–30 0.1–0.3 4.6 × 1010–5.3 × 1011 9.6 × 109 m 4.8–55.0

a City Population (2010). b Spitz and Moreno (1996). c Zhang et al (2007). d The Climate Group of WADE (2005). e Hayashi et al (2009).
f Taniguchi et al (2007). g Data from Agency for Natural Resources and Energy (2009). h Headon et al (2009). i Report: Energy
Consumption in the UK (2007). j Yalcin and Yetemen (2009). k Sectoral Energy Consumption Statistics (2005). l Stulc (1998). m Data
from Czech Statistical Office (2008).

systems and that the energy of the subsurface is slowly but
continuously replenished, the geothermal potential here has
the technological possibility to supply space heating for even
hundreds of years.

In order to extract the geothermal energy in urban aquifers,
two kinds of shallow geothermal systems, closed and open
systems, are commonly used. Closed systems are typically
represented as ground source heat pumps (GSHP). A heat
carrier fluid is circulated within buried vertical or horizontal
borehole heat exchangers (BHE) that exchange heat with
the surrounding underground. In open systems such as
groundwater heat pump (GWHP) systems, groundwater is
directly circulated between production and injection wells.
Depending on the local hydrogeological conditions, national
legislation (Haehnlein et al 2010) and groundwater utilization,
different systems can be chosen. In order to reduce the
detrimental environmental impacts, groundwater temperature
change limits for both heating and cooling and minimum
distances between different geothermal systems have been
defined in some national regulations and recommendations.
According to the study of Haehnlein et al (2010), these
worldwide regulations and recommendations show a wide
range of temperature limits and minimum distances, and most
of them are still in an early stage.

Since these technologies are based on energy transfer
through closed BHE or open wells, even with dense galleries,
uniform extraction of the artificially increased heat of the urban
subsurface is hardly possible. The ratio between producible
and stored thermal energy in a given volume of reservoir is
expressed as the recovery factor (R). The study by Muffler
and Cataldi (1978) showed that R may be as much as 0.5
for an ideally permeable hot-water system, while Iglesias and
Torres (2003) assumed a constant value of 0.25 for R in
their estimation of geothermal reserves with low to medium
temperature. These figures reflect case-specific conditions
and there is no generally valid value of R for urban aquifer
systems. However, note that the geothermal potential (table 2)
in the current study focuses on the component that is artificially
increased beneath cities. Therefore, even for recovery factors
below 0.5 the technologically utilizable geothermal potential
is very high. In order to only exploit the additional energy
stored beneath cities, for instance, geothermal systems could

be operated that cause more pronounced local temperature
anomalies (>�T ). This also triggers heat conduction to
further energy supply and establishes a regional temperature
decrease. In many situations it will be possible to recover
nearly all of the additional energy due to urbanization with
heat pump technologies, but this will require local temperature
decreases below background values near the extraction point.

In numerous cities, such as Winnipeg, aquifers have
mainly been used for cooling purposes since the early
20th century (Ferguson and Woodbury 2005). This
accelerates subsurface warming and meanwhile decreases the
efficiency of using underground for cooling. In this case,
a dual heating/cooling system or aquifer thermal energy
storage (ATES) system will be more environmentally and
economically efficient. In particular in summer, the large
difference between air temperature and the underground
temperature makes the GSHP systems very efficient for space
cooling.

As a result of rapid urbanization, particularly in Asian
megacities, the magnitude of temperature increase in the
subsurface becomes even greater and so does the influenced
depth. Consequently, the potential heat content stored in
these urban aquifers is growing. Efficiently and sustainably
extracting this large amount of energy will not only fulfill
part of the energy demand in urban areas, but also play a
positive role in slowing down urban warming, because of the
reduction of greenhouse gas emissions. Detailed research
according to specific hydrological/geological and urbanized
conditions, such as subsurface temperature profiles, land use
and specific heating and cooling demands in megacities, is
therefore necessary to further improve our understanding of the
dynamics of energy fluxes in urban heat islands.
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Muffler P and Cataldi R 1978 Methods for regional assessment of
geothermal resources Geothermics 7 53–89

Natural Resources Canada 2007 Energy Use Data Handbook Tables
(Canada: Energy Publications Office of Energy Efficiency)

Oke T R 1973 City size and the urban heat island Atmos. Environ.
7 769–79

Perrier F, Le Mouel J L, Poirier J P and Shnirman M G 2005
Long-term climate change and surface versus underground
temperature measurements in Paris Int. J. Climatol. 25 1619–31

Pollack H N, Huang S P and Shen P Y 1998 Climate change record
in subsurface temperatures: a global perspective Science
282 279–81

Render F W 1970 Geohydrology of the metropolitan Winnipeg area
as related to groundwater supply and construction Can.
Geotech. J. 7 243–74

Rizwan A M, Dennis Y C L and Liu C H 2008 A review on the
generation, determination and mitigation of Urban Heat Island
J. Environ. Sci. 20 120–8
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