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Abstract
This study investigated the climate change in Inner Mongolia based on 51 meteorological
stations from 1955 to 2005. The climate data was analyzed at the regional, biome (i.e. forest,
grassland and desert) and station scales, with the biome scale as our primary focus. The climate
records showed trends of warmer and drier conditions in the region. The annual daily mean,
maximum and minimum temperature increased whereas the diurnal temperature range (DTR)
decreased. The decreasing trend of annual precipitation was not significant. However, the vapor
pressure deficit (VPD) increased significantly. On the decadal scale, the warming and drying
trends were more significant in the last 30 years than the preceding 20 years. The climate
change varied among biomes, with more pronounced changes in the grassland and the desert
biomes than in the forest biome. DTR and VPD showed the clearest inter-biome gradient from
the lowest rate of change in the forest biome to the highest rate of change in the desert biome.
The rates of change also showed large variations among the individual stations. Our findings
correspond with the IPCC predictions that the future climate will vary significantly by location
and through time, suggesting that adaptation strategies also need to be spatially viable.

Keywords: climate change, biome, Inner Mongolia, scale

1. Introduction

The global climate has changed rapidly with the global mean
temperature increasing by 0.7 ◦C within the last century (IPCC
2007). However, the rates of climate change are significantly
different among regions (IPCC 2007). This is primarily due to
the varied types of land surfaces with different surface albedo,
evapotranspiration and carbon cycle affecting and responding
to the climate in different ways (Meissner et al 2003, Snyder
et al 2004, Dang et al 2007). Most efforts in climate change
studies have focused on the global scale, although regional-

4 Author to whom any correspondence should be addressed.

scale analysis is important for mitigating its negative effects
and the development of adaptation plans.

The Inner Mongolia autonomous region (IM) is the third
largest province of China (1.18 million km2) and lies in the
southeast section of the area studied by the Northern Eurasian
Earth Science Partnership Initiative (NEESPI, http://neespi.
org, Groisman et al 2009). IM encompasses a core region
of semi-arid climate but also includes areas with arid and
semi-humid climates in the southwest and north, respectively.
Biogeographically, IM divides into contributions from three
biomes: forest, grassland and desert (Olson et al 2001). The
semi-arid to arid areas in IM are expected to be most vulnerable
to climate change (Ojima et al 1998).
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Figure 1. Fifty-year trends of annual mean Tmean, Tmin, DTR ( ◦C), VPD (kPa) and annually accumulated precipitation (mm) in the region (R)
and three biomes (F—forest, G—grassland, D—desert). In each subplot, the annual means with plus/minus standard error were shown by the
black curve and shaded area; the bold solid line represented the linear fit; and the number was the regression slope (stars meant slopes were
significant). Capital letters A, B and C referred to the slope differences among biomes (at the significance level of 0.05).

In the last 50 years, in particular, the core region of IM
was undergoing a relatively rapid socioeconomic development
with significant increases in population, urbanization and
intensified land use practices. It is becoming the consensus
that climate change is likely to affect not only the ecological
and physiological features of the natural system but also of
the human system (IPCC 2001, 2007) and it is critical for
both scientists and policymakers to understand the historical
changes of the climate in IM. Our primary objective in this
study is to highlight the changes in the regional climate over
the past 50 years, with particular focuses on the differences
among the biomes.

2. Methods

The climate data used in this study was from 51 meteorological
stations in IM, provided by the China Meteorological
Data Sharing Service System (http://cdc.cma.gov.cn). The
analyzed climate variables included daily mean, maximum and
minimum temperature, daily temperature range (Tmean, Tmax,
Tmin, DTR, ◦C), vapor pressure deficit (VPD, kPa; calculated
from Tmean and relative humidity) and daily precipitation (PPT,
mm). The stations were evenly distributed across IM, with
10, 23 and 18 stations in the forest, grassland and desert
biomes, respectively. Although the data recordings from some
individual stations started earlier, we used the data from 25
stations that started in 1955 to represent the entire region. The
number of stations increased to 49 in 1960 and 51 in 1971.

We calculated the annual series (means of Tmean, Tmax,
Tmin, DTR and accumulated PPT) for the region and each

biome. The long-term trends of the climatic parameters
were examined for the region, each biome and each station
using the least squares linear regression analysis—an approach
frequently used in climate change studies (e.g. Qian and Lin
2004, Bartholy and Pongrácz 2007). T-tests were used to
examine the differences in the trends (i.e. the slopes of linear
regression) among the biomes and the means of the climate
variables between two continuous decades (with repeated
measures). All statistical tests were performed using SAS
(version 9.1, SAS Institute Inc., Cary, NC, USA).

3. Results and discussion

3.1. Regional change

The three temperature measures of annual Tmean, Tmax and Tmin

increased from 1955 to 2005. The rate of change was higher
in Tmean (0.35 ◦C/10 yr, figure 1(a)) and Tmin (0.48 ◦C/10 yr,
figure 1(b)) than in Tmax (0.23 ◦C/10 yr). The higher rate
of change in Tmin and lower rate of change in Tmax resulted
in a decreasing trend of DTR (−0.26 ◦C/10 yr, figure 1(c)).
These results are consistent with previous studies showing
that the warming rate was more pronounced in minimum than
in maximum temperature in northeastern and northern China
(Zhai et al 1999, Hu et al 2003, Zhai and Pan 2003). Indeed,
DTR decreased throughout most of China during the past half-
century, with one of the most significant regional decreases
(1.00–1.25 ◦C) occurring in northeast China (Qian and Lin
2004).

PPT showed a regional decrease of 21.5 mm (7% of the
annual average) within the period 1955–2005 (figure 1(e)).
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Figure 2. Comparison of the frequency distribution of residues in
Tmean ( ◦C), Tmin ( ◦C), DTR ( ◦C), VPD (kPa) and PPT (mm) among
three biomes (F—forest, G—grassland, D—desert). The residue was
the difference between the mean and 50 year trend of linear
regression (1955–2005) for each biome and variable.

Although the trend in PPT was not significant (p > 0.05), it
does not disagree with the results showing a slightly decreasing
trend in PPT in the semi-arid region of northern China (Gong
et al 2004). Nevertheless, VPD increased significantly at
the rate of 0.02 kPa/10 yr (figure 1(d)). This is consistent
with a recent IPCC assessment projecting the evaporative
demand to increase almost everywhere because the water-
holding capacity of the atmosphere increases with higher
temperatures (Bates et al 2008). Predictably, higher VPD at
constant PPT will deplete soil moisture and result in a generally
drier environment.

At the decadal scale, the regional Tmean increased steadily
throughout the study period, with the inter-decadal increases
only significant in the last two decades (table 1). Meanwhile,
the regional Tmin and DTR changed significantly during the
periods 1976–1985 and 1986–1995. From the first to the last
decade, decadal Tmean and Tmin increased by 1.2 ◦C and 1.7 ◦C,
respectively, while DTR decreased by 0.9 ◦C. The period of

1986–1995 showed the largest increase in temperature, with
Tmean and Tmin increasing by 0.7 ◦C and 1.0 ◦C, respectively,
and DTR decreasing by 0.4 ◦C as compared to the previous
decade. Similar observations of the highest increase in
temperature at the end of the 20th century were also reported
for other regions (Kumar et al 2005, Bartholy and Pongrácz
2007). Regional VPD showed insignificant increases in the
first four decades but it increased significantly in the last
decade. The decadal VPD increased by 0.09 kPa from the first
to the last decade. Regional PPT showed an insignificant trend,
with both increases and decreases over the five decades.

3.2. Variations among the biomes

The rates of change varied among the biomes. They were
generally high in the desert biome, intermediate in the
grassland biome and low in the forest biome (figures 1(f)–
(t)). The lower rates of change in the forest biome may
be related to the moderating influence of forests on climate
(Bonan et al 1992). Notably, the higher rates of change in
the grassland and desert biomes coincided with the dramatic
land use changes and more intense human activities in these
areas (Chuluun and Ojima 2002, John et al 2009). The
difference in the trends between the grassland and desert
biomes seemed consistent with the results showing a warming
and drying trend by simulating the removal of grasslands in
the central USA (Snyder et al 2004). Dang et al (2007)
examined the temperature changes by dividing the globe into
seven vegetation/surface classes. They found a higher increase
in the temperate forest (0.23 ◦C/10 yr) than that in the bare
ground (0.19 ◦C/10 yr) from 1950 to 2004. This seemingly
contradictory finding to our results suggested that the studies
at the global or continental scales did not resolve the regional
details. Nevertheless, it is clear that global climate change has
produced ecosystem- or region-dependent consequences.

The biome-specific rates of change in climate variables
concurred with larger-scale periodicities beyond the inter-
annual variability. For example, Tmean in the forest biome
was mainly higher, lower, and again higher than the long-term
trend in 1955–1965, 1966–1990 and 1991–2005, respectively
(figure 1(f)). This larger-scale periodicity was similar but
the dispersion of the annual means around the general trend
increased from the forest to the grassland and further to the
desert biome. The clustering of years with individual variables
above and below the 50 year trend affected the frequency
distribution of positive and negative residuals (figures 2(a)–
(e)). Both residuals of Tmean and Tmin showed left skews
in the grassland biome and right skews in the desert biome,
suggesting that both variables tended to cluster at the lower
range of values in the grassland as compared to the desert
(figures 2(a) and (b)). The different skewed distributions in
the data of the desert and grassland biomes further suggested
that the differences in the rates of change would increase if
the variables continue to increase with the same periodicity as
during the previous 50 years.

DTR appeared more randomly distributed in the desert
whereas it clustered below and above the long-term trend in the
grassland biome (figure 2(c)). This pattern was in agreement
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) )
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Figure 3. Spatial variations of trends in the climate variables based on the 51 meteorological stations in IM. The inside polygons represented
the boundaries of the three biomes. Solid circles meant the trends were not significant (at the confidence level of 0.05) during the period
1955–2005. There were 2, 1, 11 and 7 stations for Tmean, Tmin, DTR and VPD showing insignificant changes, respectively; hollow circles of
different sizes meant the differences in the rate of changes. (a) Rate of change in Tmean(

◦C)/10 yr. (b) Rate of change in Tmin(
◦C)/10 yr.

(c) Rate of change in DTR (◦C)/10 yr. (d) Rate of change in VPD (kPa)/10 yr.

Table 1. Comparison of the decadal means in the climate variables in IM from 1955 to 2005. Values in parentheses represented p levels
testing the significance of the difference between a decade and its preceding one. Arrows represented significant increasing or decreasing
trends (at the level of 0.05).

Decade Tmean Tmin DTR VPD PPT

1955–1965 3.6 −3.0 13.9 0.55 318
1966–1975 3.5 (0.95) −3.0 (0.89) 13.7 (0.10) 0.57 (0.25) 286 (0.24)
1976–1985 3.8 (0.38) −2.5 (0.05)↑ 13.2 (0.00)↓ 0.58 (0.45) 303 (0.21)
1986–1995 4.5 (0.00)↑ −1.5 (0.00)↑ 12.8 (0.00)↓ 0.59 (0.27) 319 (0.51)
1996–2005 4.8 (0.04)↑ −1.3 (0.11) 13.0 (0.17) 0.64 (0.00)↑ 290 (0.24)
1955–2005 4.0 −2.3 13.3 0.58 303

with a stronger large-scale periodicity in the temperature
variables in the grassland than in the desert biome. The
clustered deviations from the trend of DTR in the grassland
were further projected onto the frequency distribution of
VPD residuals. In contrast, the forest biome appeared to
have a stark damping effect on the variability of VPD and
consequently produced a near-normal frequency distribution
despite a significantly clustered variability in PPT (figures 2(d)
and (e)).

3.3. Spatial variability below the biome scale

The increasing trends in Tmean and Tmin were found
across the region (figures 3(a) and (b)). However, large

differences existed in the rates of change among the individual
stations. Except for those that showed no significant
changes (figures 3(a)–(d)), the rate of change in Tmean,
Tmin, DTR and VPD ranged from 0.01–0.71 ◦C/10 yr,
0.16–1.00 ◦C/10 yr, −0.16 to −0.90 ◦C/10 yr and 0.008–
0.061 kPa/10 yr, respectively. The most significant trends of
Tmean (0.54–0.71 ◦C/10 yr) and/or Tmin (0.74–1.00 ◦C/10 yr)
occurred in the desert and the northern parts of the grassland
and forest biomes. The highest rate of decrease in DTR
occurred in the desert biome (−0.76 to −0.90 ◦C/10 yr,
figure 3(c)). Conversely, five out of ten stations in the forest
biome showed no change in DTR.

The highest spatial variability in the change of VPD
occurred in the desert biome, which included locations with the
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most significant increase in VPD but also the highest number of
locations where VPD did not change. Similar to the findings at
the regional and biome scales, most of the individual stations
showed no significant change in PPT. Only one station north
of the Lang Shan Mountain in the desert biome showed a
significant increase in PPT (16.7 mm/10 yr). Conversely, one
station at the desert–grassland transition and one station in the
southern part of the forest biome showed significant decreases
in PPT (−11.3 mm/10 yr and −17.7 mm/10 yr, respectively).

Along with the differences among the biomes, the
correlation analysis further showed the degree of influence of
latitude and longitude gradients on the climate trends. The
geographic location seemed to exert influence only on the
changes in Tmax and VPD in this region. With longitude
increasing, the rate of change in VPD decreased (R2 =
0.21, p = 0.002); with latitude increasing, the rate of change
in Tmax increased (R2 = 0.26, p < 0.001).

Future in-depth studies are needed to consider the effects
of regional-scale land use and land cover (LULC) change on
climate and its feedback processes. Even sub-regional LULC
may either suppress or enhance trends in climate change.
For example, Zhang et al (2003) reported that increasing
bareness from grassland led to the decrease in soil moisture,
which added to the acceleration of grassland degradation (i.e. a
positive feedback to climate change).

The warming and drying climate may affect human
systems in various aspects in IM, such as reducing vegetation
production and crop yield (Hou et al 2008), reducing
biodiversity (John et al 2008) and aggravating desertification
(Gao et al 2003). The findings of differences among
biomes also suggested that biome-specific and/or sub-regional
adaptation strategies are needed to cope with the changing
climate and its potential feedbacks with LULC change.
Conservation for forests would be favorable to alleviate the
warming trend. For both the grassland and desert biomes, the
increased water stress primarily calls for a careful management
of water resources.

4. Summary

The changes in temperature, PPT and other related climate
variables indicated that IM, as a region, has changed to a
warmer and drier environment over the past 50 years, with
the rates of change being most significant during the last 30
years. The deviations of some climate variables from the
long-term trend showed obvious periodic rhythms, especially
in temperature. Notably, stronger changes in temperature
and VPD were found in the grassland and desert biomes
than in the forest biome. Both scientific predictions of
ecosystem dynamics and development of adaptation plans
need to consider these differences in time and space. The
IPCC stated that the future climate would vary significantly
by location and through time across the globe. We conclude a
similar statement for the IM region.
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