
     

LETTER • OPEN ACCESS

Real-time extreme weather event attribution with
forecast seasonal SSTs
To cite this article: K Haustein et al 2016 Environ. Res. Lett. 11 064006

 

View the article online for updates and enhancements.

You may also like
Predictability of tropical vegetation
greenness using sea surface temperatures
Binyan Yan, Jiafu Mao, Xiaoying Shi et al.

-

Effects of eastern vs. central Pacific El
Niño on Northern Hemisphere
photosynthetic seasonality
Matthew P Dannenberg and Miriam R
Johnston

-

A comparison of model ensembles for
attributing 2012 West African rainfall
Hannah R Parker, Fraser C Lott, Rosalind
J Cornforth et al.

-

This content was downloaded from IP address 18.118.30.253 on 06/05/2024 at 07:45

https://doi.org/10.1088/1748-9326/11/6/064006
https://iopscience.iop.org/article/10.1088/2515-7620/ab178a
https://iopscience.iop.org/article/10.1088/2515-7620/ab178a
https://iopscience.iop.org/article/10.1088/2752-5295/accb02
https://iopscience.iop.org/article/10.1088/2752-5295/accb02
https://iopscience.iop.org/article/10.1088/2752-5295/accb02
https://iopscience.iop.org/article/10.1088/1748-9326/aa5386
https://iopscience.iop.org/article/10.1088/1748-9326/aa5386
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsuobD0T5ceKBR-OOrNfEhgd3sJ2uW1M1p9-My6GD1e_vb0KUgkmyLOnWBWp1ReEQuIc-XlbDJ2eVWzT_x55kFGlE6EZu-ce5zVt5Nsd5sMZrvnmBiZDPJMc6cfAqP8yFeEyKSweizkD0z0kzgYlD3xecHmFWozl4652gH4ZP6gnjj82uKbWDcWftC0nCvhzAvO9aPP-mXjG-wC9NCjOj7YHIeOg7d_Khm-q-7S5VPby8VsfHHz3seoHkZurPlMD5WJEBVfT5EQZg8EAPs30Af28ltQ0vC1jEn28ja1bzkhH6gZJOYJzso2R1MIYf3T0zr4fzWdxFnZNrVcg4bywljABBuKNtA&sig=Cg0ArKJSzMBMpLivJ_6P&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/breath-biopsy-complete-guide/%3Futm_source%3Djbr%26utm_medium%3Dad-b%26utm_campaign%3Dbb-guide-bb-guide%26utm_term%3Djbr


Environ. Res. Lett. 11 (2016) 064006 doi:10.1088/1748-9326/11/6/064006

LETTER

Real-time extreme weather event attribution with forecast
seasonal SSTs

KHaustein1, F E LOtto1, PUhe1,2, N Schaller3,MRAllen1,3, LHermanson4, NChristidis4, PMcLean4 and
HCullen5

1 School of Geography and the Environment, University of Oxford,Oxford, UK
2 Oxford e-ResearchCenter, University ofOxford,Oxford, UK
3 Department of Atmospheric Oceanic and Planetary Physics, University ofOxford, Oxford, UK
4 MetOfficeHadley Centre, Exeter, UK
5 Climate Central,Washington, USA

E-mail: karsten.haustein@ouce.ox.ac.uk

Keywords: extreme event attribution, climate change, ensemblemodelling

Abstract
Within the last decade, extremeweather event attribution has emerged as a newfield of science and
garnered increasing attention from thewider scientific community and the public. Numerous
methods have been put forward to determine the contribution of anthropogenic climate change to
individual extremeweather events. So far nearly all such analyses were donemonths after an event has
happened.Here we present a newmethodwhich can assess the fraction of attributable risk of a severe
weather event due to an external driver in real-time. Themethod builds on a large ensemble of
atmosphere-only general circulationmodel simulations forced by seasonal forecast sea surface
temperatures (SSTs). Taking the England 2013/14winterfloods as an example, we demonstrate that
the change in risk for heavy rainfall during the Englandfloods due to anthropogenic climate change, is
of similarmagnitude using either observed or seasonal forecast SSTs. Testing the dynamic response of
themodel to the anomalous ocean state for January 2014, wefind that observed SSTs are required to
establish a discernible link between a particular SST pattern and an atmospheric response such as a
shift in the jetstream in themodel. For extreme events occurring under strongly anomalous SST
patterns associatedwith known low-frequency climatemodes, however, forecast SSTs can provide
sufficient guidance to determine the dynamic contribution to the event.

1. Introduction

Warming of the climate system is unequivocal, and
since the 1950s, many of the observed changes in the
Earthʼs climate system are unprecedented over decades
to millennia [13]. Since anthropogenic climate change
poses a variety of societal and socio-economic risks
related to changes in the frequency of extreme weather
events [2], the scientific community is challenged to
provide answers as to what these changes might be and
whether and to what extent such changes are already
detectable. As extreme events are rare by definition, it is
often futile to draw a confident conclusion regarding
changing risks from an analysis based on observational
data alone. Using the power of large ensemble simula-
tions, with climate models that have shown to

realistically reproduce key feedbacks and large-scale
processes in the climate system [18, 28], it is possible to
obtain meaningful statistics on the magnitude and
frequency of occurrence of some extreme weather
events and to assess changes in the statistics [22, 30].

Several of the current approaches of this so-called
probabilistic event attribution utilize atmosphere-only
general circulation models (AGCM) and hence rely on
observed sea surface temperatures (SSTs) [21, 22, 27];
leading to publication months or years after the event.
Given that public awareness for an extremeweather event
is limited to a short period after the event occurring [4],
and links to climate change are discussed in the media
despite the lack of scientific evidence, an attribution state-
ment which is based on a very fast analysis framework
providing robust results would be desirable. If we are able
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to present evidence for a causal link (or the absence of it)
between a specific extreme event and climate change, the
public will more likely understand the reality and the
extent of the problem and it will be harder to dismiss cli-
mate change or to blame it as the sole cause, respectively.
Disaster risk management can be improved and the sci-
enceon the topic of climate change canbe advanced.

Here we show that fast-track event attribution does
provide robust assessments of the return time for
extremeweather events that are comparablewith thewell
established attribution of climate-related events frame-
work [8]. Thenewapproach employs theweather@home
(W@H) modelling environment for event attribution
based on the atmosphere-only model (HadAM3P) [17].
Using seasonal forecast SST and sea ice concentration
(SIC)data products insteadof observed data, ourmethod
enables us to simulate thepossible ‘weather’ in advance of
an extreme weather event occurring and it allows us to
provide an evidence-based attribution statement imme-
diately after the event orwhile it is still unfolding.

In this case study, we use the example of the Eng-
land winter floods 2013/14 to compare the attribution
statements obtained fromanalyzing an existing coupled
Global-Regional Climate Model (GCM-RCM) ensem-
ble forced with observed SSTs and SIC with a GCM-
RCM ensemble forced with forecast SSTs and SIC.
Since this case has been thoroughly investigated using
observed SSTs [26], we can (1) built on the previous
results for January 2014 and (2) use the existing huge
ensemble to estimate statistics of very rare events with
more confidence.We find that we are able to reproduce
the attribution statement for a changing risk in pre-
cipitation between natural (NAT; the world that might
have been without anthropogenic climate change) and
actual (ACT) conditions with high confidence. We also
looked at near-surface temperature and found excellent
agreement in the attribution result between ensembles
using forecast and observed SSTs (section 3.1).

Since extreme events are a combination of an anom-
alous state of the circulation (atmospheric noise) and
thermodynamic and dynamic changes due to climate
change (anthropogenic signal), the identification of the
signal is the major challenge and notoriously difficult
problem when making attribution statements [22]. It is
worth pointing out that the case-dependent (internal)
dynamic contribution—detectable or not—will not con-
siderably change the attributable human component,
commonly expressed as the change in risk. Even the
most extreme circulation regime could be largely unaf-
fected by climate change [32]. Only the thermodynamic
response and possible (forced) changes in the large-scale
dynamics due to anthropogenicwarming alter the risk in
a significant way. The return time estimate for an
extreme event under current (ACT) or counterfactual
(NAT) conditions will, however, change considerably in
response to event-specific extreme dynamics. For exam-
ple, a positive North Atlantic Oscillation (NAO+)
increases the likelihood for a wet winter over England
occurring, regardless of climate change.

We use a suite of metrics to investigate the robust-
ness of the combined dynamic and thermodynamic
response in our two SST scenarios. We also test the
detectability of the dynamic response during the flood
event in the context of the emerging variability between
the different NAT SST patterns. Similar attempts
employing a correlation method have been made for
theUKwinter floods [6]. In order to deepen our under-
standing of the causes for extreme circulation regimes,
we analyse global atmospheric teleconnections due to
anomalous low-frequency ACT SST patterns and test
themagainstNCEPReanalysis [14].

We find that the success in reproducing the models
thermodynamic response is associated with a less con-
fident result in the models dynamic response. With
reference to the current transient climatological mean in
terms of SSTs, we find that the likelihood for a wetter
winter over England occurring is not changed when
using forecast SSTs. Observed SSTs are required to iden-
tify the models dynamical response. We show, however,
that we can detect event-specific dynamic signals in cases
where strongly anomalous low-frequency SST patterns
are present (mainly tropical and Northern Pacific
ocean), exemplifiedby amodel analysis for the current El
Niño. Since climate modes such as El Niño can robustly
predicted ahead of the winter season, associated global
atmospheric teleconnections canbedetected aswell.

In section 2, we introduce the methodology, fol-
lowed by the presentation and discussion of the results
in section 3.We concludewith section 4.

2. Setup andmethodology

We utilize the W@H distributed volunteer computing
infrastructure to attribute changes in risk of extreme
events. The HadAM3P AGCM provides the boundary
conditions for the HadRM3P RCM with an European
domain on a rotated lat-lon grid [17].

The setup necessary to validate the real-time attribu-
tion capability consists of four sets of ensemble simula-
tions: two under current climate forcings (ACT) using
observed SSTs/SICs (OSTIA [9]) and seasonal forecast
SSTs/SICs (GloSea5) and two under natural conditions
(NAT) for the two different sets of SSTs. For ACT, the
IPCCAR5RCP4.5 forcing scenario is used and forNAT,
the IPCC historical forcing for 1900 is used.While there
is only one realization of observed SSTs, the seasonal
forecast SSTs are in itself an ensemble obtained by cou-
pled climate models. The atmospheric initial conditions
are provided from previous model experiments to
ensure consistent spin-up. Variability is introduced
using initial condition perturbations. In order to quan-
tify the dynamic model response, a AGCM climatology
simulation over the 1986–2014 period (CLIM) with
corresponding observed forcing conditions (historical
forcing until 2005, IPCC AR5 RCP4.5 forcing after-
wards) and prescribed OSTIA SSTs and SIC was run.
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We use 200 model ensemble member for each year in
this case.

GloSea5 is a seasonal forecast product derived from
the UKMet Office HadGEM3GCM [33], coupled with
nucleus for European modelling of the ocean (NEMO)
ocean [16]. Climate forcings are set to observed values
for the hindcast period up to 2005 and follow the IPCC
AR5 RCP4.5 scenario afterwards, consistent with our
HadAM3PACT and CLIM setup. It consists of 42 fore-
castmembers, corresponding to the forecast runsmade
in the three weeks (twice daily) before the latest
monthly seasonal prediction is issued publicly online.
The forecast members are disseminated by the UKMet
Office as a monthly data package which also includes
∼12×14 yr (1996–2009) of hindcast ensemble simu-
lations for SST for the forthcoming sixmonths.

Being a forecast product froma free running coupled
ocean-atmosphere GCM ensemble prediction system, it
is susceptible to deviations from the atmospheric mean
state after initialization, which, averaged over an ensem-
ble of model runs, lead to systematic SST forecast biases
that we have to account for. The UK Met Office has
developed its own dedicated bias correction method,
using the hindcast ensemble following the procedure
described in [1, 15]. End users then have to develop their
own bias correction method. We apply a slightly simpli-
fied method (no noticeable difference when compared
with the UK Met Office method), using the hindcast
ensemble average SST for each year and each month to
then calculate the difference with observed OSTIA SST
for the same month. In the final step, the multi-year
average SSTdifference is applied to the forecast ensemble
member of each respective month. For our test case, the
England winter floods 2013/14, the GloSea5 forecast
issued in November 2013 for December 2013 to May
2014 is used. In figures A1(a) and (c), the OSTIA and
GloSea5 SST anomalies for January 2014, relative to the
1996–2009 average, are plotted. ΔSST between OSTIA
and GloSea5 (essentially the forecast error) is shown in
figure A3(d). The SST anomalies and the forecast error
for December and February are very similar in spatial
extent andmagnitude (not shown). Sea ice extent used in
our GloSea5 ACT simulations is directly derived from
SSTs. If the grid box average SST is<271.4 K, this box is
assumed tobe coveredwith sea ice.

The NAT SST patterns are calculated by removing
the modelled anthropogenic warming from the
observed and seasonal forecast SSTs. To achieve that,
we use 11 GCM simulations from the Coupled Model
Intercomparison Project phase 5 (CMIP5) archive,
averaging and subtracting the monthly climatologies
(1996–2005) of the ACT (Historical) and the NAT (His-
toricalNat) simulations. The resulting anomaly patterns
represent 11 estimates of the possible impact of human
GHG emissions on SSTs. They are used to generate the
NAT SSTs and to run the associated NAT experiments,
alongwith pre-industrial atmosphericGHGconcentra-
tions. In figures A1(d)–(l), the NAT patterns from
the multi-model-mean (figure A1(d)–(f)), GISS-E2-H

model (figures A1(g)–(h)), and CCSM4 model (figures
A1(j)–(k)) are shown. See also figure S3 in [26]where all
11 NAT patterns are provided. HadISST1 [24] linear
SST trend (1870–2015) is shown for context as well
(figureA1(b)).

3. Results

We focus on the comparison of five RCM ensembles
forced with OSTIA and GloSea5 SST/SIC, respec-
tively. For the analysis, ∼17.000 ACT and 11 times
∼10.000 NAT runs with OSTIA SSTs, ∼12.000 ACT
and 11 times ∼8.000 NAT runs with GloSea5 SSTs,
and∼6000ACTCLIM simulations forcedwithOSTIA
SSTs are used. We confine the attribution study to
January 2014 as it was the wettest such month in the
observed record then (5.2 mm d−1 on average over 8
selected Southern England weather stations extracted
from the UK Met Office digital archive), approxi-
mately 10% above the previous record, whereas DJF
was wettest only by a small margin. For the evaluation
of theCLIMexperiment, we use all wintermonths.

We investigate the changes in return times of
monthly mean precipitation and near-surface temper-
ature due to anthropogenic forcing in January 2014
(figures 1(a) and (b)), followed by the analysis of the
large-scale dynamic setup. We use a MSLP index over
the North Atlantic (NA) as well as a meridional MSLP
gradient west of the UK in an attempt to disentangle the
contribution of changes in thermodynamic and large-
scale dynamic processes (figure 1(c) and (d)). The analy-
sis is supported by a model validation exercise with
regard to known atmospheric teleconnections in
response to anomalous low-frequency SSTpatterns.Our
study region over Southern England is defined from 50°
to 52°Nand6.5°Wto2° E in theRCM.

3.1. Thermodynamic/anthropogenic response
Precipitation and near-surface temperature are the
most common metrics to estimate the change in
atmospheric thermodynamics in response to any given
change in external forcing. For January 2014, the
observed average rainfall of 5.2 mm d−1 has an
estimated return time, based on all available observed
NDJF data, of 85 yr (figure 5(c) in [26]). Using ACT
and NAT simulations from the OSTIA RCM ensem-
ble, our best estimate for the change in risk of a
(natural) 1-in-a-100-year January rainfall event to
occur is an increase of 42% (now a 1-in-a-70-year
event;figure 1(a)). IndividualNATensemblemembers
show a wide range between no change (GISS-E2-H)
and 160% increase (CCSM4). Using CLIM results
(relative to 1986–2011 climatology), [26] found that
the modelled January 2014 precipitation and near-
surface temperature anomalies are similar to observa-
tions for the top 1% wettest (i.e. 1-in-a-100-year
return time) in the OSTIA ACT simulations. Despite a
notable wet bias (∼0.4 mm d−1) in the RCM in all
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winter months over southern England, this result is
evidence for a reliable representation of the temporal
precipitation variability in the model in agreement
with previousmodel evaluation efforts [17].

Consistent with these results, for a 1-in-a-100-year
January rainfall event, our GloSea5 results indicate an
increasing risk of 66% (nowa1-in-a-60-year event;figure
1(a)). The return times for precipitation are very similar
in magnitude, both in the OSTIA and the GloSea5 ACT
ensemble. While the pooled GloSea5 NAT ensemble
gives a comparable result to OSTIA, individual GloSea5
NAT experiments do different responses owing to differ-
ent SST patterns. It is exemplified by CCSM4 and GISS-
E2-Hwhich show the strongest andweakest signal in case
of OSTIA, respectively. We discuss the cause for the dif-
ference in the signal associated with the SST patterns
shown infigureA1(g) andA1(j) in section3.4.

For near-surface temperature (figure 1(b)), OSTIA
and GloSea5 results provide a comparable and very
robust attribution result. Albeit being a fairly moderate
month in terms of observed near-surface temperature
anomaly, January 2014 was still warmer than average
(relative to 1981–2010 in theCentral EnglandTimeseries)
with a mean temperature of 279.4 K (+1.3 K anomaly).
The return time for such an event would have changed
from 1-in-a-14-year event under pre-industrial condi-
tions to a 1-in-a-3-year event under current conditions,
which correspondswith amore than four-fold increase in
probability of such a moderately warm January. The
result for the change in risk is essentially the same using
GloSea5 forecast SST rather than OSTIA observed SST.
IndividualNATsimulations show the samemagnitudeof
temperature response to a change in forcing for both, the
OSTIAand theGloSea5 experiments.

Figure 1.Return time plot forOSTIA andGloSea5 ACT andNAT experiments for January 2014monthlymean precipitation (a),
mean near-surface temperature (b),MSLP at 20°Wand 60° N (c), andMSLP gradient between 57° Nand 51° N (8° W) (d).
Individual actual ensembles are represented by grey dots. CCSM4 (light green and light blue, resp.) andGISS-E2-H (dark green and
dark blue, resp.) are highlighted as they show the strongest/weakest response in terms of change in return time formonthlymean
precipitation (a). The pooled natural ensembles are highlighted in brown (OSTIA) and black (GloSea5). The 5%–95%uncertainty
range is provided for the actual and the pooled natural ensembles.
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3.2. Case specific dynamic response
Here, we first analyse the changing return times of
MSLP for 20° western longitude and 60° northern
latitude (figure 1(c)), the grid point coinciding with the
centre of the record low pressure as observed in January
2014 (figure 1(a) in [26]) andhence chosen as an index.

In contrast to the OSTIA ensemble (ACT=red;
pooled NAT=brown), in the GloSea5 simulations
(ACT=yellow; pooled NAT=black)we find that the
risk of such low pressure occurring under ACT condi-
tions does not change for a 1-in-a-100 year event in a
NAT world. The OSTIA forced simulations suggest an
increasing risk of 33%. We obtain more coherent
results when we look at a larger domain over the NA
from 38° to 62°N and 8° to 32°W (not shown). In
both, theOSTIA andGloSea5 experiment, the risk for a
1-in-a-100-year low pressure situation occurring is not
changed significantly betweenNATandACT results.

Analysing the meridional MSLP gradient to the west
of England and Scotland (which is considered less sensi-
tive to the selection of the location and at least partly
representative of potential changes in the atmospheric
circulation over the NA region), we find that a 1-in-a-
100-year event in terms of pressure gradient strength in
the NAT scenario becomes a 1-in-a-60-year event under
ACT conditions using OSTIA SSTs (figure 1(d)). With
GloSea5 SSTs, a 1-in-a-100-year event (NAT) becomes a
1-in-a-80-year event (ACT). The risk for a wetter winter
under ACT conditions occurring due to a stronger pres-
sure gradient is higher in the OSTIA experiment, which
intuitively suggests a stronger dynamic component.Note
that the difference between the changing risk in OSTIA
andGloSea5 is not significant though.

3.3. Atmospheric teleconnections
It can be shown, as discussed in the appendix, that our
W@H HadAM3P model is able to capture most of the
observed dynamic features in the troposphere in
response to low-frequency SST changes. While the
established teleconnections are not strong enough in
January 2014 todeterminewhether the rainfall anomaly
can be related to case-specific anomalous circulation
patterns in the GloSea5 experiment, such a link appears
to exist when OSTIA SSTs are used (see figures A3 and
A4 ). The SST pattern in the NE Pacific bears strong
resemblance to the positive phase of the Pacific Decadal
Variability/Oscillation (PDV/PDO+), associated with
an increased likelihood for the North Atlantic Oscilla-
tion (NAO) phase to be positive [23]. Together with an
increased chance for NAO+ conditions, we find
positive 200hPa zonal wind anomalies (more active
jetstream) and an increased risk in precipitation over
England, corroborating the results we found using
OSTIA SSTs in the previous section. Failure to forecast
the warm NE Pacific SST anomaly minimizes the
attributable change in circulation patterns over the NA,
which is what happened in the GloSea5 forecast for
January 2014. As a result, the odds for a winter over the

UK to be wetter than climatological average under
current conditions owing to anomalous atmospheric
circulation did not change in our GloSea5 ACT
experiment, which is consistentwithour results above.

While there is evidence thatAGCMs tend to produce
more or less blocking as a function of Gulf Stream
strength [19], and hence the SST gradient in the NA
region. Our analysis of the teleconnection strength in
HadAM3P suggests that the main cause for the missing
NAO/jetstream signal in theGloSea5ACT experiment is
the difference in Pacific SSTs rather than the marginal
differences between OSTIA and GloSea5 over the NA.
That said, the slightly stronger NA SST gradient in
OSTIA may well be caused by the Pacific SST anomaly
via a laggedPacificNorthAmericanpattern (PNA)-NAO
link. The MSLP signal over the NA is, however, almost
certainly caused by the direct thermodynamic feedback
to SSTs as warmer SSTs cause more buoyant atmo-
spheric conditions,which, onaverage, lowerMSLP.

Noteworthy in this context is that, by construction,
the AGCM results (forced SSTs) tend to be damped with
regard to higher frequency internal atmospheric chaotic
(white) noise due to the fact that thermal air-sea-fluxes
are reduced by virtue of disabled air-to-sea heat
exchange. In the real world, as well as in fully coupled
GCMs such as GloSea5, the high-frequency atmospheric
perturbations will interact with SSTs through surface
turbulent heat fluxes (air-to-sea) and alter the SST pat-
terns. This is particularly true over the NA region where
baroclinicity leads to periods of high cyclonic activity
associated with anomalous atmospheric momentum
flux and hence surface wind stress [3]. The highly sto-
chastic nature of these processes will inevitably reduce
the predictive skill of any set of forecast SSTs. Despite
being equally affected by strong baroclinic activity, the
Northwest Pacific region ismore conducive to persistent
SST patterns (as evident in form of ENSO and PDV) as
the Walker circulation and the anchoring effect of the
RockyMountains can lead to constructive or destructive
interferencebetween tropical and extra-tropical regions.

If, in contrast to DJF 2013/14, stronger SST anoma-
lies exist, we can actually identify the case-specific
dynamic component with our fast-track attribution
method. For the ongoing El Niño event of 2015/16, in
figure 2 we provide evidence that the dynamic comp-
onent can be determined with confidence in response to
the anomalous Pacific SST pattern forOctober 2015.We
analyse MSLP (figure 2, left column) and 200hPa zonal
wind (figure 2, right column) in HadAM3P and NCEP
Reanalysis (figures 2(b) and (k)).

The El Niño was well forecast by GloSea5 (August
2015 forecast; figure 2(h); compare with OSTIA in
figure 2(e)), which should be expected given the lead time
of sub-surface changes in the position of the oceanic ther-
mocline due to anomalous West Wind Bursts months
ahead of the actual event. Since extreme events are often
linked to anomalous circulation patterns caused by El
Niño or La Niña, we are hence able to estimate the
increased risk of any given extreme event during such
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anomalies. The results also suggest that the signal of any
potential change of dynamics due to climate change is
very small compared to the signal associated with ENSO.
In fact, the change in risk for an extreme event occurring
owing to case-specific dynamics is very similar in our
ACTandNATexperiments (true for both SST scenarios).
Notably, even the Reanalysis for October 2015 shows
most teleconnection features typical for El Niño, despite
being a snapshot of only onemonth (figures 2(b) and (k)).

3.4. Implications for the risk assessment
Basedonourfindings so far, herewe summarizewhether
and towhat extent we can quantify changes in likelihood
for an extreme event occurring as a results of a
particularly anomalousdynamic state of the atmosphere:

• Correlation coefficients between tropical or North
Pacific SSTs with MSLP and 200hPa zonal wind
anomalies (see figure A2) can provide a rough
estimate of expected circulation changes as a func-
tion of anomalous SST patterns. With OSTIA, the
North Pacific SST anomalies in January 2014 are
large enough to force a dynamic model response

over the NA region. It emerges both at surface level
(MSLP) and jetstream level.

• In case of theGloSea5 experiment (ACT), the forecast
SSTs do not link strongly with the low-frequency
climate modes and the large-scale dynamics over
England in January 2014, as the positive SST anomaly
in thePacific is considerablyunderestimated. Inother
words, the atmospheric dynamic features triggered
by the anomalous NE Pacific SSTs are absent in the
model in this case which hampers any attempt to
quantify the attributable dynamic component.

• As far as the predictable component with forecast
SSTs in more general terms is concerned [20], we
find that the associated attribution skill of GloSea5
for PDV-related (Northern Pacific) climate modes
is very limited, whereas for ENSO-related (Equator-
ial Pacific) climatemodes it is notably better.

• A promising candidate to quantify the large-scale
dynamics impact is the comparison of return times of
precipitation from ACT and NAT experiments with
the model climatology of the most recent decade

Figure 2. Left column:W@HHadAM3PMSLP anomaly forOctober 2015 (reference period 1986–2014) for theOSTIAACT (a),
OSTIANAT (d), GloSea5ACT (g) andGloSea5NAT (j) experiment.Middle column: correspondingNCEPReanalysis 200hPa zonal
wind (b) andMSLP anomaly (k) forOctober 2015. In between the observedOSTIA (e) andGloSea5 forecast SST anomalies (h; forecast
issued inAugust) that we used to force themodel experiments (naturalizedwithCMIP5 SST patterns inNAT cases). Right column:
same as left columbut for 200hPa zonalmodel wind anomalies forOctober 2015.
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(derived from the CLIM experiment). The dynamic
component is thedifference in return timeofprecipita-
tion between CLIM and ACT, whereas the thermo-
dynamic component is the difference between CLIM
and NAT (expressed in terms of return times in either
case). For the UK floods, 20%–30% of the increased
risk can be attributed to case-specific atmospheric
circulation anomalies in theOSTIAACTexperiment.

• The duration of an extreme weather event is crucial
when attributing a dynamic component. Daily
events (<3 d) are much less affected by anomalous
circulation regimes, hence short extremes are less
attributable to atmospheric circulation changes. As
for monthly or longer events, the comparison with
similar circulation flow regimes can reveal robust
attributable results regarding the dynamic comp-
onent [6]. As demonstrated in [6], investigating DJF
and 10 d maximum rainfall over the UK during the
winter 2013/14, the change in likelihood of an event
occurring in response to anthropogenic/thermody-
namic influences can vary by an order ofmagnitude.

• While the El Niño case of October 2015 suggests a
negligible role for event-specific atmospheric circu-
lation anomalies over the UK on the basis of our
results (anomalous ACT and NAT MSLP and jet-
stream patterns are very similar in all experiments;
see figure 2), anthropogenic warming is believed to
cause (forced) jetstream and circulation pattern
shifts to some extent [7, 11].

There is one last point to reiterate. As mentioned
in section 3.1, the NAT results differ significantly
between different SST patterns. Figures A1(d)–(l) sug-
gest that these patterns vary in the same order as the
difference between OSTIA and GloSea5. They may
amplify or dampen the signal of a particular climate
mode. They may also introduce a stronger or weaker
(counterfactual) ocean cooling signal in general. For
example, GISS-E2-H (figure A1(g)) amplifies the PDV
+ signal in OSTIA in January 2014 (i.e. more pre-
cipitation due to enhanced dynamic feedback), while
CCSM4 (figure A1(j)) represents the coldest NAT
experiment (i.e. much less precipitation due to greatly
enhanced thermodynamic signal). The fact that we can
identify and disentangle internal dynamic and forced
thermodynamic causes when it comes to explaining
the difference in the attribution result of individual
NAT experiments (due to their characteristic CMIP5-
based SST pattern), further increases the confidence in
our results, despite the apparent increase in uncer-
tainty expressed in terms of ensemble spread.

4. Conclusions

With the new approach for event attribution intro-
duced in this paper, we show that the coupled GCM-
RCM ensemble forced with forecast SSTs and SIC

reproduces the attribution result for temperature and
precipitation for the England winter flood case, made
with the model forced with observed SSTs and SIC.
This justifies the suitability of the approach in an
operational attribution framework.

When separating the case-specific contribution
due to anomalous large-scale dynamic weather pat-
terns, we find that the experiments with forecast SSTs
do not give the same answer as those with observed
SSTs if the Pacific is not forecast well. The additional
analysis of the recent El Niño test case, however, does
demonstrate that we can detect potential internal
dynamic contributions to a extreme weather case
under conditions where SSTs are better predicted. We
have also shown that the model reproduces most rele-
vant global teleconnection patterns in response to a
major Pacific ocean climate mode, re-emerging in the
ensemblemean even on amonthly basis.

Guidance regarding the reliability of the attribution
result, particularly over theNA region, is provided by the
spread of the individual NAT ensemble experiments.
Their impact on the results was demonstrated and could
be attributed either to thermodynamic or dynamic cau-
ses based on simple physical considerations and the ana-
lysis of the teleconnections. Changing SST patterns cause
changes in the large-scale dynamics, whereas larger SST
anomalies cause a stronger response in formof increased
or reduced rainfall.

For the main analysis of the UKwinter floods 2013/
14, we found that the contribution to the change in risk
of the event by changes in the internal case-specific
atmospheric dynamics are not reliably detected using
forecast SSTs. However, this should not invalidate our
rapid attribution result as the thermodynamic changes
are themain cause of the increase in risk. This is also true
for any forced dynamic contribution due to climate
change. Observed SSTs continue to be required in order
to gain a comprehensive understanding of the drivers of
this particular extremeprecipitation event.

We also evaluated the model fidelity with regard to
reproduction of atmospheric teleconnection patterns.
We found that the dynamic contribution to an extreme
event can be detectedwhen particular SSTmodes exceed
a certain thresholds. These findings provide very useful
additional guidance regarding the appropriate use of SST
data tomake predictions about changing risks for certain
extreme events, namely those that are related to changes
in the atmospheric circulation.

Apart from the standard model validation which
concerns the representation of precipitation variability
and magnitude [17, 18], the fact that HadRM3P simu-
lates scaling factors for rainfall with temperature over
the UK that are in agreement with theoretical con-
siderations (Clausius–Clapeyron scaling in absence of
changing atmospheric dynamics), observations [10],
and high-resolutionmodel simulations [5] is reassuring
with regard to our attribution statement. Nonetheless,
biases are still present in themodel. With a catalogue of
pre-generated global bias data for relevant metrics, we
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will make sure that we are realistic in what is achievable
within the realm of our analysis framework. For exam-
ple, there may be structural model uncertainty related
to underestimated dynamical responses due to missing
troposphere–stratosphere interaction as observed in
low-top models [25]. We may also discover that forced
changes owing to shifts in atmospheric circulation pat-
terns in response to anthropogenic forcing are already
contributing significantly to any risk assessment.

Given that there are often conflicting messages and
speculations in the immediate aftermath of damaging
weather events about whether there is a link to climate
change or not, we have demonstrated here that our new
method can deliver robust attribution statements as have
been frequently requested [29]. It provides a unique
opportunity to assess a multitude of extreme weather
events in real-time, which, if carefully communicated,
has the potential to provide scientific evidence in a
debate that otherwisewould bedominated byopinion.
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Appendix

Given the non-significant nature of changes in MSLP
in both, the GloSea5 and OSTIA experiment, here we
analyse themodel response to anomalous SST patterns
associated with major climate modes. In figure A1, the
resulting SST anomalies after ‘naturalizing’ the

Figure A1. Left column: AnalysedOSTIA SST for January 2014 as used for theACT experiment (a). OSTIAminus the difference
betweenACT andNATCMIP5Multi-Model-Mean SSTs for January 2014 as used in theNAT experiments (d). Same as forMMMin
(b) but withGISS-E2-H (g) andCCSM4 SSTs (j).Middle column:HadISST1 observed linear SST trend from1870-2015 (b).MMM
(e), GISS-E2-H (h) andCCSM4 (k)ACT-NAT SSTpatterns before subtraction from the observed/forecast SSTs. Right column:
Forecast GloSea5 SST for January 2014 as used in the corresponding ACT experiment (c). GloSea5minus difference betweenACT and
NATCMIP5MMM (f), GISS-E2-H (i) andCCSM4SSTs (l) for January 2014 as used in theGloSea5NAT simulations. GISS-E2-H and
CCSM4 are at the high and the low end of theOSTIANAT simulations in termof change in return time of (extreme) precipitation
events in comparison to theOSTIAACT experiment.
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observed SSTs are shown to put the variability in
context of the climate mode variability. This analysis
enables us to put the results over the NA region into a
global perspective and will also be able to determine
themodels fidelity to reproduce observed atmospheric
variability. NCEP Reanalysis is used as a surrogate for
observations. It should be noted that all modes of NH
atmospheric variability (e.g. maximum of Jet position,
blocking frequency and duration, NAO power spec-
trum) are well represented [18]. There are regions
where the model does have a bias with respect to
observation, [17] but these biases tend to have the
same magnitude in ACT and NAT model simulations
which is why we are confident that existing biases do
not compromise our attribution statements.

We focus on the anomalies of MSLP, 500hPa Geo-
potential and 200hPa zonal wind to the two modes of
the PDV/PDO. PDV is thereby defined as the leading
Principal Component (PC1) of North Pacific monthly
SST variability. We have sub-divided the climatology

period into years of the positive (PDV+; 10 yr) and the
negative PDV phase (PDV–; 12 yr), respectively. For
each year and month, we use an ensemble of 200
HadAM3P global model members. The strategy
enables us (1) to identify regions where we can attri-
bute extreme events more reliably and (2) to deter-
mine the magnitude of the atmospheric model
response in comparisonwith observations.

In figure A2 (left and middle column), the correla-
tion of OSTIA (figure A2(a)) and ERSSTv4 SSTs
(figure A2(b)) with detrended NE Pacific SSTs (180°–
240° E and 30°–60° N) is shown for the winter season
(DJF). The correlation of global with NE PacificMSLP
and global with NE Pacific 200hPa zonal wind speed is
shown in figure A2(c) (NCEP)/figure A2(d) (W@H)
and figure A2(e)/(f), respectively. Most of the correla-
tion patterns found in the Reanalysis are also present
in the model. Differences are most pronounced in the
equatorial Atlantic (model shows stronger coupling
with the NE Pacific SSTs) for MSLP and south of 30° S

Figure A2. Left column: correlation coefficient between SSTs inNEPacific region (180°–240° Nand 30°–60° N)withOSTIA SSTs (a).
Correlation between PNE SSTs andNCEPReanalysisMSLP (c) and zonal wind speed at 200hPa (e). Right column: same as (a) but for
ERSSTv4 SSTs (b). Same as (c) and (d) but forMSLP (e) and zonal wind speed speed (f) fromW@HHadAM3Pmodel. Reference
period is 1986—2014 andDJFmean is shown in all plots.
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for both, MSLP and 200hPa zonal wind. The correla-
tion is stronger in Reanalysis over North America and
the NA region. Dynamically, the link is established by
baroclinic waves forming the NA storm tracks in
response to geopotential height anomalies associated
with negative PNA [23], which projects on the PDV+
pattern. As a result, the MSLP response to PDV
between model and Reanalysis is very different over
the NA as evident from figure A3(k) (SST pattern),
A3(j) (NCEP), and A3(l) (W@H) for PDV–. For PDV
+, the problem is less distinct (figures A3(g)–(i)).
NCEP clearly shows an increased MSLP gradient
(figure A3(g))which is indicative of a downstream link
between PNA (negative) and the (NAO; positive)
indeed. The model on the other hand shows a much
weaker response and a displacement of the MSLP
anomalies tomore equatorial latitudes (figure A3(i)).

Since the NA is the very region where we focus
with our test case, we explore the large-scale dynamics
in more detail. Per definition, the strength of the

MSLP gradient determines the NAO phase, which in
turn is dynamically controlled by upper level winds,
mainly through large-scale modulations of the normal
patterns of zonal and meridional heat and moisture
transport [12]. More precise, the MSLP anomalies are
the surface manifestation of jetstream anomalies that
control the cyclonic activity (formation of baroclinic
Eddies) over the NA. Therefore, on average the jet-
stream anomalies should coincide with the MSLP.
Since low-frequency atmospheric circulation anoma-
lies are barotropic, mid-troposphere Geopotential
(500hPa) and MSPL anomalies are largely propor-
tional [23], we focus on MSLP for the remainder of
this analysis. One region where 500hPa Geopotential
anomalies do have amuch stronger signal during PDV
+ is the northeasternmost corner of the Pacific and
West Canada, associated with a sometimes ‘ridicu-
lously resilient ridge’which can cause harmnot only in
California [31].

Figure A3.Top row:mean sea level pressure (MSLP) anomaly for January 2014 (reference period 1986–2012) fromNCEPReanalysis
(a) andW@HHadAM3Pmodel forcedwithOSTIA SSTs (c). It is contrastedwith the analysed SST anomalies for January 2014 from
OSTIA (b). The reference period is 1996–2009, which corresponds with the hindcast period ofGloSea5.Middle row:ΔSST between
OSTIA andGloSea5 forecast SSTs for January 2014 (d). Note the underestimation of positive SSTs inGloSea5 in the PNE region.
GloSea5 forecast SST anomalies for January 2014 (e). On the right,MSLP anomaly fromW@HHadAM3Pmodel forcedwithGloSea5
SSTs (f). Bottom two rows:DJFMSLP anomaly for all PDVpositive/negative years (1986–2014 reference period) fromNCEP
Reanalysis (g/j) andW@HHadAM3Pmodel forcedwithOSTIA SSTs (i/l). Between the two the corresponding detrended/non-
detrendedOSTIA SST anomaly forDJF during PDVpositive/negative years (h/k).Model experiments are forcedwith actual GHG
concentrations (ACT).
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Comparing figures A3(g) and A4(g), the strongest
MSLP gradient anomalies are firmly linked to the
highest positive jetstream anomalies. Both Reanalysis
and model agree very well over the North Pacific,
which is particularly remarkable as we are comparing
200 model simulations with one pseudo-observation
for PDV+ years. Yet, the magnitude of the anomalies
is almost identical. In fact, the model ensemble mean
converges very quickly (10 randomly picked ensemble
member are already sufficient). This is also the reason
why the magnitude of the anomalies in NCEP and
HadAM3P is so similar. 10 yr are enough to filter out
almost all higher-frequency noise. Over the NA
region, the jetstream anomalies show the same general
pattern with preponderance of NAO+ conditions
during PDV+ winters (PNA–). Lacking a strong NA–
MSLP gradient, the 200hPa zonal wind speed in the
model is weaker over the NA as well. Interestingly,
model and Reanalysis agree better with regard to jet-
stream anomaly strength over the NA for PDV–years
during which baroclinicity is reduced and hence the
NAO more negative on average (not shown). It is less
surprising given that the MSLP gradient is similar in
model and Reanalysis (despite the absolute MSLP
values being different; see figures A3(j) and (l)).
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