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Abstract
Scientific challenges exist on how to extract information from thewide range of projected impacts
simulated by cropmodels driven by climate ensembles. A stronger focus is required to understand and
identify themechanisms and drivers of projected changes in crop yield. In this study, we investigate
the robustness of future projections offivemetrics relevant to agriculture stakeholders (accumulated
frost days, dry days, growing season length, plant heat stress and start offield operations).We use a
large ensemble of climate simulations by theMIT IGSM-CAM integrated assessmentmodel that
accounts for the uncertainty associatedwith different emissions scenarios, climate sensitivities, and
representations of natural variability. By the end of the century, theUS is projected to experience fewer
frosts, a longer growing season,more heat stress and an earlier start offield operations—although the
magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are
shownnot to be robust.We highlight the important role of natural variability, in particular for changes
in dry days (a precipitation-related index) and heat stress (a threshold index). Thewide range of our
projections compares well the CMIP5multi-model ensemble, especially for temperature-related
indices. This suggests that using a single climatemodel that accounts for key sources of uncertainty
can provide an efficient and complementary framework to themore common approach ofmulti-
model ensembles.We also show that greenhouse gasmitigation has the potential to significantly
reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while
also curtailing potentially beneficial impacts (earlier planting, possibility formultiple cropping). A
major benefit of climatemitigation is potentially preventing changes in several indices to emerge from
the noise of natural variability, even by 2100. This hasmajor implications considering that any
significant climate change impacts on crop yieldwould result in nation-wide changes in the agriculture
sector. Finally, we argue that the analysis of agro-climate indices shouldmore often complement crop
model projections, as they can provide valuable information to better understand the drivers of
changes in crop yield and production and thus better inform adaptation decisions.

1. Introduction

Climate change is expected to have a substantial
impact on agricultural production because agriculture
is highly dependent on climate variables such as
precipitation, temperature, and radiation. The vulner-
ability of agriculture and food security to climate
change has been extensively investigated, generally
relying on biophysical models [1–4] or empirical
models [5–8]. Such studies, even though they use very

different sets of crop models, indicate strong negative
impacts of climate change without adaptive measures,
but with a large uncertainty in the range of impacts.
The wide range of projected impacts on agriculture is
driven by both the uncertainty in climate projections
and the structural (or parameterization) differences
between crop models. While using climate ensembles
with crop models is increasingly common to project
the potential impacts of climate change on agriculture,
scientific challenges exist on how the uncertainty is
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analyzed and the information is extracted frommodels
that are sometimes used as black boxes [9]. For this
reason, a stronger focus is required to understand and
identify the mechanisms and drivers of projected
changes in crop yield, especially in light of natural
variability and potential future changes in extreme
events.

Various metrics and indices have also been devel-
oped to address the vulnerability of agricultural pro-
duction under climate change. Many of these indices
focus on moisture availability or drought as the most
significant climate impact on crop yields. The Palmer
drought severity index, standardized precipitation
index, NOAA drought index, and Palmer Z-index are
widely used [10–12]. New indices, such as the standar-
dized precipitation evapotranspiration index [13], soil
moisture deficit index and evapotranspiration deficit
index [14], continue to be developed and provide valu-
able information to farmers [15]. While each of these
climate indices provides important insight on agri-
cultural responses under climate change, [10] show
that there are significant variations in model perfor-
mance depending on the choice of drought indices.
More recently, studies have focused on agro-climate
or agro-meteorological indices that are designed to
assess the potential changes in crop exposure to temp-
erature (heat and cold) and water stresses [16–18]. In
addition, metrics relevant to management practices,
such as start of field operations and growing season
length, provide additional value to farmers and deci-
sion makers [19]. Therefore, a comprehensive evalua-
tion of both agro-climate and management metrics
can help address agriculture vulnerability under cli-
mate change.

In this study, we investigate future agro-climate
projections using indices shown to be relevant to land
management stakeholders, identify the associated
impacts on agriculture, and estimate the benefits of
greenhouse gas mitigation. Soil water balance metrics
are highly relevant to stakeholders and are commonly
included in climate change studies, but other metrics
are also important and often ignored. We examine the
robustness of future projections of these agro-climate
indices using a large ensemble of integrated economic
and climate projections prepared for the US Environ-
mental Protection Agency’s Climate Change Impacts

and Risks Analysis (CIRA) project [20]. Using this
large ensemble, we investigate the role of multiple
sources of uncertainty in global and regional climate
projections—including the emissions scenario, the
global climate system response (climate sensitivity)
and natural variability—on the impact of climate
change and greenhouse gas mitigation on agriculture.
We further compare our analysis to a multi-model
ensemble based on 31 different climate models from
the coupled model intercomparison project phase 5
(CMIP5, see [32]). Section 2 describes the agro-cli-
mate indices, the climate model and observational
data and themethodology used in this study. Section 3
presents the results of the analysis, focusing on the role
of uncertainty and the benefits of mitigation. Section 4
provides a summary and discussion, with concluding
remarks in section 5.

2.Methodology

2.1. Agro-climate indices
We follow [18] and use five agro-climate indices
developed by [19] that were deemed ‘very’ or ‘quite’
useful by land management stakeholder focus groups.
Not only do these metrics have little conceptual
overlap, they also account for various stresses of land
productivity and management practices. Table 1 pro-
vides a description and methodology for the calcul-
ation of these five indices. Accumulated frost days
(AFD) serves as a frost index that relates to both cold
stress and incidence of pest and disease. Dry days
(DD), the number of days with precipitation below a
threshold, is used here as a drought index, instead of
using more sophisticated indices related to soil moist-
ure that are not necessarily well simulated by climate
models [21, 22]. Growing season length (GSL), calcu-
lated as the number of days between the last frost
(minimumdaily temperature below0 °C) in the spring
and the first hard frost in the fall [23, 24], relates to the
timing and length of the growing season, which can
have far reaching consequences for plant and animal
ecosystems [25]. Plant heat stress (PHS), the number
of days with daily maximum temperature above a
threshold, identifies the risk of heat stress and the
associated yield decline. Various thresholds can be
used for specific plants or crops; in this study we use a

Table 1. Selected agro-climate indices, including type, unit, and description of calculation based on [18] and [19], customized for theUnited
States.

Index Type Units Description

Accumulated frost days (AFD) Count Days DayswhereTmin< 0 °C
Dry days (DD) Count Days Dayswhen P<1 mm

Growing season length (GSL) Count Days Days between the last frost in the spring and thefirst frost in the fall

Plant heat stress (PHS) Count Days DayswhenTmax> 29 °C
Start of field operations (SFO) Date Day of year Daywhen the sumofTavg from1st January is greater than 200 °C

Tmin, Tavg and Tmax refer to, respectively, the daily minimum, daily mean and daily maximum temperature at
2 mheight (in °C);P refers to dailymean precipitation (inmm).
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threshold of 29 °C, which corresponds to maize, a
major US crop [6], although different thresholds (i.e.
30 °C for soybeans or 32 °C for cotton) do not change
the conclusions of the our study. Finally, the start of
field operations (SFO), calculated as the date of
thermal accumulation of 200 °C, is an index derived
from workshops with agricultural stakeholders that
refers to the earliest date in a year when a fieldmight be
usefully cultivated [19].

2.2. Climatemodel data
We use a 45-member ensemble of simulations using
theMIT IntegratedGlobal SystemModel-Community
Atmosphere Model (IGSM-CAM) modeling frame-
work [26] developed for the US Environmental
Protection Agency’s climate CIRA project [20]. This
ensemble is made up of three consistent socioeco-
nomic and emissions scenarios: a reference scenario
(REF) with unconstrained emissions and two green-
house gas mitigation scenarios that rely on a uniform
global carbon tax to stabilize radiative forcing at
4.5Wm−2 (POL4.5) and 3.7Wm−2 (POL3.7) by
2100. More details on the emissions scenarios and
economic implications, along with how they relate to
the representative concentration pathway (RCP) sce-
narios [27], are given in [28]. For each emissions
scenario, the IGSM-CAMwas run with three values of
climate sensitivity (CS=2.0°, 3.0° and 4.5 °C),
corresponding to the likely range and best guess,
obtained via radiative cloud adjustment (see [29]). For
each climate sensitivity, a five-member ensemble was
run to produce different representations of natural
variability, thus resulting in a 15-member ensemble
for each emissions scenario. A detailed procedure for
the design of the large IGSM-CAM ensemble used in
this study, along with an analysis of the climate
projections for the US, can be found in [30]. Because
we use integrated economic and climate projections
obtained using an Integrated Assessment Model
(IAM), we can directly attribute the differences in
future agro-climate projections between the different
emissions scenarios to explicit policy choices, thus
identifying the benefits of greenhouse gas mitigation.
Furthermore, while this ensemble is derived using a
single climatemodel, it accounts for the uncertainty in
emissions scenarios, global climate response and
natural variability, which accounts for a substantial
share of the full uncertainty in future climate projec-
tions [30]. We analyze 20-year time periods over five
different representations of natural variability, result-
ing in 100 years to define changes in 2050 (defined as
the period 2041–2060) and 2100 (defined as the period
2081–2100) relative to present day (defined as the
period 1991–2010), in order to obtain robust estimates
of the anthropogenic signal and thus identify the
benefits of greenhouse gasmitigation.We also identify
the various uncertainties represented in the modeling
framework.

To provide some context to the agro-climate pro-
jections using the IGSM-CAM ensemble, we compare
our results to the CMIP5 multi-model ensemble
under the RCP8.5 and RCP4.5 scenarios. We compute
the agro-climate indices using historical and future
simulations from 31 climate models (see the supple-
mentalmaterials for a complete list) after interpolating
the required input data to the same 2°×2.5° grid as
the IGSM-CAM. The 31 models considered were
those for which the required daily inputs for both
emissions scenarios were available at the time of the
study. Only one run is used for eachmodel, even when
an ensemble (i.e. with different initial conditions)
was run.

2.3.Observational data
We evaluate the capability of the IGSM-CAM to
simulate the five agro-climate indices for present-day
conditions using two independent observational data-
sets: the National Aeronautics and Space Administra-
tion Modern Era Retrospective-Analysis for Research
and Applications (MERRA) reanalysis [33], at
0.5°×0.66° resolution, and the National Centers for
Environmental Prediction/National Center for Atmo-
spheric Research (NCEP/NCAR) Reanalysis [34], at
T62 gaussian grid (approximately 2°×2° resolution).
We rely on two different reanalysis datasets to
illustrate—not quantify, as this would require a more
complete analysis—the uncertainty in observational
datasets that include the role of lower resolution that
climatemodels suffer from.

2.4. Time of emergence
We investigate the robustness of the agro-climate
projections by estimating when the signal (S) of
anthropogenic changes is emerging against the noise
(N) of natural variability. There is no single metric of
emergence and various studies have used different
definitions of S and N to estimate the signal-to-noise
ratio (S/N). For example, [35] define the warming
signal by regressing temperature at each grid cell of a
climate model simulation against a smoothed version
of its global mean temperature, and they define the
noise as the interannual standard deviation from a
pre-industrial control simulation. In [36], the authors
define the signal as a 10 year mean anomaly and the
noise as the interannual standard deviation from a
transient historical simulation.Meanwhile, [37] define
the signal of precipitation change as the 20 year mean
anomaly of a multi-model ensemble mean and the
noise as intermodel spread and internal multi-decadal
variability. Finally, [38] analyzes the time of emergence
of seasonal temperature changes using a large ensem-
ble of climate simulations with different initial condi-
tions, where the signal is the ensemble mean and the
noise the standard deviation of internal variability
computed for each year across the ensemble (after a
10-year running mean). In this study, we estimate the
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signal (S) for each agro-climate index as the 20 year
running mean anomaly from present day for each
climate simulation and the noise (N) as the interann-
ual standard deviation from a pre-industrial control
simulation. We then define the time of emergence as
the first year in which the S/N exceeds a threshold
of 2.

3. Results

Figure 1 shows the evaluation of the IGSM-CAM
simulation of the five agro-climate indices for present-
day conditions compared to the two reanalysis data-
sets. Overall, the MIT IGSM-CAM exhibits a very
good capability to reproduce the magnitude and
spatial features of the agro-climate indices. The two
reanalysis products show a good agreement with each
other in both themagnitude and spatial distribution of
the indices. Nonetheless, noticeable inconsistencies
exist that can be attributed to differences in observa-
tional datasets assimilated in the climate models,
differences between the climate models used (includ-
ing resolution), and the methodology for data assim-
ilation. Generally, the IGSM-CAMbias falls within the
range of the two observation datasets and is largely
driven by the lower resolution of the climate model.
The AFD and SFO indices show a strong north–south
gradient, with largest values over the Rocky Moun-
tains, the Great Lakes and New England. The GSL and
PHS show the opposite pattern, with the largest values
in the South. The strongest DD values are over
southwestern states and the Great Plains. As expected

from any climate model, systematic biases are present
and consistent with previous evaluations of the model
[26, 31]: the IGSM-CAM exhibits a warm bias in the
Midwest and a dry bias in the Southeast. This warm
bias can be identified in the AFD and PHS indices, and
to a lesser extent in the GSL and SFO indices while the
dry bias is associated with a positive bias in the DD
index. Altogether, the IGSM-CAM shows reasonable
skills at reproducing the major characteristics of the
agro-climate indices over theUS.

Figure 2 shows maps of forced changes in each
agro-climate index in 2100 relative to present day, for
each climate sensitivity considered (CS=2.0°, 3.0°
and 4.5 °C) and for the REF and POL4.5 scenarios. For
each emissions scenario and climate sensitivity, the
forced changes are estimated as themean over the five-
member ensemble with different representations of
natural variability, thus producing a 100-year mean
(20-year period window, five simulations). The IGSM-
CAM simulates a very wide range of changes in agro-
climate projections, from little change under the
POL4.5 scenario for the low climate sensitivity to very
large changes under the REF scenarios for the high cli-
mate sensitivity. The greenhouse gas mitigation sig-
nificantly reduces the projected changes, even when
considering the uncertainty in the global climate sys-
tem response represented by the climate sensitivity:
the projected changes under the POL4.5 scenario with
the high climate sensitivity (CS=4.5 °C) is always
lower than the projected changes under the REF sce-
nario with the low climate sensitivity (CS=2.0 °C).
In addition, the patterns of change are similar for each
climate scenario (climate sensitivity and emissions

Figure 1.USmaps of present-day (1991–2010) (a) accumulated frost days (AFD), (b) dry days (DD), (c) growing season length (GSL),
(d) plant heat stress (PHS) and (e) start offield operations (SFO) for theMERRA reanalysis, NCEPReanalysis and simulated by the
MIT IGSM-CAM. Themean over thefivemembers with different representations of natural variability for CS=3.0 °C is shown for
theMIT IGSM-CAM.
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scenario), largely because of the use of a single model
and the large averaging period used (100 years). The
AFD index is projected to decrease the most in the
Rocky Mountains, the Great Lakes and New England
(around 60–100 days under REF, half under POL4.5).
A similar pattern can be seen for the SFO, which pro-
jects to start earlier (negative values) especially in these
regions, by as much as 75–100 days under REF and
half under POL4.5. Increases in the GSL are largest
over the Northwest and the NorthEast (from 70 to 100
days under REF, from 15 to 50 days under POL4.5).
PHS is projected to increase the most over the western
US, the Gulf Coast and the East Coast (from 40 to
80 days under REF, 10–30 days under POL4.5).
Finally, DD are projected to increase in the western US
(as much as 30 days under REF, half under POL4.5)
and decrease elsewhere (30–40 days under REF, half
under POL4.5), especially over the Great Plains. This
dipole pattern is consistent with the tendency of the

IGSM-CAM, as well as the Community Climate Sys-
tem Model version 3, which shares the same atmo-
spheric component (CAM).

Figure 3 shows maps of changes in each agro-cli-
mate index in 2100 relative to present day, for each
ensemble member with different representations of
natural variability for the simulations with a climate
sensitivity of 3.0 °C under the POL4.5 scenario. This
analysis identifies the uncertainty in natural variability
—in particular multi-decadal variability—since the
maps show 20-year mean changes. The impact of nat-
ural variability varies greatly by index. For changes in
AFD and in SFO, different representations of natural
variability mainly affect the magnitudes of the pro-
jected changes, but not the patterns of change. On the
other hand, changes in the other three indices present
different magnitudes and patterns, and even different
signs. This is particularly striking given the long period
of averaging. While all members show a general

Figure 2.USmaps of projected forced changes in (a) accumulated frost days (AFD), (b)dry days (DD), (c) growing season length
(GSL), (d) plant heat stress (PHS) and (e) start offield operations (SFO) in 2100 (2081–2100) relative to present day (1991–2010),
simulated by theMIT IGSM-CAM for each climate sensitivity considered (CS=2.0°, 3.0° and 4.5 °C) and for the REF scenario (top
panel) and the POL4.5 scenario (bottompanel). For each emissions scenario and climate sensitivity, the forced changes are estimated
as themean over thefive-member ensemble with different representations of natural variability.
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tendency for increases in DD in the West (and decrea-
ses elsewhere), different members exhibit different
magnitudes and extents of change. For example,
member 2 projects a weak decrease in DD in the cen-
tral US but a clear increase in theWest, and member 3
displays a clear decrease over most of the US with only
a little increase on the West Coast. This implies less
robustness in the projections of changes in DD com-
pared to changes in AFD and SFO. This is consistent
with previous findings on the large uncertainty asso-
ciated with natural variability for precipitation chan-
ges [31, 39, 40]. The GSL and PHS are also clearly

impacted by the role of natural variability. While all
members show patterns generally consistent with the
ensemble mean shown in figure 2—for GSL, the lar-
gest increases in the Northwest and the smallest
increases in the South; for PHS, the largest increases in
the western US, the Gulf Coast and the East Coast—
individual members disagree on the magnitude and
spatial extent of the largest changes, and can even dis-
agree on the sign in specific regions. For example,
member 3 projects widespread decreases in PHS over
major parts of the Great Plains and some decreases in
GSL over a small part of Texas. This implies little

Figure 3.USmaps of projected changes in (a) accumulated frost days (AFD), (b) dry days (DD), (c) growing season length (GSL), (d)
plant heat stress (PHS) and (e) start of field operations (SFO) in 2100 (2081–2100) relative to present day (1991–2010), simulated by
theMIT IGSM-CAM for eachmember with different representations of natural variability for CS=3.0 °CandPOL4.5 scenario.
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robustness in the projections of changes in GSL and
PHS in these regions, which is surprising given the
general assumption of robustness in temperature-
related simulations. The same analysis for the REF sce-
nario in 2050 and in 2100 is shown in the supple-
mental materials. It reveals that the relative role of
natural variability is lessened under a scenario with a
larger forcing. At the same time, the absolute range
associated with natural variability remains constant
among scenarios and time periods, corresponding to
the irreducible error in the projections, as shown
in [30].

Figure 4 shows a summarized analysis of the range
of projected changes in each agro-climate index, area-
averaged over the US, in 2050 and 2100 relative to pre-
sent day. The range is estimated over the 15-member
IGSM-CAM ensemble with different climate sensitiv-
ities and representations of natural variability for each
emissions scenarios and over the CMIP5 multi-model
ensemble (31 models) under the RCP8.5 and RCP4.5.
We also show the 1 and 2 standard deviation of the
natural variability derived from a pre-industrial con-
trol simulation of the IGSM-CAM to provide a brief
signal-to-noise analysis. TheUS as a whole is projected
to experience fewer frosts, a longer GSL, an earlier

SFO, an increase in heat stress. The range of changes is
particularly wide under the REF scenario, especially by
2100, with the upper bounds close to twice as large as
the lower bound. For example, increases in GSL under
REF by 2100 range from 38 to 82 days, and decreases
in AFD range from 32 to 60 days. The implementation
of either greenhouse gas mitigation scenario con-
sidered in this study cuts by half most of the changes
projected under the unconstrained scenario. In addi-
tion, the range of changes for the unconstrained and
mitigation scenarios do not overlap, thus indicating
robust benefits ofmitigation. At the same time, there is
little difference between the two mitigation scenarios,
given the overall uncertainty. Finally, the lack of
robustness in the projections of changes in DD, eluded
earlier, are further substantiated by this analysis, as
they are within the noise from natural variability even
by 2100. The comparison between the IGSM-CAM
ensemble and the CMIP5 ensemble reveals similar
changes in temperature-related indices. While the
exact magnitude of the changes is not in precise agree-
ment, the range is in agreement. Since the RCP scenar-
ios and the CIRA scenarios were designed
independently, a simple metric like the radiative for-
cing in 2100 is not sufficient to expect perfect

Figure 4.Projected changes in (a) accumulated frost days (AFD), (b) dry days (DD), (c) growing season length (GSL), (d) plant heat
stress (PHS) and (e) start offield operations (SFO), area-averaged over theUS, in 2050 (2041–2060) and 2100 (2081–2100) relative to
present day (1991–2010) simulated by theMIT IGSM-CAM for all three emissions scenarios (REF, POL4.5 and POL3.7) and by 31
CMIP5models for the RCP4.5 andRCP8.5 scenarios. Box plots show the range over the 15-member IGSM-CAMensemble with
different climate sensitivities and representations of natural variability for each emissions scenario and over the CMIP5multi-model
ensemble (31models) under the RCP8.5 andRCP4.5. The black horizontal lines show themean of the IGSM-CAMsimulations for
themedium climate sensitivity (CS=3.0 °C) for each emissions scenario and themean over the 31CMIP5models for the RCP8.5
andRCP4.5. Dark (light) gray shading represent the 1 (2) standard deviation of the natural variability estimated from a pre-industrial
control simulationwith the IGSM-CAM.
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agreement. For the DD index, both ensembles project
a range of changes that span both increases and
decreases, but the CMIP5 range is wider. In addition,
the CMIP5 ensemble projects a mean increase in DD
while the IGSM-CAM mean is negative. At the same
time, the statistical significance of these changes is
likely to be weak since they fall within the noise of nat-
ural variability.

We explore in more detail the S/N by estimating
the time of emergence, in each simulation, of the US
mean changes in the five agro-climate indices, and
computing the range for each emissions scenario (see
figure 5). This analysis reveals a large uncertainty in the
estimates of the time of emergence, indicating very dif-
ferent behaviors between indices and scenarios. Chan-
ges in DD do not emerge from the noise before 2100
for all three scenarios, confirming the lack of robust-
ness in projections of precipitation changes. At the
same time, the time of emergence of changes in SFO
occurs between 2025 and 2050 in all the simulations,
implying little impact of the mitigation scenarios. For
all other indices, the benefits of mitigation are clear.
Under REF, changes emerge from the noise by 2070 at
the latest (and as early as 2020). The implementation
of either mitigation scenarios allows for the possibility
that the projected changes remain within the noise of
natural variability by 2100. That is generally the case
for simulations with the lower climate sensitivity
(CS=2.0 °C), which illustrates the need to account

for the uncertainty in the global climate system
response in analysis of the benefits of climate mitiga-
tion. Finally, the difference between the two policy
scenarios is generally small. It is only noticeable for
projections of changes in PHS—by reducing the prob-
ability of emergence before 2100—and for changes in
AFD—by increasing the mean estimate of the time of
emergence, but not its range.

4. Summary anddiscussion

Under climate change, this study generally projects the
US as a whole to experience fewer frosts, a longer GSL,
an earlier SFO, an increase in heat stress and no robust
changes in DD. However, these changes have specific
regional patterns. The northern US, especially over the
Rocky Mountains, the Great Lakes region and New
England project to benefit from less cold damage and
earlier planting, ensuring maturation and the possibi-
lity for multiple cropping—although fewer frosts
could also lead to higher risks of pest and disease. The
southern US is expected to suffer from a stronger heat
stress without the associated benefit of a significant
increase in the GSL. This north–south disparity in
agro-climate projections is consistent with the changes
in yield projected by [8]. The West is shown to
experience more heat stress and more DD, which

Figure 5.Time of emergence of the projectedUSmean changes relative to present day (1991–2010) in accumulated frost days (AFD),
dry days (DD), growing season length (GSL), plant heat stress (PHS) and start offield operations (SFO) simulated by theMIT IGSM-
CAM for all three emissions scenarios (REF, POL4.5 and POL3.7). Box plots show the range over the 15-member IGSM-CAM
ensemble with different climate sensitivities and representations of natural variability for each emissions scenario. The vertical black
lines show themean of the IGSM-CAMsimulations for themedium climate sensitivity (CS=3.0 °C) for each emissions scenario.
The time of emergence is shown for a signal-to-noise ratio (S/N) greater than 2. Dotted lines past 2100 indicate that the signal has not
emerged from the noise by 2100.
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could result in declining yields and negative implica-
tions forwater resources and irrigated agriculture.

These projections are associated with large uncer-
tainties in magnitude, spatial pattern and even sign.
This study finds that the magnitude of the changes is
largely controlled by the climate sensitivity and emis-
sions scenario. Meanwhile, natural variability can
cause large differences in the regional patterns of the
projected changes—especially for changes in DD, GSL
and PHS—including reversals of the sign of the pro-
jected changes locally. That is true even using a 20 year
averaging period, indicating that future changes in
agro-climate indices are not always predictable locally.
This study further highlights the lack of robustness of
projected changes in precipitation, as demonstrated by
the lack of emergence of USmean changes in DD from
the noise of natural variability, even by 2100. Our find-
ings suggest that changes in temperature-related agro-
climate indices are generally more predictable than
metrics based on precipitation. The substantial role of
natural variability on future climate projections has
gained a great deal of interest over the past few years
[30, 31, 39, 41–44], and we hope this study sheds some
light on the implications for projections of future cli-
mate change impacts on US agriculture. In particular,
we caution policymakers and landmanagement stake-
holders to properly examine the robustness of agro-
climate projections when developing and evaluating
strategies to adapt agriculture to climate change.

A comparison of the IGSM-CAM ensemble to the
CMIP5 multi-model ensemble provides further
insight into the uncertainty in agro-climate projec-
tions over the US.We find that a single climate model,
with different emissions scenarios, climate sensitivities
and representations of natural variability, simulates a
range of changes similar to 31 different climate mod-
els. Our analysis suggest that multi-model uncertainty
can be largely be explained by differences in the cli-
mate sensitivity of the models and differences in initi-
alization that leads to different representations of
natural variability in the different simulations. This
finding is particularly true for temperature-related
indices, but less so for projections of precipitation
changes, which are less robust to start with. While the
IGSM-CAM projects both increases and decreases in
DD, it does not reproduce the wide range of changes
simulated by the CMIP5 ensemble. Nonetheless, we
argue that sampling key sources of uncertainty in a
single climate model provides a complementary fra-
mework to the commonly used multi-model ensem-
ble. In addition, using an IAM to derive integrated
economic and climate projections provides a major
advantage, i.e. differences between scenarios can be
attributed to an explicit choice of climate policy and
the benefits of greenhouse gas mitigation can be
directly estimated (see [28, 45]). In contrast, because
the underlying socio-economic trajectories and prio-
rities are not consistent in the RCP scenarios, differ-
ences between the scenarios cannot be attributed to

policy choices. Meanwhile, our framework even
allows us to compare two greenhouse mitigation sce-
narios that only differ by the stringency of the carbon
tax applied.

The analysis shows that the projected changes in
the five agro-climate indices are significantly reduced
under the two policy scenarios compared to the refer-
ence scenario, especially by 2100. On average, the
implementation of either greenhouse gas mitigation
scenario cuts by half the changes projected under the
unconstrained scenario. As a result, greenhouse gas
mitigation has the potential to significantly reduce
adverse effects of climate change (i.e. higher heat
stress, higher risks of pest and disease from fewer frost
days), while also curtailing potentially beneficial
impacts (i.e. earlier planting, a longer growing season
with possibility for multiple cropping, and less frost
damage). We also find that climate mitigation can
potentially prevent changes in several indices to
emerge from the noise of natural variability, even by
2100. This is likely to be a major benefit from mitiga-
tion given that any significant climate change impacts
on crop yield, whether beneficial or damaging, will
result in nation-wide changes in the agriculture sector.
The cost of adaptation at that scale, such as the north-
ward displacement of crop production, is difficult to
quantify. Finally, we find that differences between the
two mitigation scenarios are difficult to distinguish
and that the benefits of mitigation are present in 2050,
but small. The benefits of climate mitigation on pro-
jections of future changes in agro-climate indices reso-
nates with prior studies using crop models [3, 8]. At
the same time, we realize that increases in CO2 con-
centrations and adaptive management can provide
significant mitigation of the negative effects of climate
change [46–48].

5. Conclusion

This study shows that projections of agro-climate
indices that are relevant to stakeholders can provide
great insight into the fate of future climate change
impacts on agriculture. While these projections are
subject to substantial uncertainty, we show that using
a single climate model that accounts for key sources of
uncertainty (i.e. emissions scenario, global climate
system response, natural variability) provides an
efficient and complementary framework to the more
common approach of multi-model ensemble (i.e.
CMIP5 ensemble). We highlight the important role of
natural variability, especially for projections of
changes in DD and heat stress, leading to uncertainty
in themagnitude and location of the largest changes or
even the sign of the projected changes. For this reason,
studies of climate change impacts on agriculture must
consider these uncertainties by relying on large
ensembles of climate projections that sample the
major sources of uncertainty—especially natural
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variability. In addition, using integrated economic and
climate projections, we can directly estimate the
benefit of climate mitigation. We find that climate
mitigation has substantial benefits: it cuts in half the
changes projected under an unconstrained scenario,
and it potentially prevents changes from emerging
from the noise of natural variability. Finally, we argue
that agro-climate indices, in combination with crop
model projections, can provide valuable information
to better understand the drivers of changes in crop
yield and production, thus better informing adapta-
tion decisions.
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