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Abstract
Many studies have used thermal data from remote sensing to characterize how land use and surface
propertiesmodify the climate of cities. However, relatively few studies have examined the impact of
elevated temperature on ecophysiological processes in urban areas. In this paper, we use time series of
Landsat data to characterize and quantify how geographic variation in Boston’s surface urban heat
island (SUHI) affects the growing season of vegetation in and around the city, and explore how the
quality and character of vegetation patches in Boston affect local heat island intensity. Results from
this analysis show strong coupling between Boston’s SUHI and vegetation phenology at the scale of
both individual landscape units and for the region as awhole, with significant detectable signatures in
both surface temperature and growing season length extending 15 km fromBoston’s urban core. On
average, land surface temperatures were about 7 °Cwarmer and the growing seasonwas 18–22 days
longer in Boston relative to adjacent rural areas.Within Boston’s urban core, patterns of temperature
and timing of phenology in areas with higher vegetation amounts (e.g., parks)were similar to those in
adjacent rural areas, suggesting that vegetation patches provide an important ecosystem service that
offsets the urban heat island at local scales. Local relationships between phenology and temperature
were affected by the intensity of urban land use surrounding vegetation patches and possibly by the
presence of exotic tree species that are common in urban areas. Results from this analysis showhow
species composition, land cover configuration, and vegetation patch sizes jointly influence the nature
andmagnitude of coupling between vegetation phenology and SUHIs, and demonstrate that urban
vegetation provides a significant ecosystem service in cities by decreasing the local intensity of SUHIs.

1. Introduction

Urban areas occupy a small proportion of the global
land surface, but have a large impact on local-to-global
environmental systems. At local scales, urban land use
modifies the physical and geometric properties of land
surfaces relative to natural land cover, which alters
surface energy and radiation budgets (Arnfield 2003).
In particular, the presence of buildings, roads, and
other impervious surfaces increases absorption of
shortwave radiation, decreases energy loss via emis-
sion of longwave radiation, and reduces evapotran-
spiration relative to adjacent natural land cover
(Oke 1976, Landsberg 1981). As a result, near-surface
air temperatures tend to be 0.5 °C–3.0 °C higher than

surrounding rural areas (Bounoua et al 2015, Jochner
et al 2015 and citations therein)—a phenomenon
known as the urban heat island (UHI). Within cities,
however, trees and other types of vegetation provide
significant local cooling via shading and leaf transpira-
tion, and supply additional ecosystem services through
carbon sequestration and provision of habitats for
flora and fauna (Nowak and Crane 2002, Wilby and
Perry 2006, Peters et al 2010, Briber et al 2013).

Vegetation phenology—the annual cycle of leaf
emergence, development, and senescence of leaves
(and flowers)—is strongly controlled by temperature
in many ecosystems, and is therefore a widely-used
diagnostic of climate change impacts on natural eco-
systems (Chmielewski and Rötzer 2001, Parmesan and
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Yohe 2003). In biomeswhere temperature is the domi-
nant control on phenology, UHIs have the potential to
alter the growing season of vegetation in cities. Indeed,
recent studies have demonstrated that UHI’s can lead
to earlier emergence of leaves and flowers in spring or
delayed senescence in fall. For example, Jochner et al
(2012) used 30 years of ground observations to show
that urbanization in three German cities advanced the
timing of spring phenophases for nine deciduous spe-
cies by 2.6–7.6 days between 1980 and 2009. In an ear-
lier study, Rötzer et al (2000) found 1.5–4.0 day
advances in the timing of urban spring flowering rela-
tive to surrounding rural areas for four species in ten
European cities.

While these results provide compelling evidence of
the impact of UHIs on vegetation phenology, studies
based solely on ground observations provide limited
information regarding the spatial complexity of phe-
nology in urban areas. Further, comparison of results
across ground-based studies is challenging because
different studies use different species, methods of ana-
lysis, and data collection protocols (Denny et al 2014,
Gill et al 2015). Satellite remote sensing, on the other
hand, provides an objective and quantitative means
for assessing patterns in land surface phenology—i.e.,
spatially integrated measurements of seasonal varia-
tion in surface properties measured from remote sen-
sing—that can be examined at local-to-global scales
(de Beurs and Henebry 2004). Specifically, time series
of vegetation indices such as the normalized difference
vegetation index (NDVI) and the enhanced vegetation
index (EVI) derived from coarse spatial resolution
sensors such as AVHRR (1–8 km), SPOT-VEGETA-
TION (1 km) and MODIS (250–500 m) have been
widely used to estimate phenological metrics that
measure the timing of spring and autumn phenology
(Moulin et al 1997, White et al 2002, Zhang et al 2003,
Ahl et al 2006, Delbart et al 2006, Walker et al 2015).
While observations fromAVHRR,MODIS, and SPOT
provide high frequency observations over large areas,
the relatively coarse spatial resolution of these instru-
ments presents substantial challenges for studies
focused on urban areas, which are highly hetero-
geneous relative to the spatial resolution of these sen-
sors (Jat et al 2008). Further, exotic and ornamental
species, which are common in cities and often exhibit
phenological behavior that is different from that of
native species, can affect the observed signature of cli-
mate on plant phenology (Jim and Liu 2001, Körner
andBasler 2010).

Within this general framework, the goals of this
paper are to exploit new remote sensing-based cap-
abilities to quantify and characterize how UHI inten-
sity affects vegetation phenology in the Boston
metropolitan area at landscape-scale, and to improve
understanding of how spatial variation in land use and
land cover control both the intensity of Boston’s UHI
and its impact on phenology. To do this, we used esti-
mates of phenophase transition dates from a newly

developed method that uses 30 m Landsat data, Land-
sat-derived land surface temperature (LST) data and
maps of impervious surface area (ISA) and tree canopy
cover to address three questions: (1) How does the
UHI influence spring and autumn phenology across
Boston’s urban-rural gradient? (2) How does phenol-
ogy vary within the city of Boston and how much of
this spatial variation is explained by local variation in
land cover and land use? And, (3) does the nature of
land use surrounding vegetation patches affect UHI
intensity at local scales? Note that because we use LSTs
derived from remote sensing and not air temperatures
to measure the intensity of Boston’s UHI, hereafter,
we refer to this as the surface urban heat
island (SUHI).

2.Methods

2.1. Study region
Our study region includes the Greater Boston metro-
politan area (figure 1), encompassing ∼12 000 km2 of
residential and commercial land use in and around
Boston, with surrounding rural areas composed of
northern hardwood and oak/hickory forests inland
and woody wetlands along the coast. Elevation in the
study region ranges from 0 to 192 m above sea level
and the climate is classified as humid continental.
Precipitation is uniform throughout the year, but
temperatures are highly seasonal with relatively warm
summers and cold winters. In response, deciduous
vegetation in the region has well-defined phenology
that is primarily controlled by temperature (e.g.,
Richardson et al 2006, Friedl et al 2014).

2.2. Landsat-based phenology detection
We used all available Landsat TM and ETM+ images
from the United States Geological Survey with less
than 90% cloud cover for two scenes that cover the
Greater Boston metropolitan area (Path 12, Rows 30
and 31; see figure 1). Image digital numbers were
converted to surface reflectance using the Landsat
Ecosystem Disturbance Adaptive Processing System
algorithm (Masek et al 2006), and observations
contaminated by clouds, cloud shadows, and snow
and ice were identified and removed using the Fmask
algorithm (Zhu and Woodcock 2012). The final data
set included a total of 1175 TM and ETM+ images
spanning the period from1984 to 2013.

To map information related to green leaf phenol-
ogy, we used the Landsat Phenology Algorithm (LPA;
Melaas et al 2013) to estimate the long-term average
and annual day of year associated with leaf emergence
(start of spring; SOS) and autumn senescence (end of
season; EOS) at 30 m spatial resolution. Because the
LPAwas originally designed for application over fores-
ted areas with relatively dense tree cover (i.e., with
relatively high maximum summertime EVI), we
incorporated two modifications to support detection
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Figure 1. (a) Long-termmean growing season length (GSL), (b) long-termmean growing season land surface temperature (LST) and
(c) land cover (WAT=water; DEV=developed; FOR=forest;WET=wetlands; OTH=other)maps of the study region. In
panels (a) and (b), blue corresponds towater and black corresponds to pixels where the correlation between observed and spline-
predicted EVI is less than 0.85. The black boxes in the lower right hand panel are the Landsat TM/ETM+ scenes with corresponding
path (P) and row (R)numbers labeled.
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of phenology in areas with lower tree cover (i.e., urban
areas). First, instead of estimating separate spring and
autumn logistic curves to model seasonal variation in
Landsat EVI, we used smoothing splines to model the
mean annual phenology at each location, and then
normalized the resulting function at each pixel to vary
between 0 and 1. Similar to Melaas et al (2013), the
long-term average SOS and EOS at each pixel were
estimated based on the date when the normalized
spline reached 50% of the spring and autumn ampl-
itude, respectively. Second, using a high-resolution
canopy cover map of Boston (see below), we found
that arbitrarily defined ranges for long-term mean
winter background and peak summer EVI sig-
nificantly underestimates deciduous tree coverage
within the city. Alternatively, since trees are lessmoist-
ure-limited than grasses and shrubs, they exhibit less
interannual variability in summer EVI and, hence,
greater agreement (i.e., higher correlation) with a
long-term mean fitted cubic spline. Therefore, using
the canopy cover map, we identified deciduous forest
pixels in our study region where the Pearson correla-
tion between observed EVI values and the fitted cubic
spline was greater than 0.85 (figure 2). When the cor-
relation was less than 0.85, the pixel did not con-
sistently follow the relatively stable annual cycle of
greenness of deciduous trees, andwas assumed to con-
tain mostly grasses and shrubs (e.g. lawns and golf
courses) or ISA (see supplementarymaterial).

2.3. Landsat-based surface temperature estimation
Remotely sensed SUHI intensity is widely mapped
over various scales using land surface temperature
(LST; Yuan and Bauer 2007, Peng et al 2011). For this
work, we converted top-of-atmosphere brightness
temperatures from the Landsat TM and ETM+
thermal band to LST for all images betweenMay 1 and

September 1 using a first-order thermal radiative
transfer equation:

[ ( ) ]e e t= + - +lL L L L1 ,T D U

where t is the atmospheric transmissivity, e is the
land surface emissivity, lL is the sensor-detected
radiance, LT is the target pixel surface radiance, and
LD and LU are the downwelling and upwelling path
radiances at the surface and top-of-atmosphere,
respectively (Sobrino et al 2004). The radiance values
( lL and )LT were converted to brightness temperatures
(Tb) using sensor-specific Landsat calibration con-
stants and the inverse Planck equation:
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where k1=666.09Wm−2 sr−1 μm−1 and k2=
1282.71 K for Landsat 7 ETM+, and k1=
607.76Wm−2 sr−1 μm−1 and k2=1260.56 K for
Landsat 5 TM (Barsi et al 2005). Atmospheric correc-
tion was performed using an algorithm based on the
MODTRAN5 atmospheric radiative transfer model
(Barsi et al 2005; http://atmcorr.gsfc.nasa.gov/),
which uses atmospheric profiles of temperature,
humidity, and pressure from the National Centers for
Environmental Prediction (NCEP) to estimate values
for t, L ,U and L .D We ran MODTRAN at 42°N,
71°Wand at 15:16 GMT, which to corresponds to the
approximate location of Boston and time of the
Landsat overpass. Note that because the MODTRAN
tool provided by Barsi et al (2005) includes NCEP data
extending back to 2000, and the LST data used in this
analysis includes imagery from2000 to 2013.

To prescribe the emissivity at each pixel, we com-
puted area-weighted emissivities basedon three sub-pixel
landcover constituents (vegetation, bare soil, andurban):

e e e e= + +f f f ,urb urb veg veg soil soil

Figure 2. Smoothed scatter plot of sub-pixel canopy fraction versus Pearson correlation coefficients between observed and spline-
predicted EVI for pixels within Boston; darker colors correspond to increased density of observations (i.e., higher percentage of pixels
locatedwithin Boston).
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where the f subscript denotes the sub-pixel fraction of
urban, vegetation, and soil background within each
pixel, e is the effective emissivity over the Landsat
thermal bandpass, and where values for constituent
emissivities (εurb=0.9394, εveg=0.9740, εsoil=
0.9679) were based on published data (Baldridge
et al 2009; see supplementary material). Values of
fractional urban land cover, f ,urb were estimated using
theMassachusetts Office of Geographic Information’s
ISA layer (MassGIS 2007), which was generated using
50 cm near infrared orthoimagery and includes all
constructed surfaces and man-made compacted soil
(i.e., where no vegetation is present). To estimate the
fraction of vegetative cover in each pixel, f ,veg we used
an approach similar to that used by Carlson andRipley
(1997) and Sobrino et al (2008) (who estimated fveg as
a function of NDVI), but used EVI because it provides
greater dynamic range than theNDVI:

=
-
-

⎡
⎣⎢

⎤
⎦⎥f

EVI EVI

EVI EVI
,veg

min

max min

2

where EVImin (=0.123) and EVImax (=0.660) were
determined using a 1 m spatial resolution map of
canopy cover map for Boston (Raciti et al 2014). The
fraction of bare soil in each pixel, f ,soil was then
calculated as the residual of furb and fveg:

= - -f f f1 .soil veg urb

This formulation does not include water, which
was excluded from the analysis. Further, in contrast to
some studies thatmodel sub-pixel cover as a combina-
tion of ‘high albedo’ and ‘dark’ urban materials
(Small 2001, Small and Lu 2006), we assumed that
areas located in the furb portion of each pixel were
uniform in their emissivity.

Figure 3. Land usemap of Boston,MAwhere each 30 mpixel is classified as impervious surface area (ISA), forest canopy, or other,
based on thewithin-pixel proportional coverage of each land use class. See table 1 for legend of alphanumeric labels.
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2.4. SUHI effect on phenology
Our approach for assessing SUHI impacts on green
leaf phenology included two main elements. First, to
provide a baseline characterization of SOS and EOS
patterns across Boston’s urban-to-rural gradient, we
selected five 50 km transects originating at the Boston
Common, a forested park in downtown Boston
(figure 1). Two transects were located northeast and
southeast of Boston (including some coastal areas),
two were located inland to the northwest and south-
west, and the fifth transect was located west-northwest
of the city. Using these transects, we quantified how
the timing of mean EOS and SOS vary as function of
(1) distance from the city center and (2) average

summertime LST, which we define here as the long-
term mean LST based on all available clear-sky
observations inMay–August (2000–2013).

Second, we explored spatial patterns in SOS and
EOS within the city of Boston, focusing on land use
and vegetation controls. To characterize urban land
use and vegetation cover, we estimated the sub-pixel
composition of Landsat pixels within Boston’s city
limits for each of three surface types: impervious sur-
faces, tree canopy, and ‘other’ (grasses, wetlands,
fields, bare soil etc). To estimate the fractions of ISA
and tree canopy cover, we used the high spatial resolu-
tion maps of ISA and tree canopy described in
section 2.3. The remaining surface area in each pixel
was assigned to the ‘other’ class (figure 3). As part of
this analysis, we also explored if and how two years
with unusually cold and warm springs—2003 and
2010, respectively—affected patterns in SOS and EOS
in Boston.

3. Results

3.1. Phenology along urban-to-rural transects
Results from our analysis show that average growing
season length (GSL; EOS–SOS) is approximately
18–22 days longer and mean growing season LST is
7 °C higher in urban areas relative to surrounding
rural forests, and that spatial patterns in GSL and
LST closely follow land use (figure 1). These
relationships are consistent across Boston and in
nearby cities (e.g., Lowell and Lawrence, located
north of Boston in figure 1(a)). GSL is also signifi-
cantly shorter for wetlands, most of which are
located in coastal areas northeast and southeast of
Boston.

LST and GSL patterns along the five transects in
figure 1 show that relative to nearby rural locations,

Figure 4. (a) Long-termmean spring (SOS) and autumn (EOS) phenology as a function of distance along five transects drawn from the
BostonCommon, Boston,MA to outlying rural areas; bold lines representmean spring and autumnphenology and shaded areas
represent± one standard deviationwithin 1 kmbins. (b)Long-termmean SOS and EOS as a function ofmean growing season land
surface temperature (LST) alongfive transects drawn from the BostonCommon, Boston,MA to outlying rural areas; bold lines
representmean spring and autumnphenology and shaded areas represent± one standard deviationwithin 1°Cbins.

Table 1. Legend of notable parks and
neighborhoods within Boston listed in
figure 3.

Symbol Neighborhood/Park

1 Charlestown

2 East Boston

3 South Boston

4 Back Bay

5 Downtown

6 Allston

7 Brighton

8 Fenway/Kenmore

9 South End

10 Roxbury

11 Dorchester

12 Jamaica Plain

13 Mattapan

14 Roslindale

15 West Roxbury

16 Hyde Park

AA Arnold Arboretum

FP Franklin Park

SB Stony BrookReservation
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average SOS occurs about 10–12 days earlier (∼May 5)
and EOS occurs about 8–10 days later (∼October 14)
in locations that are within about 15 km of the city
center (figure 4(a)). However, patterns in SOS and
EOS also show substantial local variation (∼4–5 days)
caused by heterogeneity in land cover and elevation. In
contrast, the relationship between both EOS and SOS
as a function of mean growing season LST is smoother
(figure 4(b)), but has similar levels of local variation.
On average, SOS occurs 1.8 days earlier and EOS
occurs 2 days later for each 1 °C increase in mean
growing season LST.

3.2. Relationships between land use and phenology
inBoston
Visual analysis reveals strong complementary gradi-
ents in ISA and tree canopy cover between north-
eastern and southwestern Boston, with pronounced
local variation. Here we focus on fifteen neighbor-
hoods and three green space areas (table 1, figure 3(d)).
In the northeast, Charlestown (1), Downtown Boston
(5), and East Boston (2) are heavily developed, but
include areas with low stature vegetation (grass,
shrubs) in parks along the coast and at Logan Airport
in East Boston. Densely residential neighborhoods in

Figure 5. Long-termmean (a) spring phenology (SOS) and (b) autumnphenology (EOS)dates within Boston,MA; anomaly in timing
of spring onset during (c) 2003 and (d) 2010within Boston,MA; negative anomalies correspond to earlier than normal arrival in
spring.
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Allston (6), Fenway (8), South Boston (3), and the
South End (9) have moderate tree canopy cover and
relatively high ISA. Lower density residential neigh-
borhoods havemuch higher overall tree canopy cover,
especially in Hyde Park (16), Jamaica Plain (12), and
Roslindale (14).

Long-term mean SOS in Boston ranges from late
April to lateMay (day of year 120–140), and long-term
mean EOS ranges from early to late October (day of
year 280–290) (figure 5). SOS occurs earlier in neigh-
borhoods such as Jamaica Plain (11) and West Rox-
bury (15) that have moderate-to-high tree canopy
cover mixed with ISA, and later in areas with very
dense tree canopy cover such as Franklin Park (FP)
and the Stony BrookReservation (SB). Relative to SOS,
spatial patterns in EOS aremore variable and show less
patch-structure. Spatial variability in both EOS and
SOS is highest in neighborhoods such as Dorchester
(11) that are the most heterogeneous with respect to
tree canopy cover.

SOS across Boston also shows distinct responses to
interannual variation in temperatures. In 2003, for
example, the average temperature for February,
March, and April at Boston Logan International Air-
port was 2.9 °C below normal (4th coldest on record).
In response, SOS anomalies in 2003 were generally
positive (i.e., leaves emerged later than normal) by an
average of 4.4±3.4 days (±standard deviation;
figure 5(c)). In contrast, temperatures during the same
period of 2010 were 4.4 °C above normal (3rd

warmest on record) and accumulated growing degree-
days were nearly 150% above normal (results not
shown). In response, SOS anomalies were uniformly
negative (i.e., earlier leaf emergence) by an average of
10.7±4.8 days (figure 5(d)). This effect was most
pronounced in areas where average SOS tends to occur
later such as the Stony Brook Reservation, where SOS
was 15–20 days early in 2010 relative to long-term
means.

Finally, to more fully explore the linkage between
surface properties and spatial patterns in SOS and
EOS, we tested the hypothesis that the amount of ISA
in areas surrounding vegetation patches affects local
SUHI intensity, and therefore influences the timing of
SOS and EOS in urban vegetation patches. Results
shown in figure 6(b) appear to confirm this hypoth-
esis: SOS occurs 4.9 days later (t(d.f.=25 580)=
75.4, p<0.01) in areas surrounded by land cover with
less than 20% ISA relative to locations in more devel-
oped areas. In autumn, EOS occurs 0.7 days later on
average (t(d.f.=42 761)=−12.1, p<0.01) in areas
where ISA is greater than 20%, but the relationship is
relatively weak (see, figure 6(c)). In 2003 and 2010,
pixels surrounded by areas with higher ISA leafed out
about 1 day earlier and 2 days later (respectively) rela-
tive to normal (figures 6(e) and (f)), which suggests
that the influence of ISA and SUHI on spatial patterns
in SOS is weaker in years when spring temperatures
are anomalous.

Figure 6. Smoothed scatter plots of a 3×3movingwindow of percentage impervious surface area (%ISA)within Boston,MA versus
(a)mean growing season land surface temperature (LST), (b)mean spring phenology date (SOS), (c)mean autumnphenology date
(EOS), (e) 2003 SOS anomaly and (f) 2010 SOS anomaly, and (d) a 3×3movingwindowof percentage forest canopywithin Boston
versusmean growing season LST; darker colors in each plot correspond to greater densities of observations.
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4.Discussion and conclusions

Recent research has suggested that UHIs significantly
impact the growing season of vegetation in and
around cities (Zhang et al 2004, Mimet et al 2009,
Krehbiel et al 2016). Our results support this conclu-
sion, but provide a substantially refined characteriza-
tion of interactions among urban vegetation cover,
UHI intensity and vegetation phenology. At regional
scales, results from our analysis demonstrate that
spring and autumn phenology vary systematically as
a function of distance from the center of Boston (or
alternatively, with mean growing season LST), lead-
ing to growing seasons that are 18–22 days longer
within Boston relative to adjacent rural areas. At any
specific location, however, the intensity of Boston’s
SUHI and the average timing of EOS and SOS are
both highly variable and depend on local variation in
vegetation cover and land use. Hence, spatial patterns

in both phenology and SUHI in and around Boston
form a tightly linkedmosaic that is controlled by local
variation in land use (ISA) and land cover
(vegetation).

More specifically, results from our analyses
demonstrate that the amount of ISA surrounding
vegetation patches exert complex controls on SUHI
and vegetation phenology. At one extreme, locations
such as SB and FP have ISA fractions that are close to
zero and have growing seasons that are only slightly
longer than adjacent rural areas. Examination of the
relationship between SUHI and phenology along a
continuum of ISA, however, reveals a clear signature
of ISA and SUHI on phenology. For example,
figure 7 shows how SOS and EOS vary as a function
of average ISA across 15×15 pixel moving win-
dows for the entire study region. Here, we use the
long-term average wintertime and peak summer
EVI to identify pixels with low-density canopy cover

Figure 7. (a) Long-termmean spring phenology (SOS) of all vegetated pixels (blue) and exclusively high-density canopy cover pixels
(green) as a function of 15×15movingwindow average land surface temperature (LST); bold lines representmean spring and
autumn phenology and shaded areas represent± one standard deviationwithin 1 °Cbins. (b)Long-termmean autumnphenology
(EOS) as a function of LST. (c) Long-termmean SOS as a function of 15×15movingwindow average impervious surface area (ISA);
bold lines representmean spring and autumnphenology and shaded areas represent± one standard deviationwithin 10% ISAbins.
(d) Long-termmean EOS as a function of ISA.
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and high-density ISA. Pixels with high-density
canopy cover have significantly higher average win-
tertime EVIs (see supplementary material). Using a
threshold of wintertime EVI�0.15 and peak sum-
mertime EVI�0.60, we masked out low-density
canopy pixels. Using this, we assessed the impact of
urbanization on SOS/EOS separately for (1) all
vegetated pixels (including street trees) and (2) only
high-density canopy pixels. As figure 7 illustrates,
the phenology of high-density canopy pixels was less
sensitive to urbanization during spring and equally
sensitive during autumn. In areas where the 15×15
pixel spatial average LST was greater than or equal to
34 °C, the average timing of SOS was 3.8 days later (t
(d.f.=20 917)=−98.6, p<0.01), and in areas
where the spatial average ISA greater than or equal to
70%, the average SOS was 4.5 days later (t(d.
f.=74)=−7.6, p<0.01).

Neighborhoods located in Boston’s urban core
were characterized by higher temperatures, longer
growing seasons, and higher proportions of imper-
vious surfaces. In this context, an open question that
is not addressed in this paper is the role of species
composition in the phenological patterns we
observed here. For example, Norway maple (Acer
platanoides), a non-native species that is widely
found in urban areas of Eastern Massachusetts, leafs
out earlier and retains its leaves later than most
native tree species that in the region (Bertin
et al 2005). Hence, it is likely that at least part of the
pattern in GSL that we attribute to Boston’s SUHI is
also a reflection of geographic patterns in species
composition.

Future climate change is expected to have wide-
spread impacts in urban areas. In Boston, general
circulation models project that mean springtime
temperatures will rise 2.4 °C–6.0 °C by the end of
this century (Kirshen et al 2008, McCarthy
et al 2010). Results presented here show that in 2010,
when spring temperatures were approximately 3 °C
above average (i.e., at the low end of projected chan-
ges), leaf emergence occurred about 10 days earlier
than average in Boston, with trees in Boston’s largest
forested patches leafing out even earlier. These
results are consistent with those of Friedl et al (2014)
and suggest that the growing season of trees and
urban forests in New England is likely to shift by as
much as 2–4 weeks in the coming decades. The full
implications of these changes are unclear, but as the
Earth’s climate warms and urban areas increasingly
respond to climate change, urban ecosystems are
likely to experience significant functional and struc-
tural changes. From a more practical perspective,
results from this study show that urban vegetation
has the potential to provide significant societal bene-
fit in cities by reducing the intensity of UHIs (Levis
and Bonan 2004).
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