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Abstract
TheUnited States (US)Clean Power Plan established state-specific carbon dioxide (CO2) emissions
reduction goals for fossil fuel-fired electricity generating units (EGUs). Statesmay achieve these goals
throughmultiplemechanisms, includingmeasures that can achieve equivalent CO2 reductions such
as residential energy efficiency, whichwill have important co-benefits. Here, we develop state-
resolution simulations of the economic, health, and climate benefits of increased residential
insulation, considering EGUs and residential combustion. Increasing insulation to International
EnergyConservationCode 2012 levels for all single-family homes in theUS in 2013would lead to
annual reductions of 80million tons of CO2 fromEGUs, with annual co-benefits including 30million
tons of CO2 from residential combustion and 320 premature deaths associatedwith criteria pollutant
emissions fromboth EGUs and residential combustion sources.Monetized climate and health co-
benefits average $49 per ton of CO2 reduced fromEGUs (range across states: $12–$390). State-specific
co-benefit estimates can informdevelopment of optimal Clean Power Plan implementation strategies.

Introduction

In August 2015, the United States Environmental
Protection Agency (US EPA) issued the Final Rule for
the Clean Power Plan [1], which established state-
specific carbon dioxide (CO2) emissions reduction
goals for fossil fuel-fired electricity generating units
(EGUs). States may achieve these goals throughmulti-
ple mechanisms, including source-specific emissions
standards or measures that can achieve equivalent
CO2 reductions, such as residential energy efficiency.

Residential energy efficiency is an appealing
approach for emissions reductions, given evidence of
greater cost-effectiveness relative to other strategies
[2]. While studies have identified some of the eco-
nomic benefits of energy efficiency as a CO2 emissions
reduction strategy, important co-benefits are often not
considered in policy development. Such co-benefits
include the influence of other air pollutants from
EGUs on public health. Studies have shown that the air

pollution-related public health benefits of EGU con-
trol strategies can be appreciable, with thousands of
lives saved per year and an array of morbidity benefits
for CO2 control strategies that include energy effi-
ciency [3]. The monetary value of air pollution health
benefits from EGU emissions reductions has been
shown to be comparable in magnitude to the social
cost of carbon (SCC) [4, 5]. In addition, energy effi-
ciency measures that influence heating and cooling
(e.g., increased residential insulation or air sealing)
would not only reduce emissions from EGUs, but
would also reduce emissions of CO2 and other air pol-
lutants fromdirect residential combustion.

Although these pathways are well-recognized,
models to date have not provided insight at the state
level on the multifactorial benefits of specific residen-
tial energy efficiency measures. Models of energy sav-
ings associated with energy efficiency are readily
available [6] but without extension to emissions and
health co-benefits. Recent models examining the
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commercial sector incorporated social benefits at the
state level related to both CO2 emissions and other air
pollutants [7], but focused only on electricity and nat-
ural gas, calculated health benefits using estimates that
relied on an atmospheric dispersion model with lim-
ited secondary chemistry, and characterized average
rather than marginal emission rates from the power
grid. An older study of the residential sector estimated
social benefits of increased residential insulation by
extrapolating findings from a more complex atmo-
spheric dispersion model and estimating marginal
emission rates, but did not model all source locations
directly or account for more complex patterns of elec-
tricity dispatch [8]. Studies have applied more com-
plex atmospheric models to evaluate air pollution
benefits of energy efficiency or other interventions,
but generally only at a national scale [3]. To our
knowledge, no studies have incorporated all of the ele-
ments needed to accurately estimate social benefits of
residential energy efficiency measures or to quantify
co-benefits of residential energy efficiency measures
targeting CO2 at the state level.

In this study, we develop and apply a comprehen-
sive and integrated model of the economic, climate,
and public health benefits of increased insulation as an
example of a state-level residential energy efficiency
measure. We construct detailed simulations of the
state-level energy savings associated with increasing
residential insulation for all single-family homes in the
continental US in 2013 to levels consistent with the
2012 International Energy Conservation Code
(IECC). We estimate emissions reductions by state
from both EGUs and residential combustion, and we
link these emissions reductions with atmospheric
chemistry-transport modeling approaches which
allow us to isolate the contribution from individual
emitted pollutants, source types, and states to ambient
air pollution. We estimate the resulting public health
benefits of reductions in ozone and fine particulate
matter (PM2.5) concentrations and we monetize both
health benefits and CO2 emission reductions. We pre-
sent our central estimates and characterize uncertainty
across multiple model components. These outputs
allow us to quantify the co-benefits of state-level
energy efficiency strategies targeting CO2 emissions
from EGUs, and to compare the health and climate
benefits with the economic benefits associated with
residential energy efficiency.

Methods

Our simulationmodel consists of five primary compo-
nents (figure 1). We describe each of these model
components in the sections that follow, with more
detail about our energy simulation modeling and
atmosphericmodeling in supplementary data.

Energy simulationmodeling
We simulated building-wide energy consumption
using high-performance computing techniques with
an energy simulation program (EnergyPlus)which has
been extensively applied and validated in the peer-
reviewed literature [9–12]. We began with EnergyPlus
building prototypes developed by Pacific Northwest
National Laboratory (PNNL) and made available
through the Building Energy Codes Program of the US
Department of Energy [13]. We then modified these
prototypes to correspond with single-family detached
homes representative of the US housing stock, using
microdata from the 2009 Residential Energy Con-
sumption Survey (RECS; see supplementary data).

We ran EnergyPlus for each home with current
insulation and with increased insulation in the wall,
ceiling, and floor consistent with the state-specific
2012 IECC. To calculate the benefits of increased resi-
dential insulation by state, we selected the RECS tem-
plates assigned to each state and calculated the
differences in hourly energy consumption between the
existing home and post-retrofit home. We then esti-
mated the state-level benefits by using the RECS sam-
ple weight for each home but rescaling to represent the
total number of single-family homes in each state, as
derived from 2009 to 2013 American Community
Survey estimates.

Because of the need to edit and simulate energy
consumption for tens of thousands of templates, we
developed code in Python to batch edit, process, and
run homes in EnergyPlus. We utilized Eppy [14], a
previously developed Python library for processing
EnergyPlus inputs and outputs, for the batch file edits.
We ran the simulations on the Shared Computing
Cluster, a heterogeneous Linux cluster at Boston
University.

We conducted two primary sensitivity analyses.
First, given the possibility of systematic bias in Energy-
Plus, we developed calibration factors by reportable
domain (state or state aggregates), fuel type (electricity,
natural gas, fuel oil, LPG/propane), and usage cate-
gory (heating, cooling, all other) by comparing simu-
lated baseline energy consumption with
corresponding values from RECS. We used the cali-
brated values for our primary estimates but tested the
sensitivity of our findings to the use of uncalibrated
values. Second, because air tightness can greatly influ-
ence heating and cooling energy consumption and the
estimation of effective leakage area (ELA—see supple-
mentary data) may contain appreciable uncertainties,
we calculated the benefits of increased insulation with
modeled ELA and with ELA fixed to IECC 2012 levels
for all homes.

Emissions estimation
For EGUs, we applied an electricity dispatch model
(the AVoided Emissions and geneRation Tool—
AVERT) that uses historical hourly data on electricity
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generation and dispatch to determine which EGUs
would reduce generation given reductions in hourly
demand [15]. We used baseline EGU attributes for
2013 for consistency with the other elements in our
modeling platform. As multiple states are divided
across electricity dispatch regions in AVERT, we first
divided the modeled electricity savings across regions
based on the number of single-family homes found in
each region. For each state/region combination, we
then input themodeled hourly electricity savings from
EnergyPlus, assuming a constant 3.167 ratio between
source electricity and site electricity [16].We extracted
outputs of SO2, NOx, and CO2 emissions reductions
by state and season. We omitted primary PM2.5

emissions from EGUs given limitations in available
input data consistent with AVERT, but note that about
95% of PM2.5-related benefits from EGUs are attribu-
table to secondary PM2.5 formation from SO2 and
NOx emissions [17], so this would contribute amodest
downward bias. Residential combustion criteria pollu-
tant emissions for each fuel type were estimated from
EPA’s 2011 National Emissions Inventory [18],
including SO2, NOx, VOCs, and primary PM2.5

emissions (the sum of filterable and condensable). For
CO2 emissions, we derived emission factors by fuel
type from EPA’s Emission Factors for Greenhouse Gas
Inventories [19].

Atmosphericmodeling
To determine the influence of changes in emissions
from EGUs and residential combustion by pollutant
and state on concentrations of PM2.5 and ozone, we
used the Community Multiscale Air Quality (CMAQ)
model v. 4.7.1 [20, 21] instrumented with the direct
decoupled method (DDM) in three dimensions [22].
CMAQ can simulate both primarily emitted and
secondarily formed pollutants at a national scale, and
DDM decouples sensitivity equations from model

equations to allow for more stable sensitivity values by
pollutant and source.

EGUs were modeled by individual power plants
and aggregated to 36 km×36 km grid cells by state,
subdividing states that cut across multiple dispatch
regions to allow for direct connection to AVERT out-
puts. Residential combustion sources weremodeled as
ground-level area sources including all residential fuel
types and aggregated to county level for apportion-
ment to grid cells by state. The meteorological inputs
were from the Weather Research Forecast model and
emissions inventories from EPA’s National Emissions
Inventories for the year 2005 were processed through
the Sparse Matrix Operator Kernel Emissions model-
ing system.

Because CMAQ-DDM is computationally inten-
sive, we selected two months (January and July 2005)
to provide bi-seasonal representation. Modeling a
subset of sources for the full year found differences of
∼10% on an annual average basis, confirming the
validity of this approach. To provide initial back-
ground conditions, a spin-up period of 11 days just
prior to each month was simulated. The computa-
tional intensity of CMAQ-DDM also led us to incor-
porate multiple states in a single run, grouping states
that were expected to have minimal concentration
overlap based on results frompilot analyses.We devel-
oped and applied an image segmentation technique to
separate concentration surfaces from one another,
described in supplementary data.

We focused on contributions of primary PM2.5

(elemental carbon, organic carbon, and primary sul-
fate), NOx, SO2, and VOCs to ambient PM2.5; and on
contributions of NOx and VOCs to ozone. For con-
sistency with health impact modeling approaches,
PM2.5 constituents were estimated as 24 h averages
and ozonewas estimated as daily 8 hmaximumvalues.

Figure 1. Flow diagramdepicting all of the components of our simulationmodel.
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Health damage functionmodeling
We calculated mortality risks using the following
equation:

y y e 1 Pop ,
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where i is row number and j is column number, N is
total number of rows and M is total number of
columns in the CMAQ grid. Δy is the change in
mortality across the continental US, y0 is the baseline
mortality incidence rate at location ij, β is the
concentration-response function (CRF), Δx is the
change in air quality for a given precursor at location
ij, and Pop is the population of interest at location ij.

For PM2.5, we applied a central estimate of a 1%
increase in mortality for every 1 μg m−3 increase in
annual ambient PM2.5 concentrations, consistent with
an expert elicitation study [23] and in between the cen-
tral estimates from two major cohort studies [24, 25].
As done previously [26], we used 0.3% as a lower-
bound estimate and 2.0% as an upper-bound estimate,
consistent with the median values across experts for
the 5th and 95th percentiles of the uncertainty dis-
tributions as well as the uncertainty bounds for the
twomajor cohort studies. For ozone, we applied a cen-
tral estimate of a 0.4% increase in daily mortality per
10 ppb increase in daily 8 hmaximum concentrations,
based on major multi-city and meta-analysis studies
[27–32], with 0.2% as a lower-bound estimate and
0.6% as an upper-bound estimate (representing the
5th and 95th percentiles of an equally-weighted pool-
ing of the sixmajor studies).

To estimate population and mortality, values for
individuals aged 25 and over from 2001 to 2010 were
obtained from CDCWONDER [33] and averaged for
stability of values. County-wide values were projected
as Lambert conformal conic in ArcMap v. 10.1 and
intersected with CMAQ grid cells, assuming uniform
population density and mortality rates within coun-
ties. Health damages per unit emissions were then esti-
mated for each emitted precursor/ambient pollutant
combination, by state and source sector, assuming
that January represents October–March and that July
represents April–September.

Economicmodeling
We estimated the economic benefits of increased
residential insulation using 2013 fuel costs by state,
applying regional values for states with missing
information or national average values for regions
withmissing information [34]. Tomonetize the public
health benefits, we applied a value of statistical life
(VSL) commonly used in US EPA regulatory impact
analyses [35], which corresponds to $9.7 million in
2013 dollars and 2013 income levels given recom-
mended conversions for inflation and real income
growth, with corresponding lower-bound and upper-
bound values of $2 million and $20 million. We
discount future PM2.5-related deaths as done in EPA

regulatory impact analyses, applying a discount rate of
3% and assuming a mortality lag structure of 30%
reductions in the first year, 50% reductions over years
2–5, and 20% over years 6–20 subsequent to the
exposure reduction. As ozone-related deaths are based
on short-term exposure studies, no discounting is
necessary.

For CO2 emissions, EPA has developed four alter-
native estimates of the SCC, reflecting different dis-
count rates (5%, 3%, and 2.5%) applied to model
average values as well as a 3% discount rate applied to
the 95th percentile model value [36]. For a 2013 dis-
count rate year and adjusted to 2013 dollars, the four
reported values correspond to $11, $35, $55, and $99
per short ton of CO2. We use the $35 value (corresp-
onding to a 3% discount rate) for our central estimates
and test the sensitivity of our findings to the three
alternative values.

Results

Modeled benefits of residential energy efficiency
Our calibrated energy model outputs estimate that, in
total, increasing residential insulation to IECC 2012
levels for all single-family homes across the continen-
tal US in 2013 would save about 37 TWh of electricity
consumption per year, or a 3.4% reduction in
residential electricity consumption (range across
states: 1.7%–5.2%; figure 2). This is driven by varia-
tions in the percent savings for electric space heating
and space cooling, and the usage of electric space
heating and air conditioning by state.We estimate that
annual residential natural gas consumption would be
reduced by 360 billion standard cubic feet (9%
reduction), LPG/propane consumption by 490 mil-
lion gallons (10% reduction), and fuel oil consump-
tion by 480 million gallons (12% reduction). Both the
absolute and percentage changes vary significantly
across states (figure 2).

In total, reductions in electricity generation would
be associated with annual reductions of 80 million
tons of CO2, 68 000 tons of NOx and 120 000 tons of
SO2. Reductions in direct residential combustion
would be associated with annual reductions of 30 mil-
lion tons of CO2, 25 000 tons of NOx, 10 000 tons of
SO2, 1300 tons of VOCs, and 600 tons of primary
PM2.5 (figure 3, supplementary table 1, and supple-
mentary figure 1). The relative significance of EGUs
and residential combustion varies across states and
pollutants. For example, only in the Northeast is a sig-
nificant fraction of SO2 emitted by residential com-
bustion, given fewer coal-fired EGUs and more
residential fuel oil. For CO2, states in the Northeast
and Midwest tend to have greater contributions from
residential combustion given less frequent use of elec-
tric space heating. Of note, for electricity, state values
reflect the impact of demand reductions in the listed
state, though EGUs acrossmultiple states are affected.
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Using central estimates for CRFs and calibrated
energy model outputs, the criteria pollutant emissions
reductions would be associated with 320 fewer pre-
mature deaths per year, 130 from residential combus-
tion and 190 from EGUs (figure 4 and supplementary
table 1). The states contributing most to EGU benefits
are large states with significant coal combustion and
large downwind populations (e.g., Pennsylvania,
Ohio, Maryland, North Carolina). NOx contributes

51% and SO2 49% of the EGU benefits, with NOx

making more substantial contributions in the Mid-
west and Mid-Atlantic. The states contributing most
to residential combustion benefits are large states with
appreciable use of higher-emitting combustion fuels
(e.g., Ohio, New York, Maryland). Primary PM2.5

emissions contribute 33% of the total residential com-
bustion health benefits and are typically the greatest
contributor in highly populated states in the East and

Figure 2.Annual total and percentage reduction in residential electricity and fuel consumption associatedwith increased insulation.
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Midwest that have high wintertime health damage
functions. NOx contributes 28% of the total residen-
tial combustion health benefits but is the dominant
contributor in many states in the West, related in part
to substantial wintertime ozone scavenging in the East.
SO2 contributes 29% of the total residential combus-
tion health benefits, isolated to a limited number of
states with appreciable use of LPG and fuel oil (e.g.,
Ohio,Maryland,NewYork, Connecticut).

Whenmonetized using our base case assumptions,
the annual health benefits are valued at $2.9 billion, as
compared with the SCC of $3.8 billion and the direct
economic savings of $11 billion from reduced energy
consumption. Across states, the relative contributions
of health to monetized social benefits varies from 11%
to 80% (figure 5 and supplementary table 2), with
health contributing more than climate in states across
the Mid-Atlantic and Northeast, while climate is the
dominant contributor in much of the West. Similarly,

the monetized social benefits vary significantly across
states in comparison with the direct economic bene-
fits, with the states exhibiting large social benefits typi-
cally having substantial residential combustion for
space heating, a high density of coal-fired EGUs with
significant space cooling requirements, and lower than
average electricity prices (figure 5 and supplementary
table 2).

We can estimate the co-benefits associated with
state-level efforts to use residential insulation as a
mechanism to reduce CO2 emissions from EGUs. For
every ton of CO2 reduced from EGUs, there would be
an additional 0.38 tons reduced from residential com-
bustion sources (range across states: 0.02–2.6), an air
quality-related mortality reduction of 2.4 per million
population per year from EGUs (range across states:
0.58–4.7), and an air quality-related mortality reduc-
tion of 1.6 per million population per year from resi-
dential combustion sources (range across states:

Figure 3.Annual reduction in emissions associatedwith increased residential insulation and the fraction of the reduction fromEGUs
versus residential combustion sources.
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−0.21–34) (figure 6). If wemonetize both health bene-
fits and residential CO2 emissions, the ancillary benefit
per ton of EGU CO2 reduction amounts to $49 (range
across states: $12–$390). Ancillary benefits are greatest
in the Northeast given fuel usage and emissions
patterns.

Uncertainty and sensitivity analysis
Our energy savings and emissions estimates are
insensitive to assumptions about ELA (3%–4% differ-
ence across all fuel types and pollutants). Energymodel
calibration has a greater effect on our estimates, with
evidence of a systematic upward bias in EnergyPlus
outputs in the absence of calibration to RECS. Using
uncalibrated values, our electricity savings are 96%
higher, driven by a substantial bias in electricity for
space heating (283% higher) and a modest bias for
electricity for space cooling (40% higher). Combus-
tion fuel savings are also about a factor of 2 higher
when using uncalibrated models. While this degree of
bias is concerning, these differentials are not unex-
pected and calibration to observed baseline data can
lead to accurate estimates of marginal benefits [37].
Nevertheless, when combining the alternative CRFs
with the calibrated and uncalibrated outputs, our
estimates of annual health benefits could be a factor of
3 lower (calibrated outputs, 5th percentile CRF) or a

factor of 4 higher (uncalibrated outputs, 95th percen-
tile CRF) than our central estimates.

Considering the range of estimates for VSL and
SCC, the relative contribution of air pollution health
benefits versus climate benefits to monetized social
benefits varies widely. Applying four alternative values
for the SCC to calibrated energy model values yields
monetized climate benefits between $1.2 billion and
$11 billion per year, while applying three alternative
values for the VSL yields monetized health benefits
between $0.59 billion and $5.9 billion per year using
our central health estimates. That said, the health and
climate benefits are of a comparable order of magni-
tude as one another and add appreciably to the $11 bil-
lion in direct economic benefits under most
assumptions.

Discussion and conclusions

Our simulation model provides quantitative insight
about the extent of co-benefits associated with resi-
dential energy efficiency as a strategy to reduce CO2

emissions from EGUs. Previous studies have demon-
strated that CO2 emissions can be reduced through
‘inside the fenceline’ operational changes to EGUs, but
that this leads to minimal influence on other air
pollutants [3]. Other strategies for CO2 emissions
reductions, such as substituting or co-firingwith lower

Figure 4.Annualmortality reductions associatedwith increased residential insulation, for EGUs and residential combustion sources,
and the fraction of the reduction fromvarious precursor pollutants. Pie charts for states with increasedmortality from residential NOx

emissions include the fractional contribution fromother precursors to the total, excludingNOx. See supplementary table 1 for all
values.
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emitting sources, can provide co-benefits from EGU
emissions but not residential combustion sources.
Residential energy efficiency measures targeting space
heating and cooling, such as increased insulation or air
sealing, yield both types of co-benefits as well as a
potential economic return on investment.

An important finding is the substantial geographic
heterogeneity in co-benefits per ton of EGU CO2

reduced (more than a factor of 30 across states), which
provides insight about the states for which residential
energy efficiency could be a more cost-effective
approach from a societal perspective in meeting tar-
gets under the Clean Power Plan. States in the north-
ern US with greater space heating requirements
typically yield greater residential CO2 and public
health co-benefits, while states in the industrial Mid-
west and Southeast typically yield greater EGU public
health co-benefits. When monetized, co-benefits per
ton of CO2 reduction from EGUs are greatest in the
Northeast and Midwest. Numerous factors could
influence the compliance strategies for individual
states, and complexities of emissions reductions in
states where the demand reduction did not occur
would need to be addressed, but our findings and rela-
ted analyses can be an input to the decision process.

Although we have quantified the most substantial
uncertainties, additional factors contribute to uncer-
tainty in our outputs. For example, our estimates of
health damages per unit emissions are more uncertain
for low-emitting states; while this uncertainty would
minimally influence national-scale benefits, it should
be acknowledged for state-specific applications. Our
atmospheric modeling isolates the contributions of all
existing sources within a state, but if the subset of sour-
ces affected by energy efficiency measures have a dif-
fering spatiotemporal pattern from the existing
sources, the health damage estimates may differ. In
addition, we have modeled a single year (2013), but
multiple factors would evolve over time, including
emissions characteristics of the power sector given
regulatory requirements and technological shifts,

population patterns, and energy costs. While our
modeling platform characterizes emissions reductions
beyond the influence of existing regulations, the pre-
sence of these other regulations will influence the
power sector in future years and therefore marginal
emissions patterns. Formal application of our model
to policy decision-making would benefit from ana-
lyses of health benefits over the lifetime of the energy
efficiency measure. Our estimates do not incorporate
increased emissions related to insulation manufactur-
ing or decreased emissions from upstream energy pro-
cesses, though earlier studies suggest an emissions
payback period for insulation manufacturing on the
order of a year for both CO2 and PM2.5 [38] with
upstream energy processes contributing only about
10% to total impacts [39]. Our modeled energy effi-
ciency measure is a stylized example that does not
account for the variable cost-effectiveness across
homes and locations, the possibility that increased
insulation may only be warranted for parts of the
home for some homes, the rebound effect in which
lower costs of heating or cooling lead to changes in
temperature setpoints or system utilization, or ongo-
ing evolution of code requirements. In general, insula-
tion retrofits for individual homes are economic
decisions that depend on an array of factors (e.g., pay-
back period, liquidity, financing, anticipated time in
home), and our estimates should be interpreted as the
state and national capacity for energy savings rather
than the quantified benefits of a specific policy
measure.

In general, in spite of multiple uncertainties, our
estimates are well aligned with previously published
values. For example, a study of the benefits of IECC
2000 insulation levels relative to existing home condi-
tions in 1999 estimated 240 fewer deaths/year [8] (ver-
sus our current estimate of 320). Similarly, a study
estimated a reduction of approximately 1 ton of CO2

per home per year for insulation retrofits to 60%
new and 40% existing homes [38], versus our estimate
of 1.4 for existing homes. Our central estimates imply

Figure 5.Annualmonetized benefits associatedwith increased residential insulation, with the fractional contribution to benefits by
source type and impact category. The size of the pie charts reflects the ratio between social benefits (health plus climate) and economic
benefits.
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monetized health impacts comparable in magnitude
tomonetized climate impacts, as shown elsewhere [5].

Although additional information would be
required before determining whether residential energy
efficiency would be the most socially cost-effective
approach for CO2 emissions reductions, themagnitude

of the co-benefits coupled with prior evidence on cost-
effectiveness of energy efficiency suggests that states
should formally evaluate energy efficiency as part of
Clean Power Plan compliance or as a general strategy to
improve air quality and reduce CO2 emissions. Our
modeling platform has been designed to allow for rapid

Figure 6.Climate and health benefits per ton of CO2 emissions reduced fromEGUs through increased residential insulation.
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future analyses, allowing for the benefits of alternative
state-level residential energy efficiency measures to be
quantified and used to inform cost-effective andhealth-
protective public policies.
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