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Abstract 92 

As the permafrost region warms, its large organic carbon pool will be increasingly 93 

vulnerable to decomposition, combustion, and hydrologic export. Models predict that some 94 

portion of this release will be offset by increased production of Arctic and boreal biomass; 95 

however, the lack of robust estimates of net carbon balance increases the risk of further 96 

overshooting international emissions targets. Precise empirical or model-based assessments 97 

of the critical factors driving carbon balance are unlikely in the near future, so to address this 98 

gap, we present estimates from 98 permafrost-region experts of the response of biomass, 99 

wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to 100 

model projections, total permafrost-region biomass could decrease due to water stress and 101 

disturbance, factors that are not adequately incorporated in current models. Assessments 102 

indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing 103 

coastlines could increase by 75% while carbon loss via burning could increase four-fold. 104 

Experts identified water balance, shifts in vegetation community, and permafrost degradation 105 

as the key sources of uncertainty in predicting future system response. In combination with 106 

previous findings, results suggest the permafrost region will become a carbon source to the 107 

atmosphere by 2100 regardless of warming scenario but that 65 to 85% of permafrost carbon 108 

release can still be avoided if human emissions are actively reduced. 109 

110 
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Introduction 111 

Permafrost zone carbon balance 112 

The United Nations has set a target of limiting warming to 2°C above pre-industrial 113 

temperatures to mitigate risk of the most damaging consequences of climate change (UNEP, 114 

2013). Maintaining global climate within this target depends on understanding ecosystem 115 

feedbacks to climate change so that adequate limits on human emissions can be set. As high 116 

latitudes warm, more of the large permafrost carbon pool will be exposed to decomposition, 117 

combustion, and hydrologic export (Harden et al., 2012; Schuur et al., 2015). Up to 220 118 

Petagrams (Pg) carbon could be released from permafrost-region soil by 2100, and 500 Pg by 119 

2300 (Schuur et al., 2013; MacDougall et al., 2012), representing 10 to 30% of greenhouse 120 

gas emissions required to push the global climate system beyond the 2°C target (Schaefer et 121 

al., 2014). Models project that some permafrost carbon release will be offset by increases in 122 

Arctic and boreal primary productivity due to extended growing season, CO2 fertilization, 123 

and nutrient release from decomposing soil organic matter. However, many processes and 124 

dynamics known to influence biomass accumulation, such as ecosystem disturbance and 125 

nutrient limitation, are incompletely represented or absent in current models (Qian et al., 126 

2010; Koven et al., 2011; Schaefer et al., 2011; Koven et al., 2015b). Likewise, only a few 127 

models projecting future permafrost carbon release consider wildfire emissions, and none 128 

include hydrologic carbon flux (MacDougall et al., 2012; Koven et al., 2011; Qian et al., 129 

2010; Schaefer et al., 2014; Schaefer et al., 2011), though past hydrologic flux has been 130 

simulated (McGuire et al., 2010; Kicklighter et al., 2013; Laudon et al., 2012). Despite clear 131 

policy implications of this climate feedback, considerable uncertainty of both carbon inputs 132 

and outputs limits our ability to model carbon balance of the permafrost region. To bring to 133 

bear the best available quantitative and qualitative scientific information (Joly et al., 2010) on 134 

this climate feedback, we present results from expert assessment surveys indicating that there 135 
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is little consensus on the magnitude and even sign of change in high-latitude biomass, 136 

whereas most researchers expect fire emissions and hydrologic organic carbon flux to 137 

substantially increase by the end of the century. 138 

Expert assessment 139 

When data are sparse but management decisions are pressing, expert judgements have 140 

long been used to constrain possible system response and risk of dangerous or undesired 141 

outcomes (Zickfeld et al., 2010; Morgan, 2014). There are multiple methods for collecting 142 

and combining expert opinion including formal expert elicitation interviews, interactive 143 

software, and surveys (Aspinall, 2010; Morgan, 2014; Javeline et al., 2013). While expert 144 

assessment cannot definitively answer questions of future system response, it complements 145 

modeling and empirical approaches by allowing the synthesis of formal and informal system 146 

information and by identifying research priorities (Fig. 1; Morgan, 2014; Sutherland et al., 147 

2013). The approach is similar to the concept of ensemble models where multiple estimates 148 

built on different assumptions and data provide a more robust estimate and measure of 149 

variance. Because the experimental unit is an individual researcher, each data point represents 150 

an integration of quantitative knowledge from modeling, field, and laboratory studies as well 151 

as qualitative information based on professional opinion and personal experience with the 152 

system. Expert assessment has been used in risk assessment and forecasting of natural 153 

disasters, human impacts on ecosystems, and tipping points in the climate system (Aspinall, 154 

2010; Halpern et al., 2008; Lenton et al., 2008). In a data-limited environment such as the 155 

permafrost region, expert assessment allows formal consideration of a range of factors known 156 

to affect carbon balance but insufficiently quantified for inclusion in models. For permafrost 157 

carbon balance, these factors include nutrient dynamics, non-linear shifts in vegetation 158 

community, human disturbance, land-water interactions, and the relationship of permafrost 159 

degradation with water balance.  160 
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 Because precise empirical or model-based assessments of the critical factors driving 161 

permafrost-region carbon balance are unlikely in the near future (Harden et al., 2012), we 162 

collected estimates of the components of net ecosystem carbon balance from 98 permafrost-163 

region experts (Table 1). We had two major goals: 1. Assess current understanding of the 164 

timing and magnitude of non-soil biomass accumulation, hydrologic organic carbon flux, and 165 

wildfire carbon emissions, and 2. Identify major sources of uncertainty in high-latitude 166 

carbon balance to inform future research.  167 

Methods 168 

Survey development and design 169 

In the fall of 2013 we administered three expert assessments to address knowledge 170 

gaps concerning the response of permafrost-region biomass, wildfire, and hydrologic carbon 171 

flux to climate change. Development of assessment methodology began in early 2009 as a 172 

part of the Dangerous Climate Change Assessment Project administered by the University of 173 

Oxford. We iteratively revised questions, response format, and background information based 174 

on four rounds of input from participants, including at the Vulnerability of Permafrost Carbon 175 

Research Coordination Network meeting in Seattle 2011 (Schuur et al., 2013). To help 176 

survey participants consider all of the evidence available from field and modeling studies, we 177 

distributed a system summary document for each questionnaire including regional and pan-178 

Arctic estimates of current carbon pools and fluxes, a brief treatment of historical trends, and 179 

a summary of model projections where available (Table 2; Supplementary information 180 

Questionnaires and System summaries).  181 

Participants were selected based on contribution to peer-reviewed literature or 182 

referrals from other experts and had experience in all major boreal and Arctic regions (Table 183 

1). We identified potential participants by querying Thomas Reuters Web of Science 184 

(webofknowledge.com) with applicable search terms (e.g. Arctic, boreal, biomass, dissolved 185 
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organic carbon, fire, permafrost). To reach researchers with applicable expertise who were 186 

underrepresented in the literature, we supplemented the list with personal referrals from lead 187 

experts and all participants. In total 256 experts were invited to participate. We distributed the 188 

surveys and system summaries via email with a two-week deadline. After sending out three 189 

reminders and accepting responses for three months after initial invitation, we received 115 190 

responses from 98 experts (38% response rate), with 15 experts participating in more than 191 

one survey (Supplementary information List of experts). Experts who provided estimates and 192 

input to this paper are coauthors. 193 

Experts provided quantitative estimates of change in biomass, hydrologic flux, or 194 

wildfire for three time points (2040, 2100, and 2300), and four regional warming scenarios 195 

based on representative concentration pathway (RCP) scenarios from the IPCC Fifth 196 

Assessment Report (Moss et al., 2010). Warming scenarios ranged from cessation of human 197 

emissions before 2100 (RCP2.6) to sustained human emissions (RCP8.5) and corresponded 198 

to permafrost-region mean annual warming of 2 to 7.5°C by 2100. All surveys were driven 199 

by the same scenarios of high-latitude warming generated from RCP2.6, 4.5, 6.0, and 8.5 200 

with the National Center for Atmospheric Research's Community Climate System Model 4 201 

(Lawrence et al., 2012). For the purposes of this survey, warming was assumed to stabilize at 202 

2100 levels for all scenarios so that estimates for the 2300 time point would account for lags 203 

in ecosystem responses to climate drivers. While climate scenarios were defined by 204 

temperature, we asked experts to consider all accompanying direct climate effects (e.g. 205 

temperature, precipitation, and atmospheric CO2) and indirect effects (e.g. vegetation shifts, 206 

permafrost degradation, invasive species, and disturbance). Experts were encouraged to 207 

consider all available formal and informal information when generating their estimates 208 

including published and unpublished modeled and empirical data as well as professional 209 

judgment. Participants listed the major sources of uncertainty in their estimates, self-rated 210 
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their confidence and expertise for each question, described rationale for their estimates, and 211 

provided background information (Tables 1 and S1). 212 

The biomass survey consisted of a single question asking for cumulative change in 213 

tundra and boreal non-soil biomass including above and belowground living biomass, 214 

standing deadwood, and litter. The wildfire survey asked for estimates of change in wildfire 215 

extent and CO2 emissions for the boreal and tundra regions to assess changes in both fire 216 

extent and severity. The hydrologic flux survey asked for estimates of dissolved and 217 

particulate organic carbon (DOC and POC, respectively) delivery to freshwater ecosystems in 218 

the pan-Arctic watershed and delivery to the Arctic Ocean and surrounding seas via riverine 219 

flux and coastal erosion, allowing the calculation of losses during transport due to burial or 220 

mineralization. Dissolved inorganic carbon fluxes were not included in this survey.  221 

The original questionnaires in 2009 asked for participants to estimate subjective 95% 222 

confidence intervals of the whole system response (e.g. total change in high-latitude 223 

biomass). Based on expert input during subsequent testing we disaggregated the system into 224 

different components to encourage detailed consideration of possibly competing dynamics 225 

(e.g. asking for separate estimates of boreal forest and Arctic tundra response; Morgan, 226 

2014). This resulted in a large response table for each question (72-102 quantitative 227 

estimates), which we found caused respondent fatigue and decreased the number of experts 228 

willing to participate. As a compromise, we asked respondents to provide a single best 229 

estimate and indicate confidence with a five-point scale (Table S1). While analysis of best 230 

estimates can return narrower uncertainty ranges than subjective probability distributions 231 

(Morgan, 2014), we believe this tradeoff resulted in broader expert participation, better 232 

representing diversity of opinion across disciplines and compensating for possible 233 

underestimation of variability and uncertainty. 234 

Analysis and calculations 235 
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We calculated basic summary statistics, using median values to estimate center and 236 

interquartile ranges (IQR) to estimate spread. To calculate the portion of permafrost carbon 237 

release offset by biomass accumulation, we combined estimates from this study with 238 

reanalyzed data from Schuur et al. (2013). The low IQR for carbon release offset by biomass 239 

growth was calculated by dividing the low IQR of uptake by the upper IQR of carbon release 240 

and conversely for the high IQR (Fig. 3). All analyses were performed in R 3.0.2. The 241 

complete dataset of quantitative estimates and comments from survey participants stripped of 242 

personal identifiers is available at 243 

www.aoncadis.org/dataset/Permafrost_carbon_balance_survey.html.  244 

Results 245 

Carbon pools and fluxes 246 

Expert estimates revealed diverging views on the response of boreal biomass to 247 

warming, with over a third of estimates predicting a decrease or no change in boreal biomass 248 

across scenarios and time periods (Fig. 2). While median change in boreal biomass was 249 

similar across warming scenarios for each time step (3, 9, and 11% increases by 2040, 2100, 250 

and 2300, respectively; Figs. 2 and S1), variability was much higher for warmer scenarios. 251 

Consequently, all of the interquartile ranges of change in boreal biomass for RCP6.0 and 252 

RCP8.5 included zero. Experts projecting a decrease in boreal biomass attributed their 253 

estimates primarily to water-stress and disturbance such as fire and permafrost degradation. 254 

In contrast, there was general agreement that tundra biomass would respond positively to 255 

warming, with end-of-century increases of 6 to 30% projected for RCP2.6 and 10 to 90% for 256 

RCP8.5. Because of these contrasting responses to increased warming, tundra accounted for 257 

40% of total biomass gain by 2300 for RCP8.5, though it currently constitutes less than 10% 258 

of total permafrost region biomass (based on median values in Fig. 2; Fig. 3a; Table 2). 259 

Estimates of boreal biomass were generally symmetrically distributed while tundra biomass 260 
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estimates were right-skewed, and most datasets had 1 to 4 estimates beyond 1.5 times the 261 

interquartile range (Fig. S2). Self-rated confidence was higher for tundra than for boreal 262 

forest, but was below 3 (moderately confident) in both cases (Table S1), highlighting 263 

considerable uncertainty of individual estimates in addition to variability among respondents. 264 

Experts projected major shifts in both fire and hydrologic carbon regimes, with up to 265 

a 75% increase of riverine organic carbon flux to the ocean and a four-fold increase in fire 266 

emissions by 2100 for RCP8.5 based on interquartile ranges (Fig. 2 and S1). Fire and 267 

hydrologic carbon release estimates peaked at 2100, followed by a 10 to 40% decrease by 268 

2300. In contrast to biomass, the response of both fire-driven and hydrologic carbon flux 269 

varied strongly by warming scenario, with RCP8.5 resulting in 2 to 6 times more carbon 270 

release than RCP2.6. While the boreal forest dominated total wildfire emissions, the relative 271 

change in tundra fire emissions was 1.5 and 2-fold greater than the relative boreal response 272 

for 2100 and 2300, respectively (Fig. S1). Increases in fire emissions were attributed to 273 

changes in fire extent rather than severity, which varied less than 5% among scenarios and 274 

time periods. Though dissolved organic carbon (DOC) represented the majority of total 275 

hydrologic organic carbon release, experts projected higher relative increases for coastal 276 

particulate organic carbon (POC), with end-of-the-century increases of 6 to 50% for RCP2.6 277 

and 13 to 190% for RCP8.5. There was a lack of consensus on the response of DOC delivery 278 

to the ocean, with 21% of estimates predicting a decrease or no change. Experts predicting a 279 

decrease attributed their estimates to increased mineralization, changes in hydrologic 280 

flowpath, and changes in DOC photo- and bio-lability (Cory et al., 2014; Abbott et al., 2014). 281 

Responses indicated no change in the proportion of organic carbon mineralized or trapped in 282 

sediment before reaching the ocean, with 63-69% of DOC and 68-74% of POC lost in 283 

transport. Fire and hydrologic carbon flux estimates were strongly right-skewed with a few 284 

experts projecting extreme change well beyond 1.5 times the interquartile range for each 285 
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timestep and warming scenario combination (Figs. S3 and S4). Average self-rated confidence 286 

was between 2 and 3 for all questions except tundra fire emissions which had average 287 

confidence of 2.0 and 1.7 (Table S1). 288 

Sources of uncertainty 289 

Along with quantitative estimates of carbon balance, experts identified sources of 290 

uncertainty currently limiting the prediction of system response to climate change (Table 3). 291 

Water balance, including precipitation, soil moisture, runoff, infiltration, and discharge, was 292 

the most frequently mentioned source of uncertainty for both biomass and hydrologic organic 293 

carbon flux, and the second most mentioned for wildfire. Many experts noted that water 294 

balance is as or more important than temperature in controlling future carbon balance, yet 295 

projections of water balance are less well constrained (Zhang et al., 2013; Bintanja and 296 

Selten, 2014). Almost three-quarters of wildfire experts identified the future distribution of 297 

vegetation as the primary source of uncertainty in projecting wildfire, noting strong 298 

differences in flammability between different boreal and tundra species. Permafrost 299 

degradation was identified as an important source of uncertainty for biomass, hydrologic flux, 300 

and wildfire, due to both disturbance from ground collapse (thermokarst) and interactions 301 

with water-table dynamics and surface soil moisture as deeper thaw affects soil drainage.  302 

Discussion 303 

Carbon balance 304 

Arctic tundra and boreal forest have accumulated a vast pool of organic carbon, twice 305 

as large as the atmospheric carbon pool and three times as large as the carbon contained by 306 

all living things (Hugelius et al., 2014; Schuur et al., 2015). Over the past several decades, 307 

the permafrost region has removed an average of 500 Tg carbon yr-1 from the atmosphere 308 

(McGuire et al., 2009; Pan et al., 2011; Hayes et al., 2011). Combining our estimates of 309 

biomass uptake with a recent projection of permafrost soil carbon release (Schuur et al., 310 
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2013) suggests that the permafrost region will become a carbon source to the atmosphere by 311 

2100 for all warming scenarios (Fig. 3b). Experts predicted that boreal and Arctic biomass 312 

could respond more quickly to warming than soil carbon release, offsetting -33 to 200% of 313 

mid-century emissions from permafrost-region soil (Fig. 3b). However, because estimates of 314 

change in biomass are similar across warming scenarios but permafrost carbon release is 315 

strongly temperature-sensitive, the emissions gap widens for warmer scenarios, resulting in 316 

5-times more net carbon release under RCP8.5 than RCP2.6. This suggests that 65 to 85% of 317 

permafrost carbon release could be avoided if human emissions are actively reduced—i.e. if 318 

emissions follow RCP2.6 instead of RCP8.5 (Fig. 4). 319 

Comparison with quantitative models 320 

Model projections of future boreal and Arctic biomass agree in sign but vary widely 321 

in magnitude, with increases of 9 to 61 Pg carbon projected by 2100 (Qian et al., 2010; 322 

Koven et al., 2011; Schaefer et al., 2011; Falloon et al., 2012). While some of these models 323 

fall within the range estimated here of -20 to 28 Pg carbon by 2100, none include zero or 324 

negative change in biomass as predicted by over a third of participants in our expert 325 

assessment. Two potential reasons for this disagreement are an overestimation of the effect of 326 

CO2 fertilization or an underestimation of the role of disturbance in some models. Firstly, 327 

CO2 fertilization exerts a larger effect on carbon balance than all other climate effects in 328 

many models (Balshi et al., 2009), with up to 88 Pg carbon difference between model runs 329 

with and without CO2 fertilization effects for some models (Koven et al., 2011). However, 330 

there is little field evidence that CO2 fertilization results in long-term biomass accumulation 331 

in tundra and boreal ecosystems (Hickler et al., 2008; Peñuelas et al., 2011; Gedalof and 332 

Berg, 2010). Additionally, many models with large CO2 effects do not include other limiting 333 

factors, such as nutrients and water, known to interact with CO2 fertilization (Hyvonen et al., 334 

2007; Yarie and Van Cleve, 2010; Thornton et al., 2007; Koven et al., 2015a; Maaroufi et al., 335 
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2015). Secondly, models that do not account for disturbance such as wildfire, permafrost 336 

collapse, insect damage, and human resource extraction likely overestimate the positive 337 

response of biomass to climate change (Kurz et al., 2008; Abbott and Jones, 2015; Hewitt et 338 

al., 2015). 339 

Considering the scenario of a complete biome shift is useful in evaluating both model 340 

projections of change and estimates from our expert assessment. If all boreal forest became 341 

temperate forest, living biomass would increase by 27%, resulting in the uptake of 16 Pg 342 

carbon based on average carbon densities from both ecosystems (Pan et al., 2011). However, 343 

22 Pg carbon would be lost due to decreases in dead wood and litter, resulting in a net 344 

circumboreal loss of 6 Pg carbon. If all tundra became boreal forest, non-soil biomass would 345 

increase by 205% (Epstein et al., 2012; Raynolds et al., 2012; Saugier et al., 2001), taking up 346 

17 Pg carbon. This scenario may not represent the upper limit of possible carbon uptake if 347 

other unforeseen shifts in C allocation take place; however, it highlights the relatively modest 348 

carbon gains probable on century timescales. 349 

While regional projections from models of boreal wildfire vary in sign and magnitude 350 

(Supplementary information System summaries), most models agree that at the circumboreal 351 

scale, fire emissions will increase several-fold, with increases of 200 to 560% projected by 352 

the end of the century (Kloster et al., 2012; Flannigan et al., 2009). Interquartile ranges from 353 

our study are somewhat lower (40 to 300%, median 170%), but participant confidence in 354 

these estimates was low, suggesting considerable uncertainty in the future response of boreal 355 

fire. The 60 to 480% increase in tundra fire projected by our study would represent an even 356 

larger ecological shift than experienced by the boreal forest, with implications for regional 357 

biomass, habitat, and carbon balance, though there are few models that project changes in 358 

tundra fire (Rupp et al., 2000) and none at a circumarctic scale (Mack et al., 2011).  359 
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The production of Arctic DOC and POC depends on abundance of carbon sources in 360 

terrestrial ecosystems (influenced by biomass, wildfire, temperature, and permafrost 361 

degradation) and the ability of hydrologic flow to transport that carbon (determined by 362 

factors such as precipitation, runoff, depth of flow through soil, and coastal erosion; Guo et 363 

al., 2007; Kicklighter et al., 2013; Abbott et al., 2015; Larouche et al., 2015). Due to these 364 

complexities and others, there are currently no quantitative projections of future DOC and 365 

POC flux from the circumarctic. However, estimates from our study suggest a substantial 366 

departure from historical rates of change. For RCP8.5, hydrologic organic carbon loading 367 

would increase 4-20 times faster in the 21st century than it did in the 20th (Kicklighter et al., 368 

2013), representing a non-linear response to high-latitude warming. The lack of consensus on 369 

the response of DOC, the largest component of hydrologic organic carbon flux, highlights the 370 

importance of developing and testing conceptual frameworks to be incorporated into models 371 

(Laudon et al., 2012). 372 

An alternative explanation for differences between expert estimates and modeled 373 

projections is the possibility of bias in the group of experts. Participants in our assessment 374 

tended to have more field than modeling experience (Table 1) and may have therefore been 375 

skeptical of simulated ecosystem responses that have not been observed in the field such as 376 

CO2 fertilization and rapid migration of treeline (McGuire et al., 2009). Because future 377 

dynamics cannot always reliably be predicted on the basis of past system behavior, this bias 378 

may or may not result in overly conservative estimates. Furthermore, because experts are 379 

likely to base projections on the study areas with which they are most familiar, regional 380 

differences could be a source of bias. Fundamental differences among regions in the response 381 

of DOC flux and fire-regime to warming have been observed (Kicklighter et al., 2013; de 382 

Groot et al., 2013; Supplementary information System summaries). Asia, which represents 383 

more than half of the total permafrost region, was under-represented in all three surveys, 384 
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particularly wildfire (Table 1). However, the regional bias in this study may not be greater 385 

than that of model projections, which depend on observational and experimental data that are 386 

not evenly distributed throughout the permafrost region. 387 

Reducing uncertainty surrounding the permafrost carbon feedback 388 

Experts identified water balance, vegetation distribution, and permafrost degradation 389 

as the most important sources of uncertainty in predicting the timing and magnitude of the 390 

permafrost carbon feedback (Table 3). These three processes are closely interconnected by 391 

several internal feedbacks (Jorgenson et al., 2013; Shur and Jorgenson, 2007; Anisimov and 392 

Reneva, 2006; Girardin et al., 2016). For example, wildfire or drought can trigger a transition 393 

from coniferous to deciduous dominance, warming permafrost by up to 7°C due to loss of 394 

insulating moss and associated changes (Shur and Jorgenson, 2007; Sturm et al., 2001; Yarie 395 

and Van Cleve, 2010). The subsequent recovery trajectories of vegetation and permafrost, as 396 

well as the proportion of thawed carbon released CO2 or CH4, then depend largely on near-397 

surface hydrologic conditions (Myers-Smith et al., 2008; O'Donnell et al., 2011; Jorgenson et 398 

al., 2010; Chapin et al., 2010; Lawrence et al., 2015; Payette et al., 2004). These 399 

interdepencies mean that improving projections of the permafrost carbon feedback will 400 

require conceptualizing these parameters together. The question of water balance is 401 

additionally important in Arctic and boreal ecosystems where hydrologic carbon flux can be 402 

the determining factor causing net carbon uptake or release (Kling et al., 1991; Raymond et 403 

al., 2013; Aufdenkampe et al., 2011). The lack of model projections of hydrologic carbon 404 

fluxes is a major gap in our ability to estimate the permafrost carbon feedback. 405 

The permafrost region has responded differently to various climatic perturbations in 406 

the past, representing another tool to constrain possible future response (Zachos et al., 2008). 407 

During the Paleocene-Eocene Thermal Maximum, high-latitude temperature warmed more 408 

than 10°C, causing almost complete loss of permafrost and the mineralization of most 409 
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permafrost soil organic matter (DeConto et al., 2012; Bowen and Zachos, 2010). More 410 

recently, the 2-4°C warming at high-latitudes during the early Holocene caused active-layer 411 

deepening throughout the permafrost region but did not trigger complete permafrost loss or 412 

widespread carbon release (French, 1999; Schirrmeister et al., 2002; Jorgenson et al., 2013). 413 

While there are many differences between the Paleozoic and Holocene warming events, one 414 

clear distinction is the degree of warming. There may have been a threshold between 4 and 415 

10°C high-latitude warming due to positive feedbacks such as a shift from a coniferous to a 416 

deciduous dominated system or an abrupt change in hydrology. If a tipping point does exist 417 

between 4 and 10°C high-latitude warming, it would fall between scenarios RCP4.5 and 418 

RCP8.5, representing maximum atmospheric CO2 of 650 and 850 ppm, respectively (Moss et 419 

al., 2010; Lawrence et al., 2012). RCP4.5 is still widely accepted as politically and 420 

technically attainable, though it assumes global CO2 emissions peak before 2050 and 421 

decrease by half by 2080 (Moss et al., 2010). 422 

Conclusions 423 

The permafrost climate feedback has been portrayed in popular media (and to a lesser 424 

extent in peer-reviewed literature) as an all-or-nothing scenario. Permafrost greenhouse gas 425 

release has been described as a tipping point, a runaway climate feedback, and, most 426 

dramatically, a time bomb (Wieczorek et al., 2011; Treat and Frolking, 2013; Whiteman et 427 

al., 2013). On the other extreme, some have dismissed the importance of this feedback, 428 

asserting that increases in biomass will offset any carbon losses from soil, or that changes 429 

will occur too slowly to concern current governments (Idso et al., 2014). Our study highlights 430 

that Arctic and boreal biomass should not be counted on to offset permafrost carbon release 431 

and suggests that the permafrost region will become a carbon source to the atmosphere by 432 

2100 regardless of warming scenario. Perhaps more importantly, our results indicate a 5-fold 433 

difference in emissions between the business as usual scenario (RCP8.5) and active reduction 434 
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of human emissions (RCP2.6), suggesting that up to 85% of carbon release from the 435 

permafrost region can still be avoided, though the window of opportunity for keeping that 436 

carbon in the ground is rapidly closing. Models projecting a strong boreal carbon sink and 437 

models that do not consider hydrologic and fire emissions may substantially underestimate 438 

net carbon release from the permafrost region. If such projections are used as the basis for 439 

emissions negotiations, climate targets are likely to be overshot. 440 

 441 
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Figure 1. Conceptual model of the role of expert assessment in generating and 725 

communicating scientific understanding. Modelling and field research generate quantitative 726 

and qualitative understanding of the system (in this case the permafrost zone). Expert 727 

assessment synthesizes current understanding including qualitative information not yet 728 

included in numerical models or field studies. These syntheses provide perspective to the 729 

scientific community and wholistic summaries of the state of the knowledge to the non-730 

scientific community with the goal of improving management of the system. 731 

 732 

Figure 2. Estimates of change in non-soil biomass, wildfire emissions, and hydrologic carbon 733 

flux from the permafrost region for four warming scenarios at three time points. All values 734 

represent change from current pools or fluxes reported in Table 2. Biomass includes above 735 

and belowground living biomass, standing deadwood, and litter. Dissolved and particulate 736 

organic carbon (DOC and POC respectively) fluxes represent transfer of carbon from 737 

terrestrial to aquatic ecosystems. "Coast" represents POC released by coastal erosion. 738 

Representative concentration pathway (RCP) scenarios range from aggressive emissions 739 

reductions (RCP2.6) to sustained human emissions (RCP8.5). Box plots represent median, 740 

quartiles, and minimum and maximum within 1.5 times the interquartile range. Relative 741 

change (percent change from current state) is presented in Fig. S1 and full distributions are 742 

presented in Figs. S2 to S4. 743 

 744 

Figure 3. Total change in non-soil biomass (a) and percentage of permafrost region carbon 745 

release offset by change in non-soil biomass (b). Estimates of permafrost carbon release used 746 

in estimating percentage offset are recalculated from data presented in Schuur et al. (2013). 747 

See Fig. 2 for definition of RCP scenarios and symbology. Error bars represent propogated 748 
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error between the interquartile ranges of carbon release from permafrost soil and carbon 749 

uptake by biomass (see Methods). 750 

 751 

Figure 4. A comparison of soil carbon release recalculated from Schuur et al. (2013) and 752 

non-soil biomass uptake in the permafrost region from this study for the business as usual 753 

scenario (RCP8.5) and the active reduction of human emissions scenario (RCP2.6). Polygons 754 

represent median cumulative change and dotted lines represent the interquartile range. 755 

Biomass carbon uptake is overlayed on soil carbon release to show the proportion of carbon 756 

release potentially offset by biomass. Linear rates of change were assumed between the three 757 

dates where estimates were provided. 758 

  759 
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Table 1. Composition and characteristics of participant group 

 Biomass Wildfire Hydrologic flux 

Number of respondents 46 34 35 
Average responses per question* 

Primary region of study 
41 28 32 

Asia 10 3 8 
Europe 12 5 9 

North America 27 27 18 
Circumpolar 12 6 9 

Primary biome of study    
Arctic 31 13 27 

Boreal 27 29 18 
Both 14 9 12 

Average modeling/field self rating** 3.6 3.7 4.1 
Combined years of experience 762 533 521 

Ratio male:female 2.6 2.8 4.9 
Background information on survey participants. Experts could indicate multiple regions and 760 

biomes of study. *Not all experts provided estimates for all questions. **Experts rated 761 

themselves on a 1-5 scale where 1=exclusive modeler and 5=exclusive field researcher.762 
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 763 

Table 2. Estimates of current permafrost region organic carbon pools and fluxes  

Biomass 

  Aboveground biomass Belowground biomassa Dead woodb Litter Total non-soil biomass 

Boreal forest (Pg C) 43.6c  16.1 16 27b 102.7 

Arctic Tundra (Pg C) 2.4d 4.0  2e 8.4 

       

Wildfire 

  Boreal forest (Eurasia) Boreal forest (N. America) Total Boreal forestf Total Tundra 

Area burned (km2 yr-1) 62,100 22,500 84,600 4,200g  

CO2 emissions from fire (Tg C yr-1) 194 56 250 8h 

      

Hydrologic organic carbon flux 

  DOC POC (Riverine) POC (coastal) Total OC  

Delivery to freshwater ecosystems (Tg yr-1) 100c 20i na 120 

Delivery to Arctic Ocean and surrounding seas (Tg yr-1) 36j 6c 18ck  60 
aSaugier et al., 2001, bPan et al., 2011, cMcGuire et al., 2009, dEpstein et al., 2012, ePotter and Klooster, 1997, fBalshi et al., 2007; Giglio et al., 2010; 764 
Hayes et al., 2011; van der Werf et al., 2010, gRocha et al., 2012, hMack et al., 2011, iAufdenkampe et al., 2011; Battin et al., 2009, jHolmes et al., 2012, 765 
kVonk et al., 2012. Literature-based estimates of belowground biomass were calculated from aboveground or total biomass with ratios from 766 

Saugier et al., (2001). POC delivery to freshwater ecosystems was calculated from ocean POC delivery with downscaled global ratio of 0.75 767 

for sedimentation. POC from coastal erosion is the sum of Vonk et al., (2012) and McGuire et al., (2009). Considerable uncertainty remains 768 

around many of these estimates.769 
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 770 
Table 3. Sources of uncertainty in system response to climate change 

Biomass Wildfire Hydrologic OC flux 
Source of uncertainty % Source of uncertainty % Source of uncertainty % 

Water balance 56 Vegetation shift 73 Water balance 41 
Wildfire 47 Water balance 58 Hydrologic flowpath 39 
Permafrost degradation 40 Human disturbance 27 Permafrost degradation 24 
Human disturbance 29 Permafrost degradation 18 Photo and bio-lability 24 
Insect damage 27 Seasonality 15 Vegetation shift 20 
Vegetation shift 24 Regional differences 12 Fluvial erosion 11 
Treeline dynamics 16     
Nutrient availability 13     
Non-insect herbivores 11     

Major factors contributing uncertainty to projections of future system response based on expert 771 

comments. Rank is based on percent of experts who listed each factor in their responses. All 772 

sources listed by 10% or more of each group are included here. Water balance includes 773 

comments mentioning precipitation, soil moisture, runoff, infiltration, or discharge. Permafrost 774 

degradation includes comments referring to permafrost collapse (thermokarst) and active layer 775 

deepening. 776 

777 
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 781 
Figure 2 782 
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Figure 3 783 
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Figure 4 786 
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