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Abstract
Climate change is expected to lead tomore uneven temporal distributions of precipitation, but the
impacts on human systems are little studied.Most existing, statistically based agricultural climate
change impact projections only account for changes in total precipitation, ignoring its intra-seasonal
distribution, and conclude that in places that will becomewetter, agriculturewill benefit. Here, an
analysis of daily rainfall and crop yield data from across India (1970–2003), where a fifth of global
cereal supply is produced, shows that decreases in the number of rainy days have robust negative
impacts that are large enough to overturn the benefits of increased total precipitation for the yields of
mostmajor crops. As an illustration, the net,mid 21st century projection for rice production shifts
from+2% to−11%when changes in distribution are also accounted for, independently of additional
negative impacts of rising temperatures.

Introduction

Climate change is expected to lead to more uneven
intra-annual precipitation distributions [1–7]. For
example, the Fifth Assessment Report of the Inter-
governmental Panel on Climate Change (IPCC AR5)
states that ‘.. the distribution of precipitation events is
projected to undergo profound changes... more
intense downpours, leading to more floods, yet longer
dry periods between rain events, leading to more
drought’ [8].

It is often hypothesized that more variable weather
will have large and harmful effects on human systems,
particularly food production [9–11] and a number of
crop-based simulations of future climate impacts
[12, 13] have also found substantial impacts of varia-
bility on yields[14–20]. However, hardly any statis-
tical analyses of historical data have attempted to test
the importance of intra-annual precipitation varia-
bility, quantify the magnitude of its impact on yields
and use it in agricultural climate change impact pro-
jections [21].

Statistical (or ‘empirical’) studies of observed
weather-yield relationship are increasingly used to
complement process-based models in order to project

future yield changes [22]. Even though they suffer
from several limitations, including the difficulty of
incorporating adaptation or increased CO2 con-
centrations, they have the important advantage of doc-
umenting how crops actually grown by farmers in
realistic, rather than controlled, conditions respond to
weather shifts [23, 24]. This can be especially impor-
tant in developing countries, where smallholder culti-
vation utilizes practices, technologies and inputs that
are often dramatically different from those in con-
trolled experiments [25]. However, existing statistical
analyses of crop-weather relationships typically con-
sider, alongside heat exposure, total seasonal (or
monthly) precipitation amounts, and largely ignore
the possible effect of intra-seasonal variability in daily
precipitation, including dry spells, the number of
rainy days, etc... (only one study analyses the impact of
extreme rainfall events on yields [21]).

Most statistical weather-yield studies find a strong
positive association between precipitation totals and
yields, particularly in water constrained environ-
ments, such as the arid or semi-arid tropics, suggesting
that where precipitation will increase (decrease), yields
will benefit (suffer). However, projected changes in
future precipitation tend to be smaller in magnitude
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(relatively to historical fluctuations), less certain and
more geographically heterogeneous in sign than those
of temperature increases, and projected to pose a lesser
threat to global future food production overall [9, 26].
In contrast, projections of more uneven rainfall dis-
tributions are less equivocal, but the impacts on crop
yields are little studied.

This study uses thirty three years of daily precipita-
tion and yield data for major crops from across India
to conduct a systematic analysis of the relationship
between crop yields and intra-seasonal precipitation
variability, and apply the resulting estimates to project
the impacts of climate change on food production.
Indiaʼs agriculture and food security is highly depen-
dent on the performance of the monsoon, when most
of rainfall occurs. About a fifth of the global cereal sup-
ply (and rice in particular) is produced in India [27],
and reductions in Indian cereal production will
strongly affect global food grain prices, with likely con-
sequences for global food security and the extent of
malnutrition. Since climate change is projected to
increase both totalmonsoon precipitation and its daily
variability, the net impact of shifts in precipitation pat-
terns is not a priori clear.

Methods

Data. Daily gridded (1°×1°) precipitation and temp-
erature data [28, 29] for the period 1970–2003 are
modified to represent 2001 Indian district boundaries
through weighted spatial averaging [30]. Additional

modifications are made to account for district splits
during the period [31]. In total, annual weather
observations are available for 642 districts, covering 18
Indian states.

Part of the challenge of relating precipitation
variability to annual crop yields is that the full distribu-
tion of daily precipitation within a given year is a high-
dimensional object that cannot be directly captured in
standard regression analysis. As an illustration, the left
panel of figure 1 presents daily rainfall series from two
different years in the same location in India. The two
years had nearly identical total precipitation, but very
different distributions. Previous studies have effec-
tively treated these two rainfall realizations as
identical.

In this study, daily temperature and precipitation
data are used to construct an array of year-by-year
summary measures of the main growing season
weather across India. These include standard mea-
sures of crop heat exposure, measured by degree
days [32], and total monsoon precipitation; but also
several measures of the daily variability of the intra-
seasonal distribution of precipitation that are com-
monly used in the climate change literature, including
the number of rainy days (precipitation above
0.1 mm) [33], the duration of the longest dry spell [1],
the parameters of the fitted gamma distribution of
daily precipitation [34] and the number of extreme
rainfall events [5]. These weather indicators are then
added as additional weather variables to a multi-vari-
ate regression analysis of annual crop yields around

Figure 1. Left panel: an illustration of daily precipitation time series in two different years, in the same location in India (represented
by points A andB in the right panel plot), that differ in their intra-seasonal distribution but have similar totals. Right panel: a two-
dimensional plot of estimated rice yield anomalies (color bar) as a function of anomalies in total seasonal rainfall (horizontal axis) and
the number of rainy days in the season (vertical axis), representing variation in the dailymean and variability of precipitationwithin a
given yearʼs rice-growing season (changes in temperatures and other weather parameters can be imagined as occurring on additional
orthogonal axes). Conventional and expandedmid-century climate change scenarios are represented by thewhite arrows.
Conventional projections only account for changes in total rainfall (+10%), and result in an estimated yield gain of 2%. The expanded
projection also accounts for changes in the number of rainy days (−15) and results in a net yield loss of 11%.
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India in addition to the standard weather indicators of
degree-days and total precipitation.

Rainy season crop yields, cropped areas and gross
(annually totaled) irrigated areas, at the district level,
are obtained from the Indian harvest data set of the
Center for the Monitoring of the Indian Economy.
These figures are based on farm surveys conducted by
the Indian government. Agricultural yield data are
available for 8523 district-year combinations.

Weather-yield analysis. To estimate the effect of
variability on crop yields, a multi-variate regression
analysis of spatially disaggregated (district level) crop
yields from 1970–2003 on all the above weather indi-
cators is carried out. The regressions also include dis-
trict-specific intercepts to control for spatial variations
in unobserved, time-invariant variables such as soil
quality, and state specific quadratic time trends to flex-
ibly control for heterogeneous changes in crop man-
agement practices, demographic factors and
technological progress in agriculture across states.
Such trends should be controlled for in order to avoid
a false attribution of spurious correlations between
technological and climatic trends to the impacts of
weather on crop yields (estimates not shown indicate
positive trends in most states). Similar analyses have
been widely used to estimate weather-crop relation-
ships in India [35–39] and other countries [9, 24, 40–
42], but have not controlled for measures of intra-sea-
sonal precipitation variability, with the exception of
[21], who find a negative, but relatively weak relation-
ship between Indian rice yields and the share of pre-
cipitation falling in extreme events. The analysis here
finds, in contrast, that other measures of variability
have a strong relationship with yields (see below).
Since the regressions are estimated from random year-

to-year fluctuations in weather, concerns about omit-
ted variable biases are reduced, facilitating causal
inference. Regressions are estimated for each of the
eight main rainy season crops, but the analysis is
focused on rice, which occupies over half of the area
cultivated in India during the rainy season.

The analysis follows previous studies in estimating
a log-linear model in which the outcome variables is
the logarithm of yield and weather variables appear
linearly [9]:

Y fv Wlog t p , 1ssdt dt d sdt· ( ) ( )= + + +

where Ydst is crop yield in district d, state s and year t;
Wdt is a vector of weather variables including total
Monsoon rainfall, seasonal degree days, and several
variables describing the intra-seasonal distribution of
daily rainfall as described above; pd are district specific
intercepts; fs(t) are state-specific quadratic time trends.
Because of potential spatial and serial correlation in
both weather outcomes and yields, I adjust standard
errors for possible correlation by clustering the errors
òsdt from all observations (across years and districts) in
the same state.

A logarithmic form for yields is especially appro-
priate given the wide spatial variance in average yield
levels across India [9]. Models estimated with a linear
yield outcome produced a similar pattern of results
and conclusions (results not shown), albeit with a sub-
stantially worse fit. The appropriateness of a linear
form for the variability indicators is examined in the
results section. In robustness checks reported below,
alternative models that include nonlinear terms for
total precipitation and heat exposure are also esti-
mated. Robustness checks also include additional var-
iants of themodel (see results section).

Table 1.Regression results. Each column reports results from a separate regressionmodel. In allmodels, the dependent variable is the
logarithmof rice yield in units of 0.01, but the set of of control variables differ. Standard errors are displayed in parentheses and are robust
to heteroskedacticity and arbitrary correlation over space and timewithin the same state. Stars indicate statistical significance: * p<0.1,
** p<0.05, *** p<0.01. Allmodels include district specific intercepts and state-specific quadratic time trends.+Reported AIC values
are the differences of eachmodelʼs AIC value from that of amodel which only controls for district specific intercepts and state-specific
quadratic time trends, but does not include anyweather indicators. This benchmarkmodel has an adjustedR2 value of 0.735 , and aAIC
value of 84213. Column 1 reports a standardweathermodel that only controls for degree days and total precipitation. In column 2 the
square of total precipitation is also controlled for. Column 3 only controls for the number of rainy days and degree days. Column 4
controls for both total precipitation and the number of rainy days, repeating the results reported in themain text. Column 5 add a square
precipitation term. Column 6 controls for nonlinear effects of heat exposure by including bins of width 100 for degree days. Column 7
also controls for yearfixed effects, and column8 also control for interacted state year fixed effects.

Log of rice yield (in 0.01)
(1) (2) (3) (4) (5) (6) (7)

Precipitation (10 mm) 0.255*** — 0.113* 0.331*** 0.124** 0.090* 0.055

(0.074) — (0.054) (0.111) (0.055) (0.046) (0.039)
Degree days −0.135*** −0.102*** −0.094*** −0.090*** — −0.101** −0.080**

(0.040) (0.031) (0.031) (0.031) — (0.040) (0.032)
Precipitation, Sq. — — — −0.001*** — — —

— — — (0.000) — — —

RainyDays — 0.955*** 0.830*** 0.731*** 0.863*** 0.603*** 0.214***

— (0.160) (0.130) (0.115) (0.138) (0.113) (0.069)

Observations 8523 8523 8523 8523 8523 8523 8523

AdjustedR2 0.758 0.770 0.772 0.774 0.772 0.783 0.836

AIC+ −3162 −3596 −3655 −3723 −3663 −4096 −6932
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Illustrative climate change simulation. To first
order, the impacts of the shifts in the three weather
indicators are linearly separable. A stylized, illustrative
climate change impact simulations are therefore per-
formed by multiplying projected changes in total pre-
cipitation, temperature and the number of rainy days
Δ W from an illustrative climate change scenario for
South Asia (see results section) by the coefficient esti-
mates obtained in the regression analysis (column 2 in
table 1). Like other projections that are based on statis-
tical analysis of past yields and weather, this approach
fails to account for various kinds of adaptations [43],
such as the development and use of new seed varieties
or economic responses like shifts in cultivated areas or
consumption [13, 44]. These illustrative estimates
should therefore be viewed as an upper bound, and are
meant simply to illustrate the importance of variability
vis-a-vis total precipitation in projections of future
impacts.

Results

The mean seasonal monsoon rainfall in the sample is
873 mm (inter-annual rmse=248 mm), occurring
over an average of 85 rainy days between June and
September (inter-annual rmse=10 d). Fluctuations
in these weather variables tend to be correlated over
time within the same location. For example, in years
that have an additional rainy day, total rainfall tends to
be higher by 12 mm (p<0.01) and degree days fall by
about 1.35°(p<0.01). However, substantial inter-
annual variation in the number of rainy days is
uncorrelated with these two weather statistics (inter-
annual rmse of 8.6 d), and in 31% of the observations,
the deviations of total seasonal precipitation and the
number of rainy days from their local long-term
means were of opposite signs. Controlling for all
weather variables in the same regression is therefore an
appropriate way to estimate their separate impacts on
yields.

Figure 2 displays estimated coefficients from a
regression of (log) rice yields which controls for heat
exposure, total precipitation (including a square
term), and all measures of the intra-seasonal distribu-
tion of precipitation mentioned above. Of these, only
the number of rainy days has a large and statistically
significant impact on rice yields.

To assess the suitability of a linear control of the
number of rainy days in the regressions, non-para-
metric plots of the impact of the number of rainy days
on rice yield (figure 3) are performed in two stages.
First, this variable and (log) yield are both regressed on
district specific intercepts, state-specific time trends
and the other independent weather variables (includ-
ing quadratic total precipitation and growing degree
terms); second, a local polynomial (kernel) regression
of the yield residual on the residual of the weather

variable is estimated. The plot justifies using a linear
model for the number of rainy days.

The remainder of the analysis is therefore focused
on the number of rainy days, and other measures of
variability are omitted for simplicity. Table 1 reports
the estimated regression coefficients of a log-linear
model of rice yields on total rainfall, heat exposure and
the number of rainy days. Coefficients are presented in
terms of 0.01 logarithmic units, so that they can be
approximately interpreted as the number of percent-
age points by which rice yield are estimated to change
per unit increase in the respective weather variable.
For comparison, column 1 reports estimates of a con-
ventional model that only includes total precipitation
and heat exposure. The coefficients are both statisti-
cally significant (p<0.01) and reveal that, in agree-
ment with previous statistical and simulation-based
studies of crop yields in India [21, 35–38, 45], increases
in total precipitation had a positive effect and increases
in heat exposure had a negative effect on crop yields.
Column 2 reports estimates of a parallel model which
controls for heat exposure but replaces total precipita-
tion with the number of rainy days. Column 3 reports
estimates of a model that controls for both total pre-
cipitation and the number of rainy days simulta-
neously. Results reveal that for each additional rainy
day, keeping heat exposure and total precipitation
fixed (which amounts to a more even intra-seasonal
distribution of rainfall), rice yields increase by an esti-
mated 0.83%. In comparison, an additional 12 mm of
total precipitation (the daily precipitation of an aver-
age rainy day), keeping the number of rainy days fixed,
increases yield by a much smaller amount of 0.13%
(0.11%×12 mm/10 mm), half the estimate of the
conventional model. Similarly, an additional degree-
day reduces yields, on average, by 0.09%. A two-
dimensional plot of the estimated yield response func-
tion is displayed in the right panel of figure 1. The plot
illustrates the tradeoff between higher total rainfall
(horizontal axis) and more uneven distributions (ver-
tical axis) in terms of rice yields (illustrated by color).

These results are broadlymaintained in a variety of
alternative model specifications reported in columns
4–7 of table 1, including nonlinear temperature and
precipitation controls and year fixed effects. Column 4
adds a square precipitation term. In column 5 non-
linear controls for heat exposure (dummy indicators
for each interval of size 100°days in which the observa-
tion may fall) are included. In column 6 year specific
dummies are added, and in column 7 additional dum-
mies for every combination of year and state in the
sample are also included. The latter two models (col-
umn 8 especially) are therefore estimated from sub-
stantially more restricted variation in weather, but the
pattern of results persists. In particular, the coefficient
of the number of rainy days remains highly significant
and larger than that of total precipitation (which actu-
ally loses statistical significance in column 7).

4

Environ. Res. Lett. 11 (2016) 024004



The table also reports the adjusted R2 and AIC
values of each model, but AIC values are reported in
relation to that of a benchmarkmodel that only controls
for district specific intercepts and state specific quadratic
time trends. This benchmark model has an adjusted
R2=0.735 and AIC=84213. High explanatory power
results from the inclusion of numerous intercepts and
time trends in themodel. These controls are necessary in
order to statistically isolate the impact of random
weather fluctuations within the same location, as is

widely practiced in the literature, but they mechanically
explain the bulk of the variation in yields. As a result, the
addition of weather controls only provides marginal
improvements in explanatory power and neither mea-
sure of model quality is appropriate in this context.
Nevertheless, I note that amodelwith rainy days outper-
forms a model with only total precipitation (and its
square) in termsof bothmeasures ofmodelfit.

Parallel coefficient estimates for all other major
rainy season crops are summarized in the right panel

Figure 2.Estimated coefficients from amultivariate regression of (log) rice yield on heat exposure (degree days), total precipitation
(including a square term), and variousmeasures of the distribution of precipitation, as described in themain text. To facilitate
comparison, the duration of the longest dry spell and the parameters of thefitted gammadistribution are normalized so that an
additional rainy day increases their value by one, on average. Dashed lines indicate 95% confidence intervals. Note: the confidence
interval of the coefficient of the number of heavy rain days exceed graph boundaries at (−4, 2.8).

Figure 3.Anon-parametric fit of rice yields on inter-annual fluctuations in the number of rainy days justifies a linear regression
model. The solid curve represents a local polynomial fit (Epanechnikov kernel regressions), with 95% confidence intervals (dashed
lines), of (log) yield anomaly (left axis) versus the anomaly in the number of rainy days in a given yearʼs rainy season. Yield and rainy
days anomalies are calculated as the residuals of regressions on state-specific quadratic time trends, district fixed effects, and quadratic
functions of degree days and total precipitation. The rootmean square anomaly sizes are 10 rainy days (n=8523, sample
mean=85). The histograms displays the distribution of rainy days anomaly observations (fraction of observations falling in each bin,
right axis).
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of figure 4. To facilitate comparability of coefficient
magnitudes, the impact of total precipitation is pre-
sented in units of 12 mm, the average addition of one
rainy day to total rainfall. Across all crops, the impact
of an additional rainy day, keeping total rainfall fixed,
is shown to be larger and more statistically significant
than the effect of an average increase in total rainfall
corresponding to the addition of one rainy day.

Illustrative simulation of climate change impacts. As
a stylized illustration of the impacts of future increases
in rainfall variability, regression estimates are applied
to a climate change scenario for South Asia that
includes a 100 mm increase in total precipitation
(inspired by the IPCCʼs A1B, South Asia, 2080–2099
median projection of a 10% increase in precipitation)
and a decrease of 15 rainy days by 2050 cited by IPCC
AR4 [46, 47]. The simulation is meant to simply illus-
trate the importance of the precipitation distribution
and does not intend to replace a full ensemble projec-
tion of 2050 impacts. Note that using the 2080–2099
projection of total precipitation increases for a 2050
impact simulation biases the projection upward (mak-
ing impacts more positive), but the results reported
above make it clear that this bias is small and incon-
sequential for the overall conclusion. Simulation

results are presented in the right panel of figure 1, in
which a standard projection (based on changes in heat
exposure and total rainfall) and an expanded projec-
tion (which also accounts for changes in the number of
rainy days) are superimposed on a two-dimensional
plot of the estimated yield response function.
Accounting for intra-seasonal variability flips the sign
of the net projected impact due to changes in pre-
cipitation patterns, from a modest gain of 2% to a loss
of 11% in 2050 rice yields relative to the counterfactual
scenario of an unchanging climate, independently of
the impact of increasing temperatures. Similar results
are obtained for most other major rainy season crops
(left panel offigure 4).

Discussion

The analysis in this paper demonstrates the impor-
tance of intra-seasonal precipitation variability for
crop yields in India. Increasing variability in this
distribution, asmeasured by the number of rainy days,
is found to have had robust negative impacts on crop
yields that are stronger than the positive effects of
comparable increases in total precipitation. This is also

Figure 4.Estimated changes in (log) yields (horizontal axis) formajor rainy season crops (vertical axis). Right panel: estimated changes
in yields resulting fromone additional rainy day (black squares) and total precipitation (in units of 12 mm, grey squares), from a
regression of (log) yields on the number of rainy days and total precipitation,1970–2003, as described in the text. Dashed lines indicate
95% confidence intervals. Total precipitation ismeasured in units corresponding to the average increase in total precipitation
resulting fromone additional rainy day (12 mm), to facilitate comparability of themagnitude of the impacts. Left panel: projected
impacts for 2050 crop yields (red bars) resulting from shifts in precipitation patterns associatedwith a climate change scenario based
on the IPCC scenario A1B for SouthAsia, consisting of an increase of 100 mm in total precipitation (about 10%of the national
average) and a decline of 15 rainy days (about 17%of current national average), as described in the text. Red lines indicate 95%
confidence intervals.
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illustrated by a stylized projection of the impacts of
climate change on rice yields in 2050, which shows the
projected impacts of variability are large enough to
overturn the positive impacts of expected increases in
total precipitation, shifting the net projected precipita-
tion-driven impact from a modest positive gain to a
large loss in yields (in addition to and independently of
the negative impact of temperature increases). The
results imply that shifts in the intra-seasonal distribu-
tion of precipitation may have important but under-
studied impacts on future crop yields, and highlight
the importance of projecting changes in these metrics
in global climate model based studies of future climate
change.

An analysis based on a statistical analysis of histor-
ical yields achieved by actual farmers is an important
complement to crop-model based simulations that
find substantial impacts of weather variability on
yields. However, this ‘reduced-form’ approach, while
statistically robust, is also limited in some ways. In
particular, it does not allow us to narrow down the
physiological mechanism underlying the observed
relationships, such as the particular dominance of the
number of rainy days vis a vis other measures of varia-
bility. Additional, localized studies including observa-
tions of plot-level yields in experimental farms and
crop-simulation models developed for Indian agri-
culture are necessary in order to better understand the
precise physiological processes involved and possible
adaptation strategies.
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