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Abstract
Climate changemay constrain future electricity supply adequacy by reducing electric transmission
capacity and increasing electricity demand. The carrying capacity of electric power cables decreases as
ambient air temperatures rise; similarly, during the summer peak period, electricity loads typically
increase with hotter air temperatures due to increased air conditioning usage. As atmospheric carbon
concentrations increase, higher ambient air temperaturesmay strain power infrastructure by
simultaneously reducing transmission capacity and increasing peak electricity load.We estimate the
impacts of rising ambient air temperatures on electric transmission ampacity and peak per-capita
electricity load for 121 planning areas in theUnited States using downscaled global climatemodel
projections. Together, these planning areas account for roughly 80%of current peak summertime
load.We estimate climate-attributable capacity reductions to transmission lines by constructing
thermalmodels of representative conductors, then forcing thesemodels with future temperature
projections to determine the percent change in rated ampacity. Next, we assess the impact of
climate change on electricity load by using historical relationships between ambient temperature and
utility-scale summertime peak load to estimate the extent towhich climate changewill incur
additional peak load increases.We find that bymid-century (2040–2060), increases in ambient air
temperaturemay reduce average summertime transmission capacity by 1.9%–5.8% relative to the
1990–2010 reference period. At the same time, peak per-capita summertime loadsmay rise by
4.2%–15%on average due to increases in ambient air temperature. In the absence of energy efficiency
gains, demand-sidemanagement programs and transmission infrastructure upgrades, these
load increases have the potential to upset current assumptions about future electricity supply
adequacy.

Glossary

qc Convective heat loss from
conductor to air (Wm–1)

qr Radiative heat loss from
conductor to surround-
ings (Wm–1)

qs Radiative heat transfer
from sun to conductor
(Wm–1)

qj Resistive heating of the
conductor (Wm–1)

I Conductor current (A)
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Tcond Average conductor temp-
erature (K)

R AC resistance of conduc-
tor (Ωm–1)

h̄ Average heat transfer
coefficient (Wm–2 K–1)

D Conductor diameter (m)

Tamb Ambient air temper-
ature (K)

Tf Film temperature (K)

e Emissivity of conductor
surface (dimensionless)

s Stefan–Boltzmann con-
stant (5.670e–8W
m−2 K−4)

d Incident solar radiation
(Wm–2)

as Absorptivity of conductor
surface (dimensionless)

d Per-capita electricity load
(Wper capita)

1. Introduction

Climate change may adversely affect electricity supply
adequacy by reducing generation and transmission
capacity while simultaneously increasing electricity
demand. Extreme heat and drought can impair power
generation capacity [1–3], limit the current-carrying
capacity (ampacity) of transmission lines [3], and
increase peak electricity loads [3, 4]. As atmospheric
carbon concentrations increase, extreme heat and
drought events are expected to occur with greater
frequency, meaning that power infrastructure may be
placed under greater strain for longer periods of time [5].
Future drought conditions have the potential to limit
power generation at ‘base-load’ power plants—which
require a consistent supply of water for cooling [1, 2, 6–
9]. Similarly, extreme heatmay reduce the power output
of peaking generation sources like gas turbines, which
become less efficient as the density of air decreases [1, 3],
and photovoltaic solar cells, which lose efficiency at high
air temperatures due to increased carrier recombination
rates [10]. By mid-century, changes in climate may
reduce vulnerable generation capacity in theWesternUS
by as much as 1.1%–3.0% in an average year, and up to
7.2%–8.8% under a ten-year drought scenario [1].
Although these capacity reductions are significant in
their own right, impacts to power generation are likely to
occur alongside impacts to electricity transmission and
demand. Elevated air temperatures can reduce the rated
capacity of electric transmission lines,meaning that their
ability to transmit power will be diminished during peak
hours. Higher temperatures may also increase electricity
loads for air conditioning during the summer period,

and although only one-half of United States utilities
experience peak summer load in the summer, the
aggregation of these utilities create a nationwide peak
load that is higher in the summer than in other parts of
the year, thereby indicating summer as the period of
interest when considering nationwide transmission
infrastructure vulnerability to rising ambient air tem-
peratures [11, 12]. The opposite effect may be observed
in other periods of the year with different energy use
patterns, such as colder regions with electric resistance
heating or electric heat pumps in buildings that create an
annual peak load in the winter rather than the summer
[13], and this peak may be reduced as ambient
temperatures increase in winter [12]. Nevertheless, for
the summer period, rises in ambient temperature create
coincident impacts to electricity generation, transmis-
sion and peak load that may result in a more vulnerable
electric grid in certain regions of the US. Traditionally,
risk analysis for electric power systems has taken the
form of probabilistic methods based on historical
conditions [14]. In a future characterized by changing
climatic conditions, increased grid complexity, and
augmented operational ‘interconnectedness’, this
approach may no longer be sufficient to protect against
outages and other grid disruptions [14, 15]. Failure to
account for the effects of climate change on the electrical
gridmay leave regional planning authorities unprepared
for future electricity shortages.

The effects of climate change on overall electric
power reliability have yet to be fully explored. It is,
however, possible that rising electrical loads combined
with a reduction in electrical generation and/or line
carrying capacity will narrow the band of operational
stability and safety. Broadly, electricity supply ade-
quacy can be described as a function of three factors:
(1) achievable generation capacity, (2) transmission
and distribution capacity, and (3) expected peak load.
While previous research has assessed climate impacts
to each of these components in isolation, it has so far
proven difficult to assess how the combined impacts to
generation, transmission and peak load may affect
overall electricity supply adequacy. Evaluation of
future electricity supply adequacy is complicated by a
host of factors, including climate non-stationarity,
system redundancy, power system regulations and
industry norms. However, a major obstacle to evalua-
tion of future electricity supply adequacy is the fact
that impacts to generation, transmission and demand
have been evaluated at varying local and regional
scales, but have not been evaluated at the scale neces-
sary for grid-level assessment. Several studies have
assessed the potential impacts of climate change on
power generation at national, interconnection and
sub-interconnection scales [1–3]. However, transmis-
sion ampacity and peak electricity load also play an
important role in determining a region’s overall elec-
tricity supply adequacy. Although the effects of ambi-
ent temperature on electric transmission capacity have
long been recognized, power providers typically rate
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system ampacity using historical temperature profiles
[16, 17]. Sathaye et al [3] use global climate model
(GCM) output to characterize the effects of climate
change on transmission infrastructure in California,
and find that transmission capacity may be reduced by
7%–8% by the end of the twenty-first century [3].
However, to our knowledge there is no study that esti-
mates the impacts of rising temperatures on transmis-
sion capacity nationwide.

Several recent studies have assessed the potential
impacts of climate change on energy consumption.
However, these studies generally fall short of forecast-
ing potential effects to electricity supply adequacy for a
number of reasons: (1) they concentrate on increases
to annual building energy consumption (i.e. MWh), as
opposed to instantaneous peak load (i.e.MW), (2) they
use a spatial extent or resolution that is not scalable to
an interconnection-level assessment, or (3) they use
assumed temperature increases, as opposed to spa-
tially explicit GCM projections. Almost all previous
studies focus on climate impacts to annual building
energy consumption instead of peak electricity load
[4]. Several studies assess changes to annual building
energy demand at the national scale [18–23]; others
focus on a particular region [24], using finer-scale
temperature and infrastructure data [24]. While these
studies help to predict the increased primary energy
burden resulting from climate change, they do not
indicate how climate change will affect the capacity
needed during peak times. Franco and Sanstad [25]
and Sathaye et al [3] estimate climate impacts to peak
load in California. However, in terms of electrical
infrastructure, California is not an isolated system,
and relies on interstate electricity transfers to meet
demand [26]. Thus, impacts to California’s peak per-
iod infrastructure do not necessarily reflect overall
electricity supply adequacy at the interconnection
scale. Reference [27] investigate spatially explicit chan-
ges in electricity load at the neighborhood scale using
high-resolution downscaled climate model output in
the Southeastern United States. Dirks et al [4] use a
highly detailed building energymodel to assess climate
effects on peak electricity load in the Eastern Inter-
connection using one climate model scenario [4].
However, to our knowledge there has been no com-
prehensive, national-scale assessment of peak load
impacts under a range of possible climate change sce-
narios. Because of the relative lack of research on peak
demand and transmission impacts at the interconnec-
tion scale, there remain significant unknowns as to the
effects of climate change on electricity reliability. To
address these knowledge gaps, we estimate impacts to
electricity transmission capacity and summertime
peak per-capita load over the continental United
States.

2.Methodology

We estimate the impacts of climate change on (a) the
rated ampacity of transmission lines and (b) expected
summertime peak per-capita electricity load for 121
electric service planning areas across the US. Together,
these planning areas supply roughly 650 GW of power
[28]—about 80% of current peak summertime load in
theUS [29]. Our analysis takes place in two parts. In the
first phase, we estimate climate-attributable capacity
reductions to aerial transmission lines by constructing
thermal models of representative conductors and
forcing these models with temperature projections
(from 2010–2100) to determine the relative change in
safe operating ampacity. In the second phase, we
characterize climate impacts on electricity load by using
historical relationships between ambient temperature
and summertime per-capita peak load to estimate the
extent to which climate change may incur additional
load increases. To account for variability in GCM
projections, we use output from 11 different GCM
models with 2–3 representative concentration pathway
(RCP) scenarios per model. After estimating climate-
attributable impacts to both electricity transmission
and load, we discuss how atmospheric carbon reduc-
tions, heat-resistant conductors and smart-grid tech-
nologies can mitigate the effects of rising air
temperatures on electricity peak-period infrastructure.

2.1. Estimating climate impacts to electric
transmission capacity
We estimate the impacts of climate change on electric
transmission capacity by developing thermal models
of representative electric transmission cables, then
forcing these models with downscaled temperature
projections over the period 2010–2100. Electric power
cables suffer decreased transmission capacity as the
temperature of the conductor increases [30]. A portion
of these capacity losses result from increased electrical
resistance at higher conductor temperatures [30].
However, the current-carrying capacity of a transmis-
sion line is primarily limited by a conductor’s max-
imum allowed operating temperature [30]. Maximum
operating temperatures are prescribed for different
types of conductors to (a) ensure compliance with
clearance regulations, and (b) prevent damage to the
conductor and other line hardware [16]. For a typical
aluminum conductor steel-reinforced cable, allowable
temperatures may range from 50 °C to 180 °C
depending on the duration of heat exposure, and
engineering practice and judgment [30]. Continued
operation beyond a conductor’s maximum operating
temperature can result in excessive sag or damage [30].
To avoid surpassing a transmission line’s maximum
operating temperature, operators typically curtail the
current in an at-risk conductor such that thermal
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limits are satisfied [3, 30]. Thus, electric power cables
are generally given a ‘rated ampacity’, which represents
the maximum current for which conductor temper-
ature limits are met under standard ambient temper-
ature and wind conditions [3, 30]. Hotter air
temperatures due to anthropogenic global warming
may reduce the effective ampacity of transmission
lines by interfering with their ability to dissipate heat
[30]. To gauge potential ampacity reductions under
changing climatic conditions, we develop a thermal
balance model to estimate the rated ampacity of
transmission lines based on cable properties and
meteorological forcings. We then force this thermal
balance model with future temperature projections to
determine the percent change in rated ampacity for
transmission lines in theUS.

We simulate the rated ampacity of power lines
using an energy balance approach

D = + - + - ( )E q q q q q . 1j rs c d
     

Assuming steady-state conditions (D = )E 0 and
no conduction =( )q 0 ,d the energy balance of a con-
ductor can be resolved into four heat transfer compo-
nents: (1) heat gain from the electrical current flowing
through the conductor, q ,j (2) heat gain from solar
radiation striking the top half of the surface of the con-
ductor, q ,s (3) heat loss due to convection, q̇ ,c and (4)
heat loss due to radiation, qr [30]. To satisfy equili-
brium conditions, the total heat transfer into the con-
ductor must equal the total heat transfer out of the
conductor

+ = + ( )q q q q . 2jc r s   

Heat gain due to electrical loading (known as Joule
heating) is a function of the current transferred
through the conductor (I) and the resistance of the
conductor at a given conductor temperature, ( )R Tcond

[30]

= ⋅ ( ) ( )q I R T . 3j
2

cond

Rearranging the heat balance yields the maximum
allowable current (the rated ampacity) as the depen-
dent variable

=
+ -

( )
( )I

q q q

R T
. 4c r s

cond

  

In expanded form, the rated ampacity of an over-
head conductor can be expressed in terms of ambient
weather conditions (temperature and wind speed),
solar insolation, and cable properties (diameter, sur-
face area and material properties). For a full deriva-
tion, see section 1.1.1 in the supplementary
information (SI) document

where h̄ is the average heat transfer coefficient, D is
the cable diameter, Tamb is the ambient air temper-
ature, e is the emissivity of the conductor surface, s is
the Stefan–Boltzmann constant, d is the incident solar
radiation, and as is the absorptivity of conductor
surface.

We apply the thermal balance model to existing
and proposed transmission lines in the United States
to predict the relative decrease in rated ampacity under
future climatic conditions. We use the Homeland
Security Infrastructure Program (HSIP) database to
determine the locations, geometries and voltage clas-
ses for both existing and proposed transmission lines
[31]. This dataset includes 50 822 existing and 1184
proposed high-voltage transmission lines throughout
the continental US. Representative model cables are
generated for each standard voltage class (69, 138, 230,
345 and 525 kV) based on reported conductor specifi-
cations (see SI section 1.1.3). Manufacturer data are
used to determine relevant design specifications for
model cables, such as conductor diameter and AC
resistance [32–34].We use amaximum allowable con-
ductor temperature of 75 °C, a representative wind
speed of 0.61 m s−1 perpendicular to the conductor
axis, and a solar insolation intensity of 1000Wm−2 to
represent full sun conditions, per standard ampacity
calculation protocols used by manufacturers to rate
the ampacity of aluminum-conductor steel-reinforced
(ACSR) conductors (the most common conductor
type currently in use) [32–35]. Although average solar
insolation varies by geographical location, we use a
fixed solar insolation value of 1000Wm−2 to (i) evalu-
ate ampacity under ‘worst-case’ (full sun) conditions,
and (ii) tomaintain consistency with existing ampacity
rating protocols. We do not model long-term changes
inwind speed, given that wind speed in the continental
US is not expected to change significantly as a result of
climate change (see SI section 2.5), though it should be
noted that the effect of climate change on continental
wind speed is still a debated subject. For our base-case
scenario, we assume that the conductor technologies
used for proposed cables will be similar to those used
for existing cables. However, adoption of more heat-
resistant conductor technologies—such as aluminum
conductor steel supported (ACSS) conductors—can
help to mitigate impacts posed by rising air tempera-
tures. The effect of using more heat-resistant con-
ductors is explored in SI section 2.3. Other assumed
parameters used in the thermal model (including
emissivity and absorptivity) can be found in SI
table S3.

The thermal balance model is executed at a daily
time step (using daily maximum temperature) to

p p e s d
=

⋅ ⋅ ⋅ - + ⋅ ⋅ ⋅ ⋅ - - ⋅ ⋅¯ ( ) ( )
( )

( )I
h D T T D T T D a

R T
5cond amb cond

4
amb

4
s

cond
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determine the reduction in rated ampacity between
historical and future scenarios. For the historical per-
iod, we force the thermalmodel with gridded observed
daily maximum temperature data from 1990–2010
[36]. The temperature forcings included in this dataset
are derived from National Oceanic and Atmospheric
Administration (NOAA) Cooperative Observer sta-
tions, which are gridded to a spatial resolution of 1/8
degree (roughly 12 km) using the synergraphic map-
ping system (SYMAP) algorithm [37, 38]. For the
future period, we use downscaled daily maximum
temperature data from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) multi-model
ensemble of GCMs [39]. CMIP5 is the latest iteration
of the CMIP project, which aims to cultivate a standar-
dized protocol for comparing outputs of coupled
atmosphere-ocean general circulation models. Pro-
jected temperature data from GCMs are gridded at a
spatial resolution of 1/8 degree using the bias-cor-
rected constructed analogue downscaling method.
Temperature data are joined to each transmission
cable in the HSIP dataset based on spatial location. To
capture a range of possible futures, we use the RCP 2.6,
4.5 and 8.5 RCPs proposed by the Intergovernmental
Panel on Climate Change. These scenarios prescribe
anticipated ranges of anthropogenic warming based
on divergent trends in atmospheric carbon concentra-
tions, and provide a basis for measuring the impacts of
climate change under different social, technical and
policy scenarios. The specific GCMs and RCP scenar-
ios used in this study are shown in table 1.

2.2. Estimating peak per-capita load increases due to
elevated air temperatures
Climate change may strain power infrastructure by
increasing loads during the summer peak period.
During the summer months, electricity load typically
increases with hotter air temperatures due to increased
air-conditioning usage [3, 40]. Across the continental

US, average daily maximum summertime tempera-
tures are expected to increase by as much as 1 °C–5 °C
bymid-century [39]. In the absence of building energy
efficiency gains and loadmanagement programs, these
higher temperatures are likely to result in higher per-
capita electricity loads for summer-peaking regions,
where air conditioning use is closely tied to ambient
air temperature. Wemodel potential increases to peak
per-capita summertime electricity load for 121 unique
planning areas (comprising 1044 individual retail
electric service providers) in the United States based
on historical relationships between air temperature
and load. These planning areas account for about 650
GW of summertime load (or about 80% of peak
summertime load in the United States). To estimate
potential per-capita load increases under future cli-
mate scenarios, we first develop regression relation-
ships between peak daily per-capita load and
maximum daily temperature using historical popula-
tion, load and temperature data. Next, we force these
regression models with projected temperature data
from theCMIP5multi-model GCMensemble.

Because average annual electricity load scales with
population [3], it is necessary to remove the effect of
population growth before a relationship between
temperature and peak load can be observed. To this
end, we estimate peak per-capita electricity load for
planning areas using reported hourly loads along with
population estimates from the US Census. Hourly
loads from 1993–2010 are determined for major elec-
trical planning areas using Federal Energy Regulatory
Commission (FERC) Form 714 [41]. Next, population
estimates are generated for each planning area using
census tract-level population estimates for the years
1990, 2000 and 2010 [42–44]. Census tracts are spa-
tially joined to the planning areas that intersect them.
We use census tract boundary files from the US Cen-
sus Bureau’s Topologically Integrated Geographic
Encoding and Referencing (TIGER/Line) database

Table 1.Global climatemodels selected from theCoupledModel Intercomparison Project Phase 5 (CMIP5)multi-model ensemble for use
in this study. Themodeling group responsible for eachGCMmodel is shown on the leftmost column,while the representative concentration
pathway (RCP) scenarios included are shown in the rightmost column. The r1i1p1 ensemblemember is used for all GCMmodels.

Modeling group GCMmodel

RCP scenarios

included

CanadianCentre for ClimateModelling andAnalysis CanESM2 2.6, 4.5, 8.5

National Center for Atmospheric Research CCSM4 2.6, 4.5, 8.5

Community Earth SystemModel Contributors CESM1-BGC 4.5, 8.5

CentreNational de RecherchesMétéorologiques /Centre Européen deRecherche et

FormationAvancée enCalcul Scientifique

CNRM-CM5 4.5, 8.5

Commonwealth Scientific and Industrial ResearchOrganization in collaborationwith

QueenslandClimate Change Centre of Excellence

CSIRO-Mk3.6.0 2.6, 4.5, 8.5

NOAAGeophysical FluidDynamics Laboratory GFDL-ESM2G 2.6, 4.5, 8.5

NOAAGeophysical FluidDynamics Laboratory GFDL-ESM2M 2.6, 4.5, 8.5

Institut Pierre-Simon Laplace IPSL-CM5A-MR 2.6, 4.5, 8.5

Atmosphere andOceanResearch Institute (TheUniversity of Tokyo), National Institute for
Environmental Studies, and JapanAgency forMarine-Earth Science andTechnology

MIROC5 2.6, 4.5, 8.5

Max Planck Institute forMeteorology MPI-ESM-LR 2.6, 4.5, 8.5

Max Planck Institute forMeteorology MPI-ESM-MR 2.6, 4.5, 8.5
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[45–47], and retail electric service area boundaries
from the HSIP GIS database [28], which are aggre-
gated into their respective planning areas. The popula-
tion in each planning area is taken as the sum of the
census tract populations that intersect that planning
area. Per capita electricity load is then computed for
each planning area for the period 1993–2010 by com-
bining population and hourly load data developed in
the previous steps. It should be noted that socio-eco-
nomic factors—such as gross domestic product,
household income, and electricity prices—can also
influence electricity load [48–50]. When predicting
total electricity load under future scenarios (particu-
larly over a short time horizon), it is sometimes neces-
sary to take these factors into account. In this study, we
do not account for changes in socio-economic indica-
tors for two primary reasons: (1) these socio-economic
indicators cannot be meaningfully projected over the
35–85 year time horizon used in this paper, and (2)we
are interested primarily in isolating the marginal
increase in per-capita electricity load due to long-term
changes in air temperature, rather than absolute future
electricity load. In this formulation, socio-economic
factors appear as part of the variance in the temper-
ature-load response function. Similarly, technological
changes—such as improved building energy efficiency
or market saturation of air conditioning units—can
also affect the temperature-load response function.
Rising temperatures may, for instance, promote the
adoption of air conditioning units in regions where
their usage was historically more limited [51]. We
acknowledge that changes beyond what we estimate in
our model are possible, and discuss these sources of
uncertainty in greater detail in section 4.

Having estimated per-capita load for major plan-
ning areas in the US, historical temperature data are
used to construct temperature-load regression
equations, which are then forced with projected temp-
erature data to determine the expected changes in peak
per-capita summertime load under future climatic
conditions. Gridded historical daily maximum temp-
erature data are first assigned to each planning area
using a spatial join [36]. For planning areas with a sin-
gle urban area, temperature data nearest to the cen-
troid of the urban area are used. For planning areas
that contain multiple urban areas, the process of ren-
dering a representative temperature cell takes place in
two steps: (1) gridded temperature data nearest to the
centroid of each urban area are collected, and (2) a
weighted average temperature for the entire planning
area is generated, with the weights being determined
by the populations of each urban area. After determin-
ing representative temperatures for each planning area
for the period 1993–2010, regression relationships
between daily maximum temperature and daily peak
load are developed for the summer peak period (June–
August). Regression relationships take the form of a
quadratic equation, with ambient daily maximum
temperature as the independent variable, and peak

per-capita electricity load as the dependent variable

a b g= ⋅ + ⋅ + ( )d T T , 6amb
2

amb

where a, b and g are empirically determined
coefficients. A quadratic equation is selected for the
regression model because it provides a good fit for
most planning areas (with an average R2 coefficient of
0.6 over the 121 planning areas considered), and
because higher-order models can result in very large
loads when extrapolated beyond the historical temper-
ature range (SI section 2.4). Planning areas with an R2

coefficient below 0.5 are not included in the results. It
should be noted that although this study develops a
regression relationship between ambient temperature
and total per-capita load, not all of electricity load is
sensitive to changes in air temperature. The regression
relationships developed for each planning area are
forced with downscaled CMIP5 GCM projections of
daily maximum temperature to determine the
increase in summertime peak per-capita load over the
21st century [39].

3. Results

By mid-century (2040–2060), rising air temperatures
may reduce summertime transmission capacity by
1.9%–5.8% on average, relative to the 1990–2010
reference period (with the range of impacts being
dependent on GCM model and RCP scenario selec-
tion). These reductions in rated ampacity may pose
challenges for transmission planning authorities, who
typically design peak period infrastructure based on
historical conditions. Figure 1 showsmaps of expected
ampacity reductions by decade under the ‘medium’

atmospheric carbon concentration scenario (RCP
4.5). Impacts to transmission capacity vary with both
geographic location and conductor technology.
Ampacity reductions are typically largest in the FERC
Midcontinent (MISO) electricity market, where aver-
age summertime daily maximum temperatures are
likely to rise by as much as 2 °C–5 °C. By contrast,
transmission lines experience smaller ampacity reduc-
tions along the coastal regions, where temperature
increases are more moderate. Although impacts vary
by geographic region, almost all transmission lines in
the US are expected to experience ampacity reduc-
tions. In addition to geographic location, conductor
properties also play a role in determining expected
climatic impacts to transmission capacity. In general,
high-voltage lines suffer greater capacity reductions
than lower-voltage lines. This is because high-voltage
lines are generally thicker, making heat dissipation
more difficult. While geographic and technological
factors play a role in determining the vulnerability of
transmission lines, reductions in rated ampacity are
most sensitive to increases in ambient air temperature.
Figure 2 shows histograms of percent reduction in
rated ampacity by decade for three carbon
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Figure 1.Climate attributable reductions to transmission capacity by decade (from top left to bottom right: 2020, 2040, 2060, 2080).
Colors indicate the percent reduction in transmission capacity under the average RCP 4.5 scenario, relative to the 1990–2010 reference
period. For additional information on transmission line visualizations, see SI section 4.6.

Figure 2.Histograms indicating percent reduction to transmission capacity by decade (from top left to bottom right: 2020, 2040,
2060, 2080). RCP scenarios (2.6, 4.5 and 8.5) are indicated by their respective colors (blue, yellow and red). The horizontal axis
represents bins of percent ampacity reductions, while the vertical axis represents the number of transmission lines falling into each
bin.
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concentration scenarios—RCP 2.6, 4.5 and 8.5. By
mid-century, average transmission capacity reduc-
tions range from 1.9%–3.9% under the lowest carbon
concentration scenario (RCP2.6) to 2.2%–4.3%under
themedium carbon concentration scenario (RCP 4.5),
to 3.6%–5.8%under the highest carbon concentration
scenario (RCP 8.5). This outcome suggests that
impacts to transmission ampacity can be mitigated
by policy efforts to reduce atmospheric carbon
concentrations.

Increases to peak per-capita electricity load pre-
sent perhaps the greatest climate impact-related chal-
lenge to electricity supply adequacy. By mid-century,
peak per-capita summertime loads may rise by 4.2%–

15% on average due to increases in daily maximum air
temperature (with GCM and RCP selection account-
ing for the range of variability). In the absence of
energy efficiency gains and demand-side management
programs, these load increases could narrow the band
of safe operating conditions, indicating greater grid
vulnerability and reduced reliability. Figure 3 presents
maps of summertime peak per-capita load by decade
under the RCP 4.5 scenario, while figure 4 displays
time series data of summertime peak per-capita load
for all RCP scenarios over the period 1990–2100.
Impacts to peak load are strongly correlated with the
degree of air temperature rise. For the lowest carbon
concentration trajectory (RCP 2.6), increases to per
capita load level out at roughly 4.2%–9.2% by mid-
century, while under the highest carbon concentration
scenario (RCP 8.5), per capita loadsmay be 7.9%–15%

higher by mid-century, and may rise to as much as
30% by 2100. As with impacts to transmission capa-
city, climate-attributable load increases vary by geo-
graphical location. However, unlike impacts to
transmission capacity, peak load increases are not
necessarily correlated with the degree of temperature
rise. In general, urban areas show greater climate-attri-
butable load increases than rural areas. Populous
states with large metropolitan areas—such as Cali-
fornia, Illinois, Texas and New York—show some of
the largest load increases, while sparsely populated
states—such as Wyoming, Utah and Nevada—show
relatively small load increases, despite being located in
regions that are expected to receive above-average
warming. This effect could be attributed to greater
penetration and density of air conditioning units in
urban areas, where building proximity prevents pas-
sive cooling. While increases to peak load vary by
atmospheric carbon concentration and geographic
region, overall per capita peak load is expected to
increase for all scenarios considered. These climate-
attributable increases to peak load are currently not
accounted for by many planning authorities, meaning
that planned peak period infrastructure may not opti-
mallymeet future electricity needs.

4.Uncertainty assessment

Climate impacts to electricity supply adequacy may be
influenced by several sources of uncertainty—includ-
ing climate model variability, unknown conductor

Figure 3.Climate-attributable increases to peak per-capita summertime load for electric retail service providers in theUnited States
by decade (from top left to bottom right: 2020, 2040, 2060, 2080) under the average RCP 4.5 scenario. Colors indicate the percent
increase in peak summertime load relative to the 1993–2010 reference period. For additional information on utility service area
visualizations, see SI section 4.6.
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specifications, and future technological changes.
Although these sources of uncertainty may affect the
degree to which climate change impairs electricity
reliability, it is unlikely that a scenario will occur in
which transmission capacity is not reduced, or in
which per capita peak electricity load does not
increase. Variability in GCMmodel output represents
the largest source of uncertainty in this study. Between
GCM models, median impacts to transmission capa-
city range from about 1.7% (GFDL-ESM2M, RCP 2.6)
to 5.6% (CANESM2, RCP 8.5) by mid-century, while

increases to electricity load range from about 4.3%
(GFDL-ESM2M, RCP 2.6) to almost 15% (CSIRO-
Mk3-6-0, RCP 8.5). Note that although both transmis-
sion and load losses depend on the amount of
temperature rise, upper-bound impacts occur under
different GCM models. This result is explained by
spatial variability in temperature rise between models:
impacts to electricity load are dependent on temper-
ature changes over major population centers (non-
uniformly distributed), while high voltage transmis-
sion lines are more evenly distributed, meaning that

Figure 4.Climate-attributable increases to peak summertime load byNERC region (from top left to bottom right:MAPP, SERC,
ECAR, SPP,WECC, and the entire continental United States). The horizontal axis indicates the year (1990–2100), while the vertical
axis indicates the percent increase in peak per-capita summertime load relative to the 1993–2010 reference period. For reference, a
map ofNERC regions is shown in SI section 4.7. Individualmodel runs are shown in SI section 4.8, alongwith time series plots of all
NERC regions.
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impacts to transmission are more reflective of overall
continental temperature rise. Although impacts vary
widely between GCMmodels, this variability does not
affect the primary conclusions of the study: all models
predict overall reductions to transmission capacity
and overall increases to peak electricity load. To ensure
that the predicted impacts are not an artifact of GCM
model variability, we test for the significance of our
results using a Wilcoxon rank-sum test (see SI section
2.1). Transmission capacity and per capita electricity
load are both found to be significantly affected by
changes in climate (p<0.001) for all GCM models
andRCP scenarios considered.

In addition to GCM model uncertainty, we also
assess several secondary sources of uncertainty,
including (1) choice of representative conductor
cables, (2) choice of maximum allowable conductor
temperature, (3) choice of temperature-load regres-
sion model, and (4) potential for future changes in
wind speed. Conductor model choice has a relatively
minor effect on climate-attributable ampacity reduc-
tions (<1%), and is unlikely to affect the primary
results of this study (see SI section 2.2). Maximum
allowable conductor temperature, on the other hand,
can significantly affect temperature-related ampacity
reductions (see SI section 2.3). Under the most con-
servative maximum conductor temperature (75 °C),
ampacity reductions range from 1.9%–5.8% by mid-
century, while for a more permissive maximum con-
ductor temperature (100 °C), climate-attributable
ampacity reductions are on the order of 1.1%–3.4%.
Ultimately, we select a maximum conductor temper-
ature of 75 °C for ACSR cable, because it is the indus-
try standard for continuous operation under normal
conditions [35]. However, it should be noted that
some climate impacts to transmission capacity may be
avoided by allowing transmission lines to run at higher
temperatures, or by installing more heat-resistant
cables (such as ACSS). Because ACSS conductors are
designed to withstand temperatures of 250 °Cwithout
loss of strength [52], the effect of ambient temperature
rise on these cables is comparatively small. In addition
to assessing uncertain conductor parameters, we also
assess the sensitivity of results to different temper-
ature-load regression models (see SI section 2.4). We
investigate three regression models (linear, quadratic
and cubic) and find that the choice of regression
model can significantly influence climate-attributable
increases to peak electricity load. Impacts are fairly
similar under the linear and quadratic regression
models: by mid-century, summertime peak load is
expected to increase by about 4.2%–13% under the
linear regression model, and about 4.2%–15% under
the quadratic regression model. However, the cubic
regression model predicts much higher impacts than
the other regression models, with expected peak load
increases of roughly 11%–40%. This outcome follows
from the fact that high-order polynomial models tend
to predict large loads when extrapolated beyond the

historical temperature range. All models offer similar
goodness of fit, with average R2 values of 0.58, 0.6 and
0.6 for the linear, quadratic and cubic models, respec-
tively. However, the linear model shows bias at the
upper and lower ends of the temperature spectrum,
where the temperature-load response function tends
to show nonlinear behavior. Ultimately, we select the
quadratic regressionmodel because (i) it offers a better
goodness of fit than the linear model, (ii) it captures
historical temperature-load profiles over the entire
range of expected temperatures and (iii) it is less sus-
ceptible to extrapolation errors than the cubic model.
Conductor ampacity is strongly dependent on wind
speed, suggesting that future changes in wind speed
could potentially influence anticipated ampacity
reductions. However, based on an assessment of pro-
jected wind speeds in the CMIP3multi-model ensem-
ble, we find that wind speeds are not expected to
change significantly as a result of climate change (SI
section 2.5). It should be noted, however, that the
effects of climate change on wind speed are a subject of
debate, with various studies predicting global trends of
increasing wind speed [53], global trends of decreasing
wind speed [54], 1.4%–4.5% reductions in wind speed
throughout the US over the next hundred years [55],
decreased wind speed throughout the Western US
High Plains Region [56], no detectable changes in US
wind speed over the next half-century [57], and small
magnitude changes (±0.1 m s−1) of uncertain sign
throughout theUS [58].

Changes in social, economic and technological
factors may also affect the degree to which climate
change will impact overall electricity supply adequacy.
Electricity load, for instance, is influenced by a host of
underlying drivers, including socio-economic factors,
residential behaviors, and electricity use for commer-
cial and industrial activities. If these underlying drivers
of electricity consumption change, then it is possible
that peak loadwill change as well. Future technological
changes—like conductor upgrades and building
energy efficiency improvements—represent another
major source of uncertainty (SI section 2.6). However,
unlike GCM models or conductor cable parameters,
technological changes are subject to economic, social
and political considerations, and are therefore difficult
to quantify. Upgrading existing ACSR cable to heat-
resistant ACSS cable offers the potential to offset
nearly all climate-attributable ampacity losses. How-
ever, it is unclear whether upgrading existing ACSR
cables is economically or politically viable. Similarly, a
review of the literature reveals that upgrades to build-
ing energy efficiency and demand-side management
programs have the potential to offset virtually all cli-
mate-attributable increases to electricity load (SI
section 2.6)—however, it is unclear to what extent
these gains will actually be realized. While social and
technological changes could have a significant impact
on the results of this study, it is difficult to assess what
level of change is likely to occur. Thus, rather than
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attempting to characterize the effects of social and
technological changes as a source of uncertainty, we
recommend viewing these changes as a potential miti-
gation strategy—one that future research should
address in detail.

5.Discussion

While climate change may present challenges to peak-
period electric power infrastructure, impacts can be
offset through carbon mitigation initiatives, re-con-
ductoring of congested transmission corridors, build-
ing energy efficiency improvements, and new ‘smart-
grid’ technologies. Perhaps the most striking result of
this study is the degree to which infrastructure impacts
are correlated with atmospheric carbon concentra-
tion. Impacts to mid-century transmission capacity
under the high emissions scenario are about 74%
higher than those under the low emissions scenario,
while impacts to peak electricity load are about 71%
higher. The wide range of impacts between carbon
concentration trajectories suggests that policies limit-
ing carbon emissions can go a long way to preventing
climate impacts to electricity reliability. Technological
improvements also offer the potential to mitigate
climate impacts. Upgrades to overhead conductors
(such as replacing ACSR cables with more temper-
ature-resistant ACSS cables) have the potential to
lessen climate-attributable reductions to transmission
capacity. On the demand side, investments in building
energy efficiency and demand response programs
could offset load increases due to higher air tempera-
tures. Although these changes are difficult to predict in
any quantitative capacity, a review of the literature
indicates that expansions to demand-side manage-
ment programs have the potential to reduce future
electricity load by 4.0%–27% relative to a ‘business-as-
usual’ scenario (SI section 2.6.1). These reductions are
comparable to climate-attributable increases in elec-
tricity load (4.2%–15%), meaning that investments in
building energy efficiency and demand response
programs could effectively negate the adverse effects of
climate change on the grid.

In addition to conventional best practices, pro-
posed ‘smart grid’ technology may enable the elec-
tricity grid to respond more flexibly to climate-
constrained conditions (SI section 2.6.2). Smart grid
development couples transmission and distribution
infrastructure with information and communication
technologies to enable advanced power system ser-
vices [59], including wide-areamonitoring systems for
large-scale reliability and security assessment,
dynamic electricity pricing schemes based on demand
response, and the distributed deployment of energy
storage, electric vehicle, and renewable power genera-
tion resources. Power line temperature and sag mon-
itoring systems can be used with advanced actuator
and electricity routing infrastructure to direct

electricity down lines that are less stressed by changing
temperature in peak conditions [60]. Moreover,
through dynamic ampacity systems, it is possible for
thermal limits to better reflect operating conditions by
using real-time electrical and environmental data to
determine the maximum allowable current for a given
power line [60]. This practice enables greater flexibility
in how power lines are used to deliver electricity and in
planning infrastructure maintenance and upgrades.
Smart grid technologies may also help to soften the
impact of climate change on electricity load. In future
smart grids, distribution systems may monitor and
communicate with smart appliances and HVAC sys-
tems to control their operation in temperature con-
strained conditions [61]. For example, to prevent load
shedding and infrastructure failures during peak load
hours, electric service providers may change the set-
tings on smart A/Cunits to reduce load within a single
home or acrossmultiple buildings within the same cir-
cuit. While rising air temperatures may lead to
decreased transmission capacity and increased peak
loads, impacts to overall electricity reliability can be
avoided with the proper mitigation measures in place.
Investments in carbon mitigation strategies, demand-
sidemanagement programs, and smart-grid technolo-
gies may lessen or even negate anticipated climate
impacts.

The results of this study show that increasing
ambient air temperatures may increase electricity
demand and decrease transmission ampacity. Addi-
tionally, a complementary study on electrical power
generation predicts reductions in instantaneous gen-
eration capacity in hot summer months for the Wes-
tern Electricity Coordinating Council (WECC) region
[1], which comprises 14 states in the Western US [62].
Bymid-century, existing vulnerable summertime gen-
erating capacity in the WECC region may be reduced
by 1.1%–3.0% in an average year, with proposed capa-
city (mostly from combustion turbine and solar pho-
tovoltaic sources) suffering similar losses [1]. In
addition to these losses, increases in ambient air temp-
erature may increase peak per-capita load in the
WECC region by as much as 1.7%–14%, whileWECC
transmission capacity may be reduced by as much as
1.4%–5.6%. This suggests that the joint effect of
decreases in generation capacity, decreases in trans-
mission ampacity, and increases in peak load may
result in amore constrained electricity grid as ambient
temperatures rise. This effect can differ between
regions with a summer peak and regions with a winter
peak [1, 13]. Regions with a summer peak may have
reduced ampacity and increased load (e.g., due to
increases in loads from central air conditioners)
whereas regions with a winter peak may have
increased ampacity and decreased load (e.g., due to
decreases in loads from radiative heating). This high-
lights the need to better understand the impacts of cli-
mate change and subsequent rises in ambient
temperature on overall electricity system reliability,
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both at a general level and for site-specific locations.
Currently, some regional electricity supply adequacy
assessments do not explicitly account for the effects of
climate change [63], meaning that long-term invest-
ments in electricity infrastructure may not optimally
meet future electricity needs. Site-specific models are
needed to explore the combined effects of temperature
rise on electricity generation, transmission, distribu-
tion, and demand. Further, more work is needed to
assess the asynchronous impacts of network conges-
tion and market forces on interconnection-scale elec-
tricity supply adequacy. While electricity supply
adequacy is adversely affected under all the climate
scenarios considered, the results offer several options
for alleviating potential impacts, including carbon
mitigation initiatives, heat-resistant conductors,
building energy efficiency upgrades, and new smart-
grid technologies. These measures offer the potential
to lessen or even completely offset potential climate
impacts, depending on how aggressively they are pur-
sued. While the effects of climate change on electric
power infrastructure could be considerable, this study
shows that these impacts can be overcome with exist-
ing technologies and management techniques, given
that anticipatory governance practices can be
instituted.
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