PERSPECTIVE • OPEN ACCESS

The time lag between a carbon dioxide emission and maximum warming increases with the size of the emission

To cite this article: Kirsten Zickfeld and Tyler Herrington 2015 Environ. Res. Lett. 10 031001

View the article online for updates and enhancements.

Related content

- Maximum warming occurs about one decade after a carbon dioxide emission
 Katharine L Ricke and Ken Caldeira

- What determines the warming commitment after cessation of CO2 emissions?
 Dana Ehlert and Kirsten Zickfeld

- How difficult is it to recover from dangerous levels of global warming?
 J A Lowe, C Huntingford, S C B Raper et al.

Recent citations

- Climate vulnerability and resilience in the most valuable North American fishery
 Arnault Le Bris et al

- A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions
 Richard J. Millar et al

- Estimating Carbon Budgets for Ambitious Climate Targets
 H. Damon Matthews et al
PERSPECTIVE

The time lag between a carbon dioxide emission and maximum warming increases with the size of the emission

Kirsten Zickfeld¹ and Tyler Herrington¹,²
¹ Department of Geography, Simon Fraser University, Burnaby, B.C., Canada
² Department of Geography, Douglas College, New Westminster, B.C., Canada
E-mail: kzickfel@sfu.ca

Abstract

In a recent letter, Ricke and Caldeira (2014 Environ. Res. Lett. 9 124002) estimated that the timing between an emission and the maximum temperature response is a decade on average. In their analysis, they took into account uncertainties about the carbon cycle, the rate of ocean heat uptake and the climate sensitivity but did not consider one important uncertainty: the size of the emission. Using simulations with an Earth System Model we show that the time lag between a carbon dioxide (CO₂) emission pulse and the maximum warming increases for larger pulses. Our results suggest that as CO₂ accumulates in the atmosphere, the full warming effect of an emission may not be felt for several decades, if not centuries. Most of the warming, however, will emerge relatively quickly, implying that CO₂ emission cuts will not only benefit subsequent generations but also the generation implementing those cuts.

In a recent letter, Ricke and Caldeira [1] estimated that the time lag between a carbon dioxide (CO₂) emission and the maximum warming response is a decade on average. This is an important finding as it indicates that the full climate damages expected to occur in response to a CO₂ emission will already be felt by the generation responsible for those emissions. Conversely, the relatively short response timescale implies that CO₂ emission cuts implemented today have the potential to influence the rate of warming in the short term. Thus, their finding corroborates the notion that the rate of warming over the next decades is not inevitable, but will be determined by future CO₂ emissions [2].

A range of previous studies has explored the warming commitment of past CO₂ emissions [3–9]. A robust finding of these studies is that the CO₂-induced warming persists for many centuries. The novel aspect of the letter by Ricke and Caldeira [1] (henceforth referred to as R&C) is its focus on the time lag between a CO₂ emission and the resulting maximum warming response.

In their study, R&C used simple representations of the carbon cycle and the physical climate system. The carbon cycle was simulated by impulse response functions derived from the response of a range of Earth System Models to a 100 GtC emission pulse [10]. The physical climate system was represented by one-dimensional diffusion or two-box models fitted to Coupled Model Intercomparison Project phase 5 (CMIP5) simulations with an abrupt quadrupling of atmospheric CO₂. Combinations of these models made it possible to sample 6000 realizations of the coupled climate-carbon cycle system.

For a 100 GtC pulse of CO₂ released into the atmosphere with a background CO₂ concentration of 389 ppm, R&C found the median time between an emission and maximum warming to be 10.1 years, with a 90% probability range of 6.6–30.7 years. A pulse emission of CO₂ results in an abrupt increase in atmospheric CO₂ concentrations, followed by a slow decline as CO₂ is taken up by the ocean and terrestrial biosphere. The radiative forcing associated with the CO₂ increase causes warming, but the warming is delayed due to the long timescales of ocean heat uptake. Initially, the ocean takes up a large amount of heat, but this heat uptake decreases over time, allowing the atmosphere to warm. The timing of peak warming is determined by the balance between two opposing processes: the decline of radiative forcing of atmospheric CO₂ following the pulse emission (which has a cooling effect on the atmosphere), and the decrease of ocean heat uptake (which has a warming effect).
This balance is sensitive to a range of factors, which differ widely across Earth System Models: the sensitivity of the marine and terrestrial carbon sinks to changes in atmospheric CO2 and climate, which determines the decline of atmospheric CO2; the rate of mixing of heat into the deep ocean, which determines the decrease of ocean heat uptake; and the equilibrium climate sensitivity which also controls the response timescale of the system. R&C take these uncertainties into account and show that uncertainty in the temperature response timescale can only be narrowed if uncertainty in all three contributing factors is reduced.

One important factor that can be expected to affect the timing of maximum warming, however, was not considered in the uncertainty analysis: the size of the CO2 emission pulse. As the pulse size increases, the CO2 decline from peak levels slows [4]. The decline in radiative forcing slows even more due to its logarithmic dependence on atmospheric CO2. At the same time the decrease in ocean heat uptake is also reduced, delaying the warming further. The combination of these two processes has the potential to significantly delay the time of peak warming for larger CO2 emission pulses.

Figure 1 shows the temperature response to pulse emissions ranging from 100 to 5000 GtC as simulated by the UVic ESCM. However, not considered in the uncertainty analysis: the size of the CO2 emission pulse. As the pulse size increases, the CO2 decline from peak levels slows [4]. The decline in radiative forcing slows even more due to its logarithmic dependence on atmospheric CO2. At the same time the decrease in ocean heat uptake is also reduced, delaying the warming further. The combination of these two processes has the potential to significantly delay the time of peak warming for larger CO2 emission pulses.

One important factor that can be expected to affect the timing of maximum warming, however, was not considered in the uncertainty analysis: the size of the CO2 emission pulse. As the pulse size increases, the CO2 decline from peak levels slows [4]. The decline in radiative forcing slows even more due to its logarithmic dependence on atmospheric CO2. At the same time the decrease in ocean heat uptake is also reduced, delaying the warming further. The combination of these two processes has the potential to significantly delay the time of peak warming for larger CO2 emission pulses.

Our results indicate that as CO2 continues to accumulate in the atmosphere, the full warming effect of an emission may take several decades, if not centuries to emerge. A large fraction of the warming, however, will be realized relatively quickly (93% of the peak warming is realized 10 years after the emissions for the 1000 PgC pulse). This implies that the warming commitment from past CO2 emissions is small, and that future warming will largely be determined by current and future CO2 emissions. Each additional CO2 emission will contribute to warming that will persist almost indefinitely. Thus, emission reductions implemented today will equally benefit current and future generations.
Acknowledgments

The authors thank Michael Eby and H Damon Matthews for insightful discussions. Kirsten Zickfeld acknowledges support from the National Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant Program.

References