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Abstract

Nitrogen (N) deposition-induced soil acidification has become a global problem. However, the
response patterns of soil acidification to N addition and the underlying mechanisms remain far
from clear. Here, we conducted a meta-analysis of 106 studies to reveal global patterns of soil
acidification in responses to N addition. We found that N addition significantly reduced soil pH by
0.26 on average globally. However, the responses of soil pH varied with ecosystem types, N addition
rate, N fertilization forms, and experimental durations. Soil pH decreased most in grassland,
whereas boreal forest was not observed a decrease to N addition in soil acidification. Soil

pH decreased linearly with N addition rates. Addition of urea and NH,NOj; contributed more to
soil acidification than NH,-form fertilizer. When experimental duration was longer than 20 years,
N addition effects on soil acidification diminished. Environmental factors such as initial soil pH,
soil carbon and nitrogen content, precipitation, and temperature all influenced the responses of
soil pH. Base cations of Ca**, Mg>* and K* were critical important in buffering against N-induced

soil acidification at the early stage. However, N addition has shifted global soils into the A

13+

buffering phase. Overall, this study indicates that acidification in global soils is very sensitive to N
deposition, which is greatly modified by biotic and abiotic factors. Global soils are now ata
buffering transition from base cations (Ca**, Mg** and K*) to non-base cations (Mn** and AI’*).
This calls our attention to care about the limitation of base cations and the toxic impact of non-
base cations for terrestrial ecosystems with N deposition.

Introduction

Global land has received more than 50 kg ha™' accu-
mulated N deposition during 2000-2010 (Penuelas
et al 2013), which has been well documented as the
main causation of soil acidification in terrestrial
ecosystems (Wright et al 2001, Guo et al 2010, Yang
et al 2012). The N-induced soil acidification (i.e.
decrease in pH) has been a significant threat to species
diversity and terrestrial ecosystem functioning (Chen
et al 2013). With the unprecedented increasing N
deposition in the of global change
(IPCC 2013), soil acidification is becoming a major
problem for global terrestrial ecosystems (Lucas
et al 2011, Yang et al 2012). However, our under-
standing on the general patterns of global soil acid-
ification in response to N deposition is far from
clear yet.

context

Some previous studies have documented the
impacts of simulated N deposition on soil acidification
(Hogberg et al 2006, Horswill et al 2008), but found
the magnitude of acidification varies largely among
case studies or ecosystems (Lu et al 2011). This may be
due to the difference of N treatments, such as N-added
dose and N-fertilizer form, and experimental duration
in the studies. Small dose of N input can stimulate
plant nitrogen uptake and growth (Nohrstedt 2001,
Bai et al 2010), but high-N loading results in nitrate
loss and base cation depletion, likely causing soil acid-
ification (Lucas et al 2011). It suggests that N addition
dose is an important factor influencing soil acidifica-
tion. Different forms of N-fertilizer may also pose dif-
ferent impacts on soil acidification. For instance, NHj
ion and NOj3 anion from N-fertilizers are likely to play
different roles in affecting acidification. NHj ions can
displace base cations (Ca**, Mg*", K*, Na™) binding to

©2015IOP Publishing Ltd
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soil surface and make them easy to leach out of soils
(Matschonat and Matzner 1996), reducing their buf-
fering against acidification. Moreover, when an NHj
ion is absorbed by plant roots, an H' ion will be
released into soil solutions and cause soil acidification
(Smith and Read 2008). While NOj3 anions lead to the
loss of metal cations through their leaching based on
the charge balance in soil solutions (Gundersen
et al 2006, Rothwell et al 2008). Recently, a meta-ana-
lysis study revealed that N addition has reduced soil
base cations and the N effect diminished above five
years (Lucas et al 2011), implying that the impacts of N
application on acidification may vary with treatment
times. Nevertheless, we do not well understand how
different ecosystems and nitrogen treatments affect
soil acidification in response to N addition at global
scale.

Site conditions and environmental factors may
also influence the responses of acidification to N addi-
tion. More organic matter in soils is beneficial to sup-
press acidification, due to its greater cation exchange
capacity than mineral soils (Parfitt et al 1995,
Simansky and Pollakova 2014). Greater N-saturated
soils should be more sensitive to acidification (Gun-
dersen et al 2006). High precipitation may promote
acidification with an increased leaching of metal
cations (Lucas et al 2011). Low temperature can limit
ecosystem N cycles with a low capacity to sequester N
(Williams et al 1996, Curtis et al 2005), likely promot-
ing coupled leaching of NO3 ions and base cations.
Tree species identity also plays a significant role in
affecting soil pH (Finzi et al 1998). For instance, con-
ifer species appear to contribute more to soil acidifica-
tion than non-conifer species (Rigueiro-Rodriguez
et al 2012), through secreting organic acids by their
mycorrhizal roots and absorbing base cations (Sollins
and Mccorison 1981). These indicate that ecosystems
with various abiotic and biotic factors may have differ-
ent sensitivities of soil acidification in response to N
addition. Exploring the interactions between biotic or
environmental factors and N deposition help better
understand the response of soil acidification to N
deposition.

It is generally assumed that metal cations in soils
are the main mechanism to buffer against soil acid-
ification (Ulrich 1983, 1989, Bowman et al 2008). Dur-
ing the acidification process, soils with different initial
pH may experience different phases buffered by differ-
ent metal cations (Bowman et al 2008). When
pH range is higher than 7.5, soil acidification is largely
buffered by calcium carbonate, likely stimulating a
large loss of carbon (Yang et al 2012). At the inter-
mediate range from 4.5 to 7.5, the acidification process
is mostly buffered by base cations, such as exchange-
able Ca**, Mg”*, K*, etc. Depletion of base cations
hampers an ecosystem’s acid-buffering capacity. The
loss of base cations has also been associated with plant
nutrient deficiency, leading to an increase of ecosys-
tem susceptibility to environmental stresses (i.e.
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extreme temperature, salinity and drought) (Monroy
et al 1993, Knight et al 1997, Gong et al 1998). Once
these base cations have been severely exhausted (pH <
4.5), non-base cations (A", Mn*" and Fe’") are
mobilized and buffered against the acidification
(Mclaughlin and Wimmer 1999, Bowman et al 2008),
with a potential to be toxic to plants (Delhaize and
Ryan 1995, Van Den Berg et al 2005). Thus, N deposi-
tion-induced soil acidification is a complex and
dynamic process. Exploring the responses of metal
cations to N deposition is the key to understand the
extent and the mechanisms of soil acidification.

So far, to our knowledge, there still lacks a global
synthesis on soil acidification as affected by N deposi-
tion. Through compiling data from 106 case studies,
we conducted a meta-analysis to reveal the global pat-
terns of soil acidification in response to N deposition
and the influential factors and underlying mechan-
isms. Specifically, we addressed the following ques-
tions: (1) How different N treatments (addition levels,
fertilizer forms, experiment durations) affect soil acid-
ification? (2) How different ecosystems and environ-
ment conditions influence soil acidification in
response to N addition? and (3) How metal cations
buffer against soil acidification?

Methods

Data source

We searched the peer-reviewed papers using Web of
Science during 1900-2014, whose title, abstract, or
keywords related to: N addition, N deposition, N
input, N application, N fertilization or N enrichment;
soil; and acidification, pH, cation, Ca**, Mg*", K",
Nat, Mn?*, AP’" or Fe®". Then, we selected the
appropriate studies with the following criteria. First,
N-fertilizer was directly applied to field plots in
terrestrial ecosystems with at least one of the above
mentioned soil variables included. Second, the experi-
ments were conducted to include an N-added treat-
ment and a control treatment under the same
condition. Third, the studies clearly showed N addi-
tion levels, experimental duration, and soil depth.
Fourth, the measurements of the selected variables
explicitly indicated their means, standard deviations
or standard errors, and sample sizes, or these para-
meters could be calculated from the measured data.

To assure the independence among studies, we
only collected the data from the latest measurement
for each experiment (Liu and Greaver 2010, Lu
etal 2011). Here, we considered data from different N
addition rates and N-fertilizer forms in the same
experiment as independent observations (Curtis and
Wang 1998, Liu and Greaver 2009). Data from the
figures were extracted using Engauge Digitizer (Free
Software Foundation, Inc., Boston, MA, USA).
Finally, a database with 106 independent studies was
created from 61 published papers (table S1 in the
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supplementary data available at stacks.iop.org/ERL/
10/024019/mmedia). Of them, 97 experiment sites
referred to examining soil pH response. Overall, our
database covers grassland, boreal forest, temperate
forest and tropical forest in most of global land area
(figure S1), with a rainfall range from 250 to 3500 mm
and an annual temperature range from —3.7°C to
28°C. N addition levels vary from 0.93 to
60 gm > yr ', The measured soils were sampled from
adepth range from 2.5 to 30 cm.

In order to examine how N treatments, ecosystem
types, and environment conditions influence the
responses of soil acidification to N addition, we
grouped the data based on N addition levels (<5, 5-10,
10-15and >15¢g m~2 yr '), N-fertilizer forms (NH,-
fertilizer, NH,NOjs-fertilizer and urea) and experi-
mental durations (<5, 5-10, 10-20 and >20 yr). For
ecosystem types, we categorized the data into grass-
land, boreal forest, temperate forest and tropical for-
est. For environmental conditions, we classified the
data according to initial soil pH (3—4, 4-5, 5-6, 6-7
and >7), ambient N deposition (<0.5, 0.5-1,
>lg m 2 yrfl), rainfall (<1000, 1000-2000 and
>2000 mm) and annual temperature (<0, 0-5, 5-10,
10-20 and >20°C). Due to not enough data for soil
total C and total N, the category of data based on these
two variables was not conducted.

Meta-analysis

We analyzed the data by the traditional meta-analysis
method offered by Hedges et al (1999). The mean
magnitudes of N-added effects on the examined
variables were estimated by the log-form of response
ratio (R), log;o(R) =logyo (Xtreatment/Xcontrol)) where
Xireatment and Xcontrol are the means of a certain
variable in N addition and control treatments respec-
tively. The variance (v) of log;o(R) was calculated as
following:

( SDtreatment )2

7 2
N, treatment X treatment

U = 0.1886 X (S )2

— 2 b
Neontrol X, control

where SDconirol aNd  SDireatment are the standard
deviations of the control treatment and N addition
treatment; and Neonirol ad Nypearment are the sample
sizes of the control treatment and N addition
treatment respectively. Relevant detailed information
is presented in Hedges et al (1999). With the
MetaWin software (Sinauer Associates, Inc. Sunder-
land, MA, USA), we analyzed the mean effect size and
its variance of N addition. The N-added impacts on
the response ratios are considered significant at
a=0.05, if the 95% confidence interval (CI) does not
overlap zero.

To further examine how various treatments, eco-
system types and environment factors across studies
affected N addition effects, the data was categorized as
described in data source section. The mean response
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ratio for each categorized level and its variance were
analyzed with the MetaWin. Total heterogeneity
(Qrotal) among groups was divided into two compo-
nents, within-group heterogeneity (Quimin) and
between-group heterogeneity (Qpetween)- If the prob-
ability value of Qpeween 1S lower than 0.05, it indicates
the significant difference in response ratios among dif-
ferent categorized levels. Mean effect of N application
at each level was considered significant, if the 95% CI
did not overlap zero. Here, we used two methods to
calculate the response ratios of soil acidification. First,
we directly computed the response ratio of soil pH.
Second, pH was transformed to H concentration,
then the H" response ratio was also calculated. Based
on these two methods, we found that the response pat-
terns of soil acidification across different ecosystems,
soils and environmental factors were consistent and
the magnitudes were quite similar. It is noted that the
equation of log;o(H  eatment/Heontrol) €an be changed
to the form of logso(Hscatment) — 10g10(Hionrol), which
indicates pH unit change (pHcontrol— PHreatment)
affected by N addition. Thus, for ease of interpreta-
tion, we only presented the mean effect sizes of
pH unit changes (pPHreatment — PHeontrol) i this study.
To clarify the mechanisms of N addition caused soil
acidification, we used the linear regression method to ana-
lyze the relationships between soil metal cation and
pH response ratios. In addition, we employed the regres-
sion analysis of linear, power or quadratic function to
examine the relationships of pH response ratios with envir-
onmental factors. The regression analysis was conducted
with the SPSS software (SPSS 11.0 for windows, SPSS Inc.,
Chicago, IL, USA), and the graphs were drawn with the
SigmaPlot software (SigmaPlot 12.5 for windows).

Results

The effects of N addition on soil acidification in
different ecosystems

At the global scale, N addition significantly reduced soil
pH by 0.26 on average for terrestrial ecosystems (figure 1).
Although soil pH in both grassland and forest ecosystems
declined in response to N addition, the response
magnitude of soil pH in grassland was larger than that in
forest. For different types of forest ecosystems, boreal
forest did not show a significant response in soil pH, while
temperate and tropical forest displayed a significant
decrease. Soil pH in the forest ecosystems dominated by
conifer species was not affected by N addition, but soil
pH in the forest ecosystems dominated by non-conifer
species was reduced significantly (figure S2).

The effects of different N addition treatments on soil
acidification

Soil pH response changed with N addition rate. It was
significantly reduced when the added-N amount was
more than 5gm 2yr ' (figure 2). Below this level,
there was no significant response. Moreover, soil
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Figure 2. Soil pH unit changes with N addition rates, N-fertilizer forms and experiment durations at global scale. See the figure 1 for

pH decreased linearly with increased N addition rate
(figure S3). For different ecosystem types, a negative
linear relationship existed between N addition rate
and pH response ratios in tropical forest and grassland,
while no relationship was detected in temperate and
boreal forests. It was not observed that NH,-form
fertilizer addition decreased soil pH, while NH,NO;-
form fertilizer and urea addition significantly reduced
soil pH (figure 2). Soil pH was reduced significantly in
the experiment less than 20 years but was not observed
in the experiment longer than 20 years.

N effects on soil acidification varied with soil
conditions and environmental factors

When initial soil pH ranged from 3 to 4, N addition did
not affect soil pH (figure S4). Above this range, N addition
reduced soil pH significantly. Further regression analysis

revealed that pH response ratios decreased linearly with
initial pH (figure 3(a)). The response ratios of soil
pH showed a power function curve with the increase of
soil C and total N content (figures 3(b) and (c)).

Overall, no general relationship was found
between ambient N deposition and pH response ratio
(figure 3(d)). However, when ambient N deposition
was more than 0.5 gm yr ', soil pH decreased sig-
nificantly with N addition (figure S4). Below this level,
soil pH did not change significantly. The response
ratios of soil pH increased slightly first and then
decreased quickly, showing a quadratic response func-
tion with the increasing rainfall (figure 3(e)). A weak
quadratic (R*=0.087) was found
between pH ratios and temperature

relationship
response
(figure 3(f)). But, when temperature was lower than
0 °C, soil pH was obviously reduced (figure S4).
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The buffering capacity of metal cations against soil
acidification
N addition significantly decreased soil exchangeable
Ca®*, Mg** and K" in terrestrial ecosystems (figure 4).
The effects of N addition on these base cations were
consistent between forest and grassland ecosystems. It
was not observed that N addition reduced soil
exchangeable Na™ in forest, but significantly decreased
soil Na™ in grassland. For non-base cations, N addition
significantly increased free AI’*, while it was not
observed to influence soil exchangeable Mn**. But for
grassland soils, Mn** showed an increase.

The response ratio of soil pH showed a similarly
linear relationship with the response ratio of soil Ca*",
Mg”*, K" (figure 5). However, there was no significant

relationship between changes in Na* and pH response
ratios. For non-base cations, soil pH decreased linearly
with the increase of free AI>* or Mn*".

Discussion

Responses of soil acidification in different
ecosystems

In natural conditions before the Industrial Revolution,
the acidification rate in soils is rather low with over
hundreds to millions of years. However, at a global
scale we found that N addition significantly reduced
soil pH by 0.26 in terrestrial ecosystems. This
decreased magnitude is lower than a reduced pH of
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0.50 reported in Chinese agricultural systems from the
1980s to the 2000s (Guo et al 2010). The different
responses of acidification between agricultural systems
and non-agricultural ecosystems may be due to more
use of N-fertilizer in crop systems (above
50gm yr ') than that in non-crop ecosystems
(ranging from 1 to 30 gm 2 yr ') (Rothwell et al 2008,
Guo et al 2010). Moreover, a recent meta-analysis
revealed that repeatedly harvesting plant biomass can
lead to soil acidification (Berthrong et al 2009).
Different terrestrial ecosystems exhibited different
sensitivities to N addition in soil acidification. Soil
pH declined most in grassland by 0.49. This result is in
line with the large-scale observations that soil
pH decreased by 0.63 in Northern China’s grassland
during 1980s-2000s, which is mainly induced by N
deposition (Yang et al 2012). The pH decline of 0.49 in
this study is lower than the decrease of 0.63, which is
partly due to the fact that the initial pH range of 3 to
7.7 in this study is lower than the range mostly above
7.5 in Northern China’s grassland, since pH response
ratio linearly decreased with the increase of initial soil
pH (figure 3(a)). These two studies in combination
indicate that grassland soils are very sensitive to N-
induced acidification. Soil acidification in tropical and
temperate forests was more sensitive to N addition
than boreal forest (figure 1), which may be due to the

influence of the variable abiotic and biotic factors
across forest ecosystems. For example, more rainfall
(1840 mm) in tropical forests than that (925 mm) in
boreal forests can promote soil acidification (Lucas
et al 2011). Temperature variation plays a minor role
in affecting soil acidification among these forest eco-
systems as our result showed that there was no obvious
change in pH response with temperature when it was
above 0 °C. The annual temperature for tropical forest
(24.1 °C), temperature forest (8.3 °C) and boreal for-
est (4.7 °C) is higher than 0 °C. The less sensitivity of
boreal forests to soil acidification is probably due to
the dominance of conifer species in this ecosystem
because we found that soils dominated by conifer spe-
cies was less sensitive to N addition in acidification
than those dominated by non-conifer species (figure
S2). The finding highlights the significant role of con-
ifer species in suppressing soil acidification.

The influences of N treatments

The responses of soil acidification to N addition varied
with N addition rate, N fertilizer forms, and treatment
duration. N induced acidification became significant
when N addition rate was more than 5gm yr ',
(figure 2), indicating that soil acidification is sensitive
to N input, even at low N addition level. The finding is
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Figure 5. Relationships of pH response ratios with changes in soil base cations (Ca**, Mg**, K", Na*) and non-base cations (AI’",
Mn*") at global scale.

partly supported by previous studies that pointed out
ecosystems usually undergo an accelerating leaching
of NO; from soils if N addition rate is larger than
2.5gm yr ' (Dise and Wright 1995, Rothwell
et al 2008). Furthermore, we found that soil
pH decreased linearly with N addition rate, indicating
that the acidification will continue to be sensitive to
further N deposition.

N fertilizer forms also impacted the responses of
soil acidification. We found NH,NO;-form fertilizer
posed a significant impact on acidification, while
NH,-form fertilizer was not observed (figure 2), sug-
gesting that NOj3 leaching plays a dominant role in

affecting acidification (Currie et al 1999, Gundersen
et al 2006). N addition experiments with duration of
less than twenty years had a significant effect on acid-
ification, while the experiments with duration of more
than twenty years were not observed to pose an impact
on acidification. It likely suggests that ecosystems may
be able to adapt to acidification induced by N addition
in long term. There are two potential reasons account-
ing for this result. First, plant species composition may
change to N-demanded species under high-N condi-
tions (Stevens et al 2004, Bai et al 2010), enhancing the
ecosystem capacity to sequester excess N. Second,
more N-induced deficiency of base cations may
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stimulate biotic retention and internally recycling of
base cations within ecosystems (Perakis e al 2013).

The impacts of soil conditions and environmental
factors

N addition effects on soil acidification varied with soil
conditions and environmental factors. We found that
the acidification was insensitive to N addition when
initial soil pH ranges from 3 to 4, but was sensitive
when above this pH range (figure $4). It indicates that
soils with different initial pH have different acid-
buffering capacity. It is generally expected that absorp-
tion ability of metal cations by soils is in the order of:
trivalent ions (Fe>*>Al’")> divalent ions (Mn**
>Ca®* >Mg*")> monovalent ions (K* > Na") (Bow-
man et al 2008). Low valence ions held in soils with
high initial pH are most vulnerable to be replaced.
Once these cations have been much depleted, it is high
valence cations that buffer against acidification. Based
on the principle of charge balance, soils of high initial
pH should be more sensitive to acidification than
those of low initial pH. This explained well for our
result that pH response magnitude increased linearly
with the increase of initial pH. Inconsistent with our
expectation, the pH response ratios tended to increase
with soil total N across the study sites. This is probably
due to that high N reduced initial soil
pH (unpublished data). As we showed above, the
lower the initial pH, the less response the pH has.
Consistent with our expectation, more C in soils was
helpful to suppress acidification, indicating its high
cation exchange capacity (Parfittetal 1995).

We also found that when ambient N deposition
was larger than 0.5 m ™ yr, soil pH was significantly
decreased even by low levels of N addition. As reported
by Penuelas et al (2013), most of land area receives
more than 0.5gm yr ' of N deposition, which
implies that current N deposition may reach a critical
loading to induce soil acidification in terrestrial eco-
systems. In accord with our expectation, more rainfall
obviously promoted soil acidification when rainfall
was above 1500 mm. However, when rainfall was
below 1500 mm, only small change was observed for
soil pH with precipitation. It suggests that there exists
a critical precipitation level of 1500 mm, above which
soil acidification is promoted. Consistent with pre-
vious studies (Williams et al 1996, Curtis et al 2005),
our result also revealed that low temperature pro-
moted soil acidification (figure S4). But, only when the
temperature was below 0°C, soil acidification was
obviously promoted. This is due to that low tempera-
ture decreases ecosystem N cycles, leading to a low
capacity to sequester N. And surplus N leaching pro-
motes depleting base cations. Overall, all these above
results highlight the interactive effects of environ-
mental factors and N addition on soil acidification.
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The mechanisms of N-induced soil acidification

Our results showed that N addition significantly
reduced the exchangeable base cations of Ca**, Mg**
and K" in soils, which is consistent with a previous
study synthesized the relationship between N addition
and base cations (Lucas et al 2011). Although this
previous study showed N addition above five years had
no effect on base cations, it did not have enough data
to support. Our study provides sufficient data to reveal
that N addition above twenty years did not signifi-
cantly affect soil pH. Based on the tight coupling of
metal cation loss and acidification (Berthrong
et al 2009), these two meta-analysis studies hold the
point that terrestrial ecosystems are likely to adjust to
N-induced acidification in long term. Moreover, soil
pH declined with deceasing base cations, suggesting
the crucial role of base cations in buffering against
acidification. Further analysis showed that there was
no significant difference among different cations in
their relationships with soil acidification, suggesting
that these base cations follow a same buffering rule
(linear function).

Additionally, we found that N addition sig-
nificantly increased free APPY in soils, and soil
pH decreased linearly with the increase of free AI**
(figures 4 and 5). This indicates that N addition has
shifted soils in terrestrial ecosystems into the A" buf-
fering stage. It was not observed that N addition
increased free Mn>* in global soils, but grassland soil
Mn** displayed a significant increase. With the
increase of free Mn>*, soil pH also reduced linearly,
suggesting that grassland soils are simultaneously at a
stage of Mn** buffering stage. Although the content of
Mn element in earth crust is not comparable to those
of the base cations mentioned above, its toxic impacts
on organisms should be paid special attention to (Guo
et al 2007, Poschenrieder et al 2008). All these call our
caution to care about the danger of the coming buffer-
ing range of toxic AI’" and Mn** with N deposition
(Kochian 1995, Poschenrieder et al 2008).

Conclusion

Our study revealed that global soils in terrestrial
ecosystems were sensitive to N input in acidification.
Grassland soils were more sensitive to acidification
than forest soils. Soil pH decreased linearly with the
increasing amount of N addition, and soils were more
likely to be acidified by NH,NO; and urea than by
NH,-form fertilizer. There were complex interactions
between N effects and environmental factors (soil
properties and climate), which increases the difficul-
ties to predict N deposition impacts on acidification.
Metal cations in soils were the main factors to buffer
against acidification. Global soils were currently at a
transition stage from base cation buffering (Ca*",
Mg**, K*) to non-base cation buffering (Mn**, AI’*).
It demands our attention to the limitation of base
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cations and the toxic effects of non-base cations for
terrestrial ecosystems, which does not give sufficient
emphasis previously. In a word, this study has
important implications to better understand and
predict the N addition impacts on soil acidification in
the global terrestrial ecosystems.
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