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Abstract
Recognizing humans’ unmatched robustness, adaptability, and learning abilities across
anthropomorphic movements compared to robots, we find inspiration in the simultaneous
development of both morphology and cognition observed in humans. We utilize optimal control
principles to train a muscle-actuated human model for both balance and squat jump tasks in
simulation. Morphological development is introduced through abrupt transitions from a
4 year-old to a 12 year-old morphology, ultimately shifting to an adult morphology. We create two
versions of the 4 year-old and 12 year-old models— one emulating human ontogenetic
development and another uniformly scaling segment lengths and related parameters. Our results
show that both morphological development strategies outperform the non-development path,
showcasing enhanced robustness to perturbations in the balance task and increased jump height in
the squat jump task. Our findings challenge existing research as they reveal that starting with initial
robot designs that do not inherently facilitate learning and incorporating abrupt changes in their
morphology can still lead to improved results, provided these morphological adaptations draw
inspiration from biological principles.

1. Introduction

During their lifespan, humans experience a remark-
able journey of continuous development, fostering
learning and acquiring various skills [1, 2]. From the
earliest stages of childhood, humans evolve both their
morphology and cognition. Morphology refers to the
physical structures and form of the body and cogni-
tion involves themental processes of acquiring know-
ledge and skills. Most motor skills are acquired by
humans during the formative phase of their bodies [3,
4], characterized by relatively larger heads and torsos
compared to their legs [5] along with limited muscle
strength [6–8]. This configuration leads to a higher
center of mass (COM) thus reducing mechanical sta-
bility. Progressing from childhood to early adulthood,
humans continue to fine-tune their skills and develop

their cognition while their bodies naturally evolve
towards mature muscles and a more evenly distrib-
uted configuration [5, 6].

The recognition of the importance of the co-
development of morphology and cognition in biolo-
gical systems has led to a shift in focus in the robotics
field. Despite the majority of this field still giving pre-
cedence to the cognitive development using unchan-
ging morphologies, there is now an emphasis on nat-
ural morphological development; studying changes
in the robot’s body shape, properties, and capabilities
throughout its lifetime and learning process [9]. This
is seen in altering physical property, for instance, the
size or mass of the body [10–13] and adjusting the
robot’s action possibilities during learning [14, 15]
in simulation and hardware. These adjustments are
applied to legged, virtual, and soft robots to learn a
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broad scope of anthropomorphic tasks ranging from
reaching and grasping to walking, as seen in biology.

These works have revealed that the effect of
morphological development on learning varies, with
potential benefits and drawbacks based on the chosen
development approach. Naya-Varela et al [16] aimed
to clarify potential implementation guidelines with
the NAO robot learning to walk, suggesting that mor-
phological development offers advantages when there
is a well-tuned synergy between morphology, con-
troller, task, and learning algorithm. This synergy is
especially relevant in complex problems where the
primary morphology facilitates initial-stage learning.
In contrast, Benureau and Tani [12] started learn-
ing with immature bodies, similar to those found
in young biological systems, characterized by smal-
ler size, weaker strength, and lighter weight and
achieved better results when compared to a non-
development approach, even though the initial mor-
phology did not facilitate learning [12].Disagreement
exists in this field, but there is a consensus against
abrupt developmental changes. Bongard [10] showed
decreased performance of quadrupeds and hexa-
pods in light-reaching tasks when introducing four
discrete morphological steps. These changes, for
example, involved transitioning from anguilliform
robots to legged robots, with a one-third leg length
and a 30◦ angle added in each developmental step.
Similarly, abrupt freeing and restricting of degrees of
freedom led to instabilities in learning the bipedal
mechanism of swinging the legs under external
perturbations [17]. Naya-Varela et al [11] varied
developmental strategies in speed and parameters
to suggest avoiding abrupt changes for improved
outcomes over non-developmental strategies. They
agreed that abrupt changes exceed the capacity of
the control algorithm, disrupting its synergy with the
morphology.

In this work, we draw inspiration from onto-
genetic development, specifically human growth, and
introduce a streamlined approach tailored for applic-
ation in robotics. For the first time, we investigate
ontogeneticmorphological development in simplistic
muscle-actuated human models that learn to bal-
ance and squat jump in simulation. We create
younger body configurations that emulate natural
human growth stages that do not necessarily find
the tasks easier to learn. In the context of mor-
phological development, we employ abrupt changes
from a 4 year-old to a 12 year-old and finally an
adult including adapting the segment length, seg-
ment mass, and muscle strength. To find the con-
trol policy for successful task performance, we employ
optimal control based on the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES). We com-
pare the performance of the tasks with morphologies
undergoing development to the performance of the
tasks solely performed with adult morphology. Our
simulations reveal that the muscle-actuated models,

experiencing morphological changes inspired by
human development, exhibit more robust balance
and higher jumps. These results propose promising
prospects for the design of highly adaptable robotic
systems.

2. Experimental setup

In the following, we outline the robot’s morpho-
logy, approaches to morphological development,
model scaling procedure, employed controller, and
the executed anthropomorphic motions.

2.1. Biomechanical model
We use SCONE simulator with the implemented
HyFyDy model H0914 [18, 19]. The model consists
of an upper body, pelvis, and two legs each con-
taining three segments: thigh, shank, and foot. The
upper body combines the head, neck, torso, and
upper extremities into one segment. Each leg is actu-
ated by seven muscles controlling the hip, knee, and
ankle joints. This configuration allows a total of nine
degrees of freedom, restricting the movement of the
model to the sagittal plane. Each foot is equipped
with two spherical contact points approximating the
toe and heel. The contact force is determined by
the Hunt–Crossley contact model [20], incorporat-
ing a friction cone characterized by coefficients rep-
resenting static, dynamic, and viscous friction [21].
Additionally, a symmetry constraint is introduced,
ensuring that corresponding muscles in both legs,
such as the right and left soleus, receive identical activ-
ation patterns. The model is simulated with a control
step size of 0.001 s.

2.2. Developmental strategies
The adult model is scaled down to create two dis-
tinct morphological development tracks to be com-
pared to the non-development track (NonDev): onto-
genetic (OntoDev) and uniform scaling development
(UniDev).
NonDev: The NonDev continuously uses the

adult morphology throughout optimization.
OntoDev: In the OntoDev, every segment of the

model undergoes proportional length scaling, like
in humans, along with the total model mass. The
mass distribution is modified in accordance with
the updated body configuration. Among young chil-
dren, the torso’s length and mass make up a signi-
ficantly larger fraction of the total body compared
to adults [5]. Simultaneously, the mass and length of
the pelvis, femur, tibia, and foot are relatively lower.
Therefore, the COM of the child model is notably
higher in relation to their overall body height com-
pared to adult models.
UniDev: Conversely, the UniDev involves resiz-

ing all segments of the model using a common aver-
age ratio. This ratio is derived as the mean ratio of
all segments. Although the total body weight is based
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Figure 1. Comparison of implementations of morphological development approaches (OntoDev and UniDev) with the NonDev.
(a) Morphological development starts with a 4 year-old’s morphology, transitioning quarter-way through the optimization to a
12 year-old’s morphology and ultimately to the adult morphology halfway through the optimization. (b) NonDev continuously
uses adult morphology throughout optimization.

on physiological data, the distribution of mass across
segments adheres to that of the adult model.

As a result, the primary differences between the
ontogenetically and the uniformly scaled models lie
in their segment lengths and mass distribution, while
both models maintain the same overall mass. The
developmental stages included in each path are pre-
defined. For ease of implementation, we choose the
developmentally significant ages of 4 year-old and
12 year-old based on Gallahue’s hourglass motor
development model [4].
4 year-old: At 4 years, humans undergo the fun-

damental movement phase. By this age, children have
essential ingredients for advanced movements, such
as walking [22]. Sutherland [22] hypothesized that
changes in walking that occur after the age of four
can be attributed to changes in limb length, which is
the primary focus of this work, rather than the devel-
opment of the central nervous system. Additionally,
very young children use natural supports, such as par-
ent’s hands or tables to execute balance and loco-
motion tasks which are not considered in this
study [23].
12 year-old: The age of 12 is selected to avoid

accounting for growth spurts which typically peak at
the age of 14 in boys [24]. Growth spurts involve an
increase in bone mass without a proportional growth
in muscle strength, which would complicate the scal-
ing process [25].

Learning a morphological development strategy
starts with the 4 year-old version of the model.
Quarter-way through the optimization an abrupt
morphological change occurs to continue learning
with the 12 year-old. We continue learning with the
adult morphology halfway through the learning pro-
cess. In theNonDev, only the adultmodel is used con-
sistently throughout the entire optimization process.
Figure 1 displays the development timetable and the
distinct models employed across the generations.

2.3. Biomechanical model scaling
To implement the child models for the OntoDev, we
take inspiration from nature where growth occurs
usually non-uniform and irregular. We start by scal-
ing down the body segments with the data set from
Snyder et al [26]. They provide information about
the total body mass and segment lengths for differ-
ent age categories. A comparison is made between
the segment length for adults and the length for the
targeted age groups. These ratios are used to resize
each segment along the three dimensions. This res-
ults in the 4 year-old ontogenetic development ver-
sion (Onto4y) having the most immature body. The
torso has the highest COM in relation to the entire
body height of 63.1% and a mass of 67.3% relat-
ive to the overall mass. Conversely, in the UniDev,
all segments are uniformly scaled down by the same
mean ratio, maintaining the mass distribution as in
the original adult model. Therefore, the uniformly
scaled 4 year-old (Uni4y), uniformly scaled 12 year-
old (Uni12y), and adult models have a torso mass
ratio of 45.9% and a COM height ratio of 58.1%.
These values are quite similar to those of the onto-
genetic 12 year-old model (Onto12y): 58.5% COM
height and 47.9% torso mass.

The muscle length and length properties were
scaled automatically with the segment sizes. Other
muscle parameters are adjusted to maintain O’Brien’s
observation [27], ensuring that the shape of the
moment-angle relationship is preserved in adult and
scaled models during maximum voluntary contrac-
tions, or in our case, maximum muscle activa-
tion. To achieve this, we scaled the maximal muscle
force following the approach suggested by Correa
and Pandy [28]. Their work, focused on developing
a method for scaling lower-limb peak isometric
muscle forces in 7–13 year-old children, introducing
a mass-length scaling law based on the assumption
that muscle volume and body mass are linearly
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related [28]. For further refinement of muscle force,
stiffness, and length, we altered the pennation angle.
To accomplish this, we referred to the findings of
Bizoni et al [29], which demonstrated a mono-
tonically increasing pennation angle in the gast-
rocnemius medialis from birth, ultimately stabilizing
after growth spurts. As a result, the muscle length
ratio provides a simple and direct method for scaling
the pennation angle of the muscle.

Lastly, the stiffness of both the ground contact
points and joints, including joint limits, are scaled
by the factor of segment length divided by the seg-
ment mass. This concept is derived from the work
of Geyer et al [30] who introduced the dimension-
less spring stiffness. The selected scaling factor aims
to achieve dynamic locomotion invariant during the
size changes, ensuring the normalized stiffness of the
system remains constant. Consequently, the absolute
stiffness stays unchanged.

2.4. Optimal control
While the morphological development stages
were predefined, the control evolves automatically
throughout the optimization process. The control
problem with horizon N is defined as

min
πk

J=min
πk

N∑
k=0

l(x(k) ,u(k) ,k) (1)

with

x(k+ 1) = f(x(k) ,u(k) ,k) (2)

and

u(k) = πk (x(0) , . . .,x(k)) . (3)

We choose the CMA-ES to optimize the suit-
able control policy for each task and develop-
mental strategy [31]. CMA-ES is a population-based,
stochastic, and derivative-free optimization method
commonly employed for black-box optimization
problems. It utilizes various learning mechanisms
to adapt the parameters of a multivariate normal
distribution during the optimization process. The
hyperparameter of the CMA-ES algorithm σ is set
to the default value of 0.2 and the population size is
fixed to 13, for both tasks across all developmental
approaches, ensuring a fair comparison.

The chosen number of generations is determined
by averaging the generation count needed for 10 adult
morphologies’ cost to converge with aminimumpro-
gress threshold of 1×10−4 during task performance.
The NonDev optimization occurs continuously with
the adult model. In the morphological development
strategies, once a stage is completed, the humanmod-
els are evaluated and the performance data from the
best runs are saved to serve as the starting point for
the next CMA-ES run. We repeat each task with 20
random seeds.

2.5. Anthropomorphic tasks
We focus on two key anthropomorphic movements
pivotal in robotic applications, encompassing a broad
spectrum from low-power to high-power actions.
The same task formulation is applied across all three
developmental strategies.
Balance task: For the balance task, we employ two

preimplemented controllers, a proprioceptive muscle
reflex and a vestibular reflex which are crucial for
postural control in humans [32–35]. Throughout the
optimization process, we expose the models to minor
perturbations equivalent to 10% of their body weight
to increase their overall robustness. These perturb-
ations alternate directions along the x-axis pushing
the model within the sagittal plane. Beginning with
a forward acting force at the COM of the torso at
5 s, followed by a backward push at 9 s, this per-
turbation sequence recurs every 4 s until the run
concludes. The cost function punishes falling, pen-
alizes deviation of the torso, tibia, and fibula COM
from the initial position, and minimizes energy con-
sumption. Simulations end prematurely if the model
falls. A successful run requires the model to main-
tain an upright position for 30 s as in the experi-
ments of Yamamoto et al [36]. Appendix A provides a
comprehensive overview of the control implementa-
tion, all parameters for both controllers, and the cost
function.
Squat jump task: For the jumping task, the CMA-

ES directly tunes the triphasic stimulation pattern
for each muscle and the variable time between con-
trol points. The triphasic activation pattern denotes
three distinct muscle activations occurring sequen-
tially within each muscle during each run. The dur-
ation and intensity of each activation are adjusted by
the CMA-ES based on the desired movement. The
triphasic pattern is applicable as we have three joints
with correspondingmuscles that require activation in
a proximal to distal sequence, as observed in human
squat jump execution [37–39]. The model starts in
a squatted position as introduced by Domire and
Challis to be the preferred human squat position for
high jumps [40] and terminates at the highest COM
height. The cost combines themaximumheight of the
COM of the model and the maximum vertical pel-
vis velocity, both unnormalized to the model’s mor-
phology. Furthermore, it imposes a constraint on the
extension of the upper body to 0◦. A run is taken into
consideration when the final model initiates lift-off
from the toes rather than the heels. Appendix B out-
lines the specifics of the feedforward controller and
the cost function.

3. Results

We present the results obtained for the balance and
squat jump tasks, with a focus on their cost function,
kinematics, and kinetics.
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Figure 2. Cost comparison across the three developmental strategies for both anthropomorphic tasks. Morphological
development strategies include abrupt transitions from a 4 year-old to a 12 year-old morphology quarter-way through
optimization, ultimately shifting to an adult morphology halfway through. Vertical black lines indicate the transition times.
(a) Balance task assessing stability over a duration of 30 s. (b) Squat jump task evaluating performance height and velocity.

3.1. Balance task
The cost function of the balance task in figure 2(a)
demonstrates a strong initial decline in the mean
of the 20 random seeds for all three strategies.
Around one-quarter of generations, the adult mor-
phology starts achieving values around 0, signifying
that all seeds can successfully stand. The morpholo-
gical developmental paths exhibit a notable peak at
this point, with the UniDev attaining a cost value of
61.39 and the OntoDev reaching 130.07. Following
this peak, there is another decline in cost. Notably, the
OntoDev shows the highest peak during this trans-
ition, but all seeds learn to stand successfully with its
Onto12y more rapidly than the Uni12y. In contrast,
there are no visible peaks during the transition to the
adult morphology. Towards the end of the optimiza-
tion process, all strategies converge to approximately
the same cost value: NonDev 0.36, OntoDev 0.37, and
UniDev 0.38.

Furthermore, we evaluate the muscle activation
associated with the learned stance after full optimiza-
tion. In figure 3, it is evident that the median muscle
activation is 0.14 for all strategies. For all non-outlier
data points, the range starts at 0.01 and extends to
0.39 for the NonDev, 0.42 for the OntoDev, and 0.45
for the UniDev. The highest outlier is observed in the
UniDev at 0.54. The NonDev exhibits some outliers
with the highest at 0.43.

These muscle activations contribute to the
overall maximal torque exerted around the joints
(table 1). Notably, the ankle joint shows the
highest torques in comparison to the hip and knee
joints for all strategies. Comparing the distinct
developmental strategies in the time of perturba-
tions, the OntoDev displays the highest maximal
torques in all joints: hip 2.37 ± 0.44 Nm, knee
5.55 ± 0.81 Nm, and ankle 16.58 ± 1.11 Nm. In

contrast, the UniDev demonstrates the lowest max-
imal hip and ankle torques at 1.92 ± 0.30 Nm and
15.76 ± 1.04 Nm, respectively. The NonDev features
the same maximal hip torques as the OntoDev at
2.37± 0.37 Nm and the lowest maximal knee torque
of 5.25± 0.74 Nm.

After full optimization, we subjected the mod-
els to higher perturbations to assess their robustness.
The forces were applied at the torso’s COM, start-
ing at 5 s and recurring every 4 s in alternating dir-
ections along the sagittal plane as during optimiza-
tion. However, in this assessment, we incrementally
increased the forces by 5 N each time to determ-
ine the maximum forces the models could withstand
before falling down. The perturbation forces endured
are displayed in figure 3(b). The median force with-
stood by the NonDev is approximately 20.0 N, while
the OntoDev has a median force of about 37.5 N.
In contrast, the UniDev displays the highest median
force, approximately 52.5 N. In terms of interquart-
ile range, the UniDev illustrates the widest range,
spanning from 25.0 N to 67.5 N. Conversely, the
OntoDev demonstrates the narrowest range, varying
from 25.0 N to 47.5 N. The NonDev values are in-
between. Regarding the maximum force withstood,
the NonDev has the lowest maximum at 65.0 N,
whereas the UniDev strategy displays the highest
maximum, reaching 75.0 N.

3.2. Squat jump task
The second task we investigate is the high-power
squat jump. In this task, the initial mean values of
the cost function show consistent patterns among the
morphological development strategies (figure 2(b)).
The OntoDev starts with the 4 year-old at −74.63,
while the UniDev begins at −66.89. In contrast,
the NonDev commences at −114.52. The NonDev

5



Bioinspir. Biomim. 19 (2024) 036012 N Badie and S Schmitt

Figure 3. Balance task results for the three developmental strategies. (a) Total muscle activation at full optimization.
(b) Post-optimization perturbation forces endured by the models before falling.

Table 1.Maximum joint torques for the three developmental
strategies in the balance task during perturbation forces of 10%
body weight (mean± std).

NonDev OntoDev UniDev

Hip torque
(Nm)

2.37± 0.37 2.37± 0.44 1.92± 0.30

Knee torque
(Nm)

5.25± 0.74 5.55± 0.81 5.48± 0.81

Ankle torque
(Nm)

15.98± 0.96 16.58± 1.11 15.76± 1.04

exhibits the sharpest decrease, during that time the
other paths exhibit less steep declines. During the
transitions, the morphological development paths
initially decrease sharply and then begin to converge.
These sharp decreases at transition and the dispar-
ities in initial cost values can be attributed to the
differences in height between the adult, the distinct
4 year-old models, and the various 12 year-old mod-
els, as the reward function factors in the maximal
absolute COM height, which strongly varies for each
of these models. After 500 generations, the OntoDev
has the lowest mean cost of −166.86. The UniDev is
at−165.37, and the NonDev ends at−160.35.

The cost function is primarily influenced by the
COM height. In figure 4(a), we exhibit the COM
jump height which represents the difference between
the COM height during standing and the maximum
attained COM height. Notably, the OntoDev exhib-
its the highest median jump height of 0.16 m, fol-
lowed closely by the UniDev 0.15 m. In contrast,
the NonDev records the lowest median jump height
of 0.13 m. The interquartile range for the NonDev
spans from 0.11 m to 0.14 m, falling below the
median heights of the other strategies. In contrast,
the OntoDev and UniDev have interquartile ranges
of 0.15 m to 0.17 m and 0.14 m to 0.16 m, respect-
ively. The upper adjacent values are set at 0.15 m for

the NonDev, 0.18 m for the OntoDev, and 0.17 m for
the UniDev. Notably, the UniDev exhibits an outlier
at 0.10 m.

Furthermore, joint angles are illustrated in
figure 5. This figure comprises three subplots, each
presenting a specific joint for all strategies. It is
important to clarify that a decrease in the angles cor-
responds to an extension in the hip and ankle joints,
in contrast to the knee angle, which indicates a flex-
ion. Initially, the hip angle starts with a decrease to
a minor minimum in all strategies. In the NonDev,
it is followed by a minor increase getting back to the
initial angle of 75.0◦ before the joint extends, whereas
the morphological development strategies exhibit a
more pronounced maximum before the decrease,
with OntoDev reaching 85.6◦ and UniDev reach-
ing 82.1◦. This pattern of a minor increase in the
NonDev and a stronger increase in the morpholo-
gical development strategies is also evident in ankle
angles. Conversely, knee angles show a direct increase
in the NonDev, while in the morphological devel-
opment strategies, there is an initial decrease fol-
lowed by extension, with OntoDev flexing to −82.0◦

and UniDev reaching −77.8◦, initially starting from
−75.0◦.

These joint angles are generated through muscle
activation. All muscle activation values are summed
up in figure 4(b) displaying a similar range of values
for all strategies. The median of the NonDev is the
highest at 0.62, followed by the UniDev at 0.42 and
lastly the OntoDev at 0.38.

In table 2, we present the maximum joint torques
resulting from the muscle activation for the hip,
knee, and ankle joints. All joint torques have their
maxima in the NonDev and their minima in the
UniDev approach. In the NonDev, the maxima are
98.42 ± 34.48 Nm for the hip, 91.02 ± 28.12 Nm
for the knee, and 62.90 ± 22.94 Nm for the ankle.
In the UniDev, the maxima are 70.60 ± 22.64 Nm
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Figure 4. Jump task performance across the three developmental strategies. (a) Jump height, defined as the difference between the
standing COM and maximal COM height. (b) Total muscle activation during the jump.

Figure 5. Hip, knee, and ankle angles for the three developmental strategies in the squat jump task. Each subfigure displays the
respective joint angles for the three strategies: (a) hip, (b) knee, and (c) ankle.

Table 2.Maximum joint torques for the three developmental
strategies in the squat jump task (mean± std).

NonDev OntoDev UniDev

Hip torque
(Nm)

98.42± 34.48 84.14± 29.67 70.60± 22.64

Knee torque
(Nm)

91.02± 28.12 90.28± 19.98 72.52± 12.58

Ankle torque
(Nm)

62.90± 22.94 59.94± 22.20 48.84± 17.76

for the hip, 72.52 ± 12.58 Nm for the knee, and
48.84± 17.76Nm for the ankle. Themaximal torques
of the OntoDev fall between those of the two other
strategies.

To understand the final torques, we analyze the
joint torques at the transition between different mor-
phologies and at the end of the NonDev. Making
the torques comparable we normalize these by the
total body mass and height for each model, respect-
ively. The maximal normalized torques are presen-
ted in table 3. Notably, the Onto4y exhibits the
highest maximal hip torques at 0.92 ± 0.29 Nm

kg·m .
The subsequent highest torque is seen in the adult

at 0.79 ± 0.28 Nm
kg·m . The Onto4y also demonstrates

the highest maximal knee and ankle torques, albeit
closer to the other values. Specifically, at the knee,
the Onto4y records 0.72 ± 0.24 Nm

kg·m , followed by

the Onto12y at 0.71 ± 0.17 Nm
kg·m . At the ankle, the

Onto4y and the Onto12y report a maximal torque
of 0.54 ± 0.16 Nm

kg·m . Interestingly, the Uni4y ranks
third in maximal torques for the hip and knee, and
fourth for the ankle. In contrast, the Uni12y dis-
plays the lowest maximal normalized torques in all
joints.

Furthermore, we consider the joint power at the
end of the optimization. These are illustrated in
figure 6 with three subplots each depicting hip, knee,
and ankle joint power for one strategy. The general
trend observed in all cases is an increase in power to
reach a maximum, followed by a decrease. However,
there are notable differences in the hip, knee, and
ankle power patterns between the different strategies.
In the NonDev, the hip and ankle exhibit the highest
maxima, with values of 397.38 W at time 30 ms
and 254.56 W at 34 ms, respectively. In contrast,
the knee power in this approach is relatively lower,
with a maximum of 116.18 W at 3 ms. Conversely,
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Table 3.Maximum normalized joint torques to total body mass and total body height for each model in the squat jump task. The results
for the Onto4y and Uni4y are obtained from generation 125, the Onto12y and Uni12y are from generation 250, and the adult results are
from NonDev at generation 500.

Onto4y Onto12y Uni4y Uni12y Adult

Hip torque ( Nm
kg·m ) 0.92± 0.29 0.71± 0.24 0.75± 0.23 0.47± 0.16 0.79± 0.28

Knee torque ( Nm
kg·m ) 0.72± 0.24 0.71± 0.17 0.66± 0.23 0.54± 0.11 0.67± 0.24

Ankle torque ( Nm
kg·m ) 0.54± 0.16 0.54± 0.19 0.48± 0.16 0.40± 0.14 0.50± 0.19

Figure 6. Hip, knee, and ankle power for the three developmental strategies in the squat jump task. Each subfigure displays the
respective powers for one strategy: (a) NonDev, (b) OntoDev, and (c) UniDev.

in the OntoDev, the knee power reaches the highest
maximum among all strategies of 149.48 W at 49 ms.
Additional peaks are observed at 45 ms for the hip
and 51 ms for the ankle in the OntoDev. The UniDev
strategy strikes amiddle ground between theNonDev
and the OntoDev regarding maximum power. It is
noteworthy that UniDev’s power peaks materialize
at different time points, specifically at 47 ms for the
hip, 45 ms for the knee, and 49 ms for the ankle.
Additionally, the hip and knee power patterns in the
OntoDev, as well as the knee power in the UniDev,
display an initial decrease and clear negative power
before following the overall trend of increasing to a
maximum.

4. Discussion

Ourwork draws inspiration fromhuman ontogenetic
development to enhance stability in an upright stance
and height of a squat jump.With a practical perspect-
ive for robotics, our biomimetic solution emphas-
izes streamlined implementation, leveraging only a
limited number of growth steps while still achieving
improved outcomes.

4.1. Impact of morphological development on
balance task
After the full optimization, we observe similar cost
values in the balance task which is due to the
algorithm gradually reducing muscle activation after
learning proper standing. However, our implemented
approach gives themorphological development paths
less time to adjust to the task with the adult mor-
phology after the last transition. In contrast, in the

NonDev the adult utilizes all generations to refine the
performance. Despite this disadvantage for the mor-
phological developmental paths, they still show com-
parable cost function outcomes.

Although the cost function of the balance task
yields similar results for the different strategies,
there is a clear increase in robustness to perturb-
ations after optimization with the morphological
development paths. As the median muscle activ-
ation is the same for all strategies (figure 3(a)),
we hypothesize that the enhanced robustness stems
not from increased muscle co-activation but rather
from growth. To explain the improved robustness,
we investigate the maximum torques during per-
turbations of 10% body weight. Given the nature
of the balance task to minimize effort, the dispar-
ities between strategies in terms of torques are not
distinctly pronounced. Consequently, we withhold a
detailed analysis of individual torques at the trans-
itions in the morphological development strategies,
reserving this evaluation for the high-power squat
jump task. Overall, the OntoDev strategy showcases
increased robustness through higher maximal joint
torques during perturbations compared to the other
strategies. This could be influenced by the initial
immature body configuration of the Onto4y dur-
ing optimization. In contrast, the UniDev strategy
exhibits maximal knee torques, minimizing hip and
ankle torques, therefore fostering adaptability to high
perturbations while ensuring stability through the
knee. The torque distribution in the UniDev is
influenced by the Uni4y’s even mass distribution
and body configuration which overall requires smal-
ler torques. Conversely, the NonDev strategy relies
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heavily on hip forces, displaying the lowest knee and
middle ankle maximum torques. Relying only on
the hip to stabilize during perturbations might be
adequate for low forces, but when high perturba-
tion forces occur post-optimization, the NonDev falls
more easily compared to the other developmental
strategies.

4.2. Impact of morphological development on
squat jump task
Unlike the balance task, the algorithm in the high-
power squat jump task is not explicitly guided by
the cost function to utilize the optimization time
for further reducing muscle activation. Following full
optimization, a distinct improvement is evident in
the cost function for the morphological develop-
ment strategies compared to the NonDev. Moreover,
we observe a decreasing trend in the morphological
developmental paths after 500 generations, suggest-
ing that a longer optimization process could lead to
even better results, while the NonDev has already
reached saturation.

Additionally, we demonstrate higher jump
heights in the morphological development paths
compared to the NonDev. However, merely consid-
ering the values of maximal torque, as in the bal-
ance task, is insufficient to explain this difference.
Although the NonDev exhibits the highest torques
in all joints, it paradoxically achieves the lowest jump
heights (table 2 and figure 4(a)). Contrary theUniDev
representing the lowest maximal torques, manages
higher jump heights than the NonDev. Two other
aspects influenced by body growth contribute to
superior jumps.

Firstly, examining the sequence of maximal joint
power (figure 6), we use Bobbert’s and van Ingen
Schenau’s insights [37] into human squat jumps.
They explain that hip, knee, and ankle joint powers
typically peak sequentially from proximal to distal,
optimizing work efficiency by mitigating the neg-
ative impact of proximal segments on COM accel-
eration [39]. Interestingly, this sequential pattern
aligns with the OntoDev results, underlining how the
Onto4y prioritizes propelling its heavy torso initially
to achieve an optimal take-off position. Notably, the
Onto4y displays the highest maximum hip torques
normalized to bodymass and height among themod-
els (table 3). These results suggest that uneven body
growth may play a role in shaping the power genera-
tion sequence, perhaps even in humans. The UniDev
further contributes to this point, withmaximumknee
power slightly preceding maximum hip power, likely
influenced by the Uni4y’s evenly distributedmass and
segment length, putting even emphasis on the hip and
knee power for the jump. In contrast, the NonDev
achieves maximum knee power within the first milli-
seconds of the run, with the hip and ankle maximum

power following much later, negatively impacting the
resulting jump height.

Secondly, we observe that the overall median
muscle activation is lower in the morphological
development paths compared to the NonDev. This
reduction could be attributed to the OntoDev
and UniDev additionally learning a small counter-
movement before lifting-off, as depicted in joint
angles and joint power (figures 5 and 6), effectively
reducing effort while enhancing jump height, a beha-
vior not observed in the NonDev.

4.3. Global implications of morphological
development
In summary, the improvements attributed to incor-
porating bioinspired growth can be outlined as fol-
lows: In the balance task, the NonDev strategy con-
centrates on developing a robust approach tailored
to the immediate task, at the same time the mor-
phological development paths automatically evolve
strategies that generalize for higher perturbation
forces. In the context of jump performance, the
NonDev primarily focuses on enhancing the torque
magnitudes, whereas morphological development
paths explore improved coordination of the torques,
resulting in lower effort and improved performance.
These conclusions align with the findings of Naya-
Varela et al’s study [41], suggesting that morpho-
logical development guides the exploration process
towards advantageous solutions compared to merely
adding noise without considering growth.

We demonstrated that both morphological devel-
opment strategies are beneficial compared to the
NonDev, even though their initial morphologies do
not necessarily have an easier time learning, due
to weaker muscles and immature body constella-
tion. This emphasizes the insights from Benureau
and Tani’s research [12], challenging the guidelines
proposed by Naya-Varela et al [16]. They show that
you do not necessarily need to use initial morpho-
logies that simplify early-stage optimizations when
using simple muscle implementations, such as actu-
ated springs, in their 2D muscle-driven tentacle
robot [12]. Our results with a more complicated
muscle implementation and human models support
their findings.

Furthermore, this work marks the first instance
demonstrating that abrupt model changes can still
yield better performance compared to the NonDev,
which is contrary to current state-of-the-art [10, 11,
17]. These studies have in common the use of torque
actuation while our work relies on muscle actuation.
Generally in the robotics field, muscles enhance effi-
ciency, increase robustness to force perturbations not
present during learning, and reduce the demand on
information processing capacity, facilitating learn-
ing when compared to torque-actuated models [42–
47]. Thus, muscle actuation appears more capable of
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handling significant disturbances than torque actu-
ation, which in our case is the abrupt changes in
morphology introduced. This can be attributed to
the fact that humans naturally experience growth and
muscles adapt accordingly, possessing these inherent
attributes. Therefore, our model is inherently capable
of handling these abrupt changes in comparison to
the literature where torque actuation fails.

4.4. Comparison of task performance with human
performance
Given our use of muscle-driven models, it would
be prudent to compare our simulation perform-
ance with those documented in the literature for
human subjects. The experiments from Domire and
Challis [40] on squat jumps where the participants
prefer to start in approximately the same position as
this work attain a mean height of 0.27 ± 0.06 m.
Other studies [48–51] report mean jump height to
be between 0.20 m and 0.52 m, depending on factors
including age, athleticism, and starting position. Our
results, including the maximal height of 0.18 m, fall
below this reported range. Several aspects contribute
to this difference. Firstly, ourmodel lacks arms, which
are significant contributors to propelling the body
upwards during human jumps [52, 53]. Secondly, our
model’s foot contact points to the ground are limited
to two, which does not allow for the natural toe-off
movement that humans utilize in jumping. Thirdly,
the adult HyFyDymodel H0914 used in our study has
lower maximal muscle forces compared to other sim-
ulationmodels. For example Domire and Challis [40]
use a maximal soleus force of 13 500 N in their simu-
lation meantime the HyFyDy model is at 3549 N.

For the balance task, we refrain from conduct-
ing an extensive comparison of the results to the
literature similar to the comparison for the squat
jump task, due to the inclusion of perturbations in
our optimization process, which, to the best of our
knowledge, do not align with existing experiments in
the literature. Nevertheless, we acknowledge that the
robustness achieved in the balance task falls below
human levels. This is partly due to the symmetry
constraint imposed on the controller, preventing lat-
eral or backward steps to counter external forces as
humans would react. Additionally, our simulation for
the balance task relies solely on reflex controllers neg-
lecting feedforward control, which is a simplification
that does not encompass the full spectrum of mech-
anisms contributing to stability in humans [54, 55].

4.5. Limitations
The models utilized have several limitations due to
their simple structure, capturing only a restricted
set of muscles, segments, and degrees of freedom.
As direct measurement of maximum muscle force is
not feasible, accurate modeling and scaling remain
a challenge. While we acknowledge the importance

of considering additional parameters, such as tendon
stiffness and the ratio of fiber to tendon length for
eachmuscle, our study predominantly centers around
O’Brien’s observation [27] regarding a consistent
angle-moment shape across different age groups. The
present scaling of muscle parameters, encompassing
pennation angle, optimal length, tendon slack length,
and maximal muscle force, could be further refined,
but the absence of established guidelines and inad-
equate data poses a challenge.

Additionally, this study does not represent a
subject-specific development, only usingmedian data
models for three age groups. Despite humans learn-
ing thesemovements in earlier years, we selected these
ages for the sake of modeling simplicity and cover-
age of significant age ranges. Capturing the full com-
plexity of humans and their variations, encompassing
individuality and all age groups would be impossible.
However, with more intricate models and a broader
age range, future research can delve into continuous
growth, allowing a nuanced analysis of human devel-
opment. Despite these limitations, our research rep-
resents a potential stepping stone for future investiga-
tions, especially when compared with previous stud-
ies that employed significant simplifications yet suc-
cessfully simulated human behavior—such as model-
ing human stances resembling natural behavior with
a double-inverted pendulum model [56].

To teach the models the anthropomorphic tasks,
we employ the CMA-ES. It follows an approach, sim-
ilar to the progression seen in evolution over gen-
erations. This process differs from how individual
humans learn, which iteratively occurs within a single
lifetime. Human learning involves a complex inter-
play between low-level and high-level control mech-
anisms, which is still not fully understood by humans.
While CMA-ES has proven effective in learning vari-
ous anthropomorphic tasks in previous studies [42,
57–59], there are various approaches that even more
closely emulate the high-level path of human learn-
ing. Although exploring human-like learning is an
interesting topic, it deviates from the primary focus
of this work. Instead, our emphasis was on morpho-
logy. Delving into controller design that more closely
emulates human learning could be a separate research
endeavor, given its complexity.

5. Conclusion

Ourwork illustrates how the implementation ofmor-
phological development, inspired by human growth
patterns and a streamlined robotics approach, in
muscle-actuated human models enhances their per-
formance in simulation. Specifically, this is evid-
ent in the higher robustness to balance perturba-
tions and the improved performance of squat jumps.
Our findings challenge existing literature [10, 11,
17], as we have shown that even abrupt changes in
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morphological development can lead to improved
results. Furthermore, we have highlighted that ini-
tial developmental stages need not necessarily ease
the learning processes as previously suggested [16].
In contrast to the literature’s focus on achieving the
ideal synergy between the development and control
algorithm by varying factors such as size, weight, or
other parameters throughout morphological devel-
opment, our study suggests that a bioinspired scaling
approach could inherently lead to improvements.

Besides selecting the appropriate developmental
approach, designing a robot for each stage is a
technical difficulty of morphological development.
Benureau and Tani [60] aim to streamline the pro-
cess by involving minor variations in size, mass, and
muscle strength around the adult morphology. To
implement these modifications, they suggest chan-
ging the gravity in simulation or modifying the max-
imal torque, along with using specialized actuators
in the hardware. While this accounts for the changes
in mass and strength, it does not eliminate the chal-
lenge of continuous length development. Differently,
our work only predefines three morphologies with
abrupt transitions. Although our approach con-
trasts the observed patterns in the natural world
regarding species development including diverse
morphologies, introducing constraints facilitates the
implementation and prepares for an easier trans-
fer to hardware. Additionally, since our cost func-
tion does not exhibit major peaks during the trans-
ition between the 12-year-old and adult morpholo-
gies in the balance task, we could envision a scen-
ario where one creates the younger models in simu-
lation, transferring the optimized strategy from the
12-year-old simulation to the adult morphology in
hardware.

Although our findings are demonstrated with
only one set of hyperparameters, we would expect
similar results when varying the σ and control step
size, as recently demonstrated that muscle actuation
has a high robustness to hyperparameter variations
in comparison to torque actuation [42]. It would
be intriguing to investigate whether the findings of
Benureau and Tani [12], who deeply investigated the
impact of population size and development dura-
tion in their work, showing saturation of the effect
of development in performance beyond specific val-
ues, hold for human tasks that involve intricate
muscles.

Our findings have been consistently observed
across a diverse range of tasks, spanning from
a low-power balance task to a high-power jump
task. However, these tasks, despite demonstrating
improved performance, remain relatively simple
to learn. According to current morphological
development research [16], undertaking more
demanding anthropomorphic tasks should yield
more pronounced outcomes, providing insight into
the effect of the methods used.
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Appendix A. Balance task formulation

The balance task employs two control mechanisms: a
proprioceptive muscle reflex and a vestibular reflex.
The proprioceptive reflex is defined individually for
each muscle as

uprop = KL [(L− L0)]+ (4)

taking the length difference between the actual L and
a predefined feedback offset L0 into consideration and
incorporating the length feedback gain KL. Similarly,
the vestibular reflex is constructed, encompassing a
positional element denoted by the index ‘P’ and a
velocity element denoted by the index ‘V’. All respect-
ive parameters are detailed in table 4. Additional
subscripts include ‘prop’ representing propriocept-
ive, ‘vest’ signifying vestibular, ‘hip’ denoting all
hip muscles, ‘knee’ indicating all knee muscles, and
‘ankle’ expressing all ankle muscles.

The cost function is shaped as

ε= 6(max{0,∆torso}+max{0,∆femur}
+max{0,∆tibia})+ 0.5peffort + 100pfall (5)

with ∆ the deviation of the initial upright position
along the x- and y-axis for each of the segments,
peffort a penalty for muscle activation above 0.20 in
anymuscle, and pfall a penalty for falling below a yCOM
of 0.30 m. We introduce the COM deviation term for
each segment to enhance the overall model robust-
ness. Excluding these terms results in lower forces
withstood by all strategies and less consistent upright
standing in the different seeds. In this work, we did
not explore more generalized functions to prevent
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Table 4. Summary of parameters for proprioceptive and vestibular
reflexes, including reflex gains, offsets and delays. Depending on
the parameter we display either the value or the std.

Name Value

KL,prop ±1.000
L0,prop (m) 0.500
Dhip,prop (s) 0.010
Dknee,prop (s) 0.020
Dankle,prop (s) 0.035
KP,vest ±0.300
KV,vest ±0.100
Dvest 0.100

falls, as our focus was on observing models in an
upright position with symmetric activation similar to
how humans stand.

Appendix B. Squat jump task formulation

The squat jump task relies on a feedforward control
manner. The initial control points for all muscles are
set at 0.35 ± 0.01 and are constrained to be within
the range of 0.00 and 1.00. The time interval between
different control points is initially set at 0.200± 0.001
and can vary within the range of 0.001 and 1.000.

The objective for the squat jump task is given as

ε= 100yCOM + 10max
{
0, ẏpelvis

}
+ ppelvis (6)

where yCOM denotes the height of the COM, ẏpelvis
the pelvis vertical linear velocity and ppelvis a penalty
for pelvis orientation extended beyond 0◦. Notably,
all terms in the cost function maintain their ori-
ginal values for each model, without normalization,
neglecting the influence of variations in model mor-
phologies. The equation, inspired by Pandy et al’s
cost function [61], is adapted to promote counter-
movement before lift-off, initiating the reward for
yCOM and ẏpelvis from 0.35 s until the conclusion of
a run, rather than solely considering the time of take-
off. Additionally, to prevent the model from adopt-
ing an arched back position to minimize the cost, we
introduce the pelvis extension penalty.
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