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Abstract
While fish use continuous and flexible bodies to propel themselves, fish robots are often made from
interconnected segments. How many segments do robots need to represent fish movements
accurately? We propose a new method to automatically determine parsimonious robot models
from actual fish data. We first identify key bending points (i.e., joint positions) along the body and
then study the concerted movement of the segments so that the difference between actual fish and
modelled bending kinematics is minimized. To demonstrate the utility of our method, we analyse
the steady swimming kinematics of 10 morphologically distinct fish species. Broadly classified as
sub-carangiform (e.g., rainbow trout) and carangiform (e.g., crevalle jack) swimmers, these species
exhibit variations in the way they undulate when traditional parameters (including head and tail
beat amplitudes, body wavelength and maximum curvature along the body) are considered. We
show that five segments are sufficient to describe the kinematics with at least 99% accuracy. For
optimal performance, segments should progressively get shorter towards the tail. We also show that
locations where bending moments are applied vary among species, possibly because of differences
in morphology. More specifically, we find that wider fish have shorter head segments. We discover
that once bending points are factored in, the kinematics differences observed in these species
collapse into a single undulatory pattern. The amplitude and timing of how body segments move
entirely depend on their respective joint positions along the body. Head and body segments are also
coupled in a timely manner, which depends on the position of the most anterior joint. Our findings
provide a mechanistic understanding of how morphology relates to kinematics and highlight the
importance of head control, which is often overlooked in current robot designs.

1. Introduction

In contrast to man-made propellers, most fish pro-
duce thrust by undulating their axial bodies (Bain-
bridge 1963). In recent years, there has been a sig-
nificant push to build robots that can swim like fish.
However, this is a challenging task. While fish are flex-
ible and have high degrees of freedom at the same time
(Wardle et al 1995, Jayne and Lauder 1995, Altring-
ham and Ellerby 1999), fish robots are often made
from multiple segments with rigid (to accommodate
batteries, electronics, sensors, motors and cables) and
compliant parts (to replicate the bending movements
of the posterior body and caudal fin). When speed,
efficiency and manoeuverability are considered, fish

robots are not as good as their biological counter-
parts and have low technology readiness levels as com-
pared to traditional propeller-driven autonomous or
remotely operated underwater vehicles (Eriksen et al
2001, Ribas et al 2011).

Given technological limitations, body design is
a research area that can benefit from a formalized
approach while drawing inspiration from biology.
This is of particular significance to address questions
like: how do we partition the body and where do we
place actuation points so that the movements of a
robot resemble those of the fish that it is designed
after? What is the most parsimonious robot design
(design with the smallest number of segments) that
can describe the movements of the fish accurately?
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Does one design fit all or how should it vary while
modelling different behaviours or fish species?

Actual fish movements are seldomly reported in
the literature, and traditional kinematics measure-
ments used by biologists to describe these movements
(e.g., head and tail amplitudes, tail beat frequency,
body wavelength and maximum curvature) do not
lend themselves well to provide pragmatic mechanical
engineering guidelines. To mitigate this problem up
to a certain extent, many research groups use artificial
body midlines generated by a travelling wave equation
as a proxy to study fish movements (Liu and Hu 2006,
Yu et al 2007, Zhong et al 2017):

h (x) = a (x) ∗ sin (kx − wt) , (1)

where t is the time stamp, x is the position of the
midline point along the body, w = 2πf ( f is the tail
beat frequency), k = 2π

λ (λ is the body wavelength)
and a (x) = C1x + C2x2. The equation parameters
(C1, C2 and λ) control how the body bends and can
be customized for different swimming modes. The
majority of robots are designed after sub-carangiform
(e.g., rainbow trout, Oncorhynchus mykiss, in Kru-
usmaa et al (2014)) and carangiform (e.g., com-
mon carp, Cyprinus carpio, in Ozmen Koca et al
(2018)) swimmers; hereinafter we will refer to these
two groups as (sub-)carangiform swimmers. In these
designs, it is widely assumed that undulatory move-
ments are largely confined to the posterior body, with
body amplitudes increasing exponentially towards the
tail and body wavelength being around one. Once the
artificial midlines are generated according to these
criteria, they are used to identify the key bending
points to orient robot design.

The travelling wave equation is a good first step
in modelling fish swimming, however it has certain
limitations. First, there is very little empirical data on
how well the midlines generated by the travelling wave
equation approximate the actual midlines of fish dur-
ing steady swimming (Videler and Hess 1984, Tytell
and Lauder 2004). Second, it does not specify how the
head moves nor where the body wave starts, as both
parameters play key roles in swimming performance
and vary among species (Lindsey 1978). Third, fur-
ther studies are needed to evaluate whether the trav-
elling wave equation can be modified to approximate
other behaviours observed during turning, C-start,
linear acceleration and swimming in unsteady flows,
see (Akanyeti and Liao 2013) for modelling Kármán
gaiting.

In this work, we propose a new method which
enables roboticists to draw conclusions from real fish
data. Assuming that fish movements can be repre-
sented with a series of linear segments, the proposed
method first identifies the minimum number of
segments that can describe fish movements accu-
rately, and then identifies a control architecture which
describes the concerted movement of these segments
so that the difference between actual and modelled

Figure 1. (a) A snapshot of a rainbow trout (L = 23 cm)
during steady swimming at around 2 L s−1 in a flow tunnel
(ventral view). Body midline (white line) and digitized
points (white circles) are superimposed on top. Flow
direction is from left to right. (b) Body midlines from same
fish over three tail beats.

kinematics is minimized. We demonstrate the util-
ity of our method by studying the steady swimming
kinematics of 10 representative species from (sub-)
carangiform swimmers with distinct body shapes and
flexural stiffness.

2. Methods

2.1. Problem definition
The input data consists of body midlines which are
represented in the form of three-dimensional matri-
ces, M(x, y, t), describing how points along the body
(x, y) move in time (t). The data comes from actual
fish experiments captured by a high-speed camera
with the image plane parallel to the direction of
motion (figure 1). Here, we assume that the fish mid-
line points translate and rotate in two dimensions
within the imaging plane without rolling, pitching
and/or twisting movements. To represent midlines
using a multi-segment model we propose two meth-
ods (namely, segment growing method and genetic
algorithm) to meet the needs of roboticists in two
complementary ways. In particular, the segment
growing method determines the minimum number
of segments required to achieve a certain degree of
modelling accuracy (defined by the user a priori),
whereas the genetic algorithm is devised to work with
a fixed number of segments (defined by the user
a priori), calculating the optimal lengths of these seg-
ments to maximize accuracy.

2.2. Segment growing method
Starting from the most anterior midline point, we
create the first segment (S1) with an initial length
Sinit. We grow S1 with finite increments (ΔS) until
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Table 1. Segment growing algorithm; where Sinit and ΔS refer to initial segment length and a finite increment in segment length,
respectively. Algorithm inputs (fish midlines and error threshold), output (joint positions) and variables (Sinit and ΔS) are all
normalized to the body length.

Algorithm segmentGrowing()
Inputs: fish midlines (M), error threshold (eTh)
Outputs: joint locations (J)
Variables: Sinit, ΔS
1 J = [], Sb = 0, Se = Sinit
2 while Se < 1
3 E = calculateSegmentError (Se, Sb, M)
4 if E < eTh
5 Se += ΔS
6 else
7 Sb = Se − ΔS
8 Se = Sb + Sinit
9 add Sb to J
10 end
11 end
12 return J

the mean difference between S1 and the actual
midline exceeds the error threshold (supplemen-
tary figure 1 (https://stacks.iop.org/BB/16/046005/
mmedia)). At this point, we stop growing S1 and
create a joint (J1). We then start growing the sec-
ond segment (S2) from J1 until the mean differ-
ence between S2 and the actual midline exceeds the
error threshold, and this iterative process continues
until we reach the most posterior point along the
body. At the end, the segment growing method pro-
duces a number of segments with variable lengths,
each of which describes a finite portion of the actual
midline.

2.2.1. Calculation of individual segment error
For all time frames, t = {1, 2, 3, . . . , T}, we calculate
the difference between the segment Si and the corre-
sponding portion of the fish midline Mi by measur-
ing the perpendicular distance for each midline point
(xj, yj) that belongs to Mi,

Dij =
|
(

yie − yib

)
× xj − (xie − xib) × yj + xib × yie − xie × yib|√

(xie − xib)2 + (yie − yib)2

(2)

where Sib = (xib, yib) and Sie =
(
xie, yie

)
denote the

beginning and end points of the segment Si, respec-
tively and xib < xj < xie. We then take the maximum
distance (among the midline points) and average it
over time to arrive at the final segment error (or mean
difference),

Ei =
1

t

T∑
t=1

max
j∈Mi

Dij. (3)

For each time frame, Sib and Sie are derived from
the joint positions (e.g., 0 and J1 for S1, J1 and J2 for S2,
and so on) by transforming the data from one to two
dimensions so that they are mapped on to the curvi-
linear fish midline. The beginning of the first segment
is initialized to the most anterior midline point. Sim-
ilarly, the end of the last segment is fixed at the most
posterior midline point.

2.2.2. Overall performance of multi-segment
model
From all segments constituting the model M̂, we
choose the one with a maximum mean difference to
summarize the overall performance (supplementary
figure 2)

Ê = max
i∈M̂

Ei. (4)

The lower the error, the better the performance.
Putting it another way, we equate the overall accuracy
of the model to the accuracy of the worst performing
segment (i.e., the weakest link).

Segment growing method guarantees parsimo-
nious segment formations through locally optimal
decisions, i.e., by finding the longest segment with an
error below the desired threshold, for each portion of
the fish midline. In this way, it is also guaranteed that
the overall model error is kept below the threshold.
A greedy algorithm for segment growing method is
given in table 1.

2.3. Genetic algorithm
The genetic algorithm starts with a fixed number of
segments and uses heuristic search to determine the
optimal segment lengths so that the overall model
performance is maximized, similar to the approach
of Bal et al (2016). Beginning with an initial popula-
tion of random solutions, the genetic algorithm draws
principles from the theory of evolution and natural
selection where fittest solutions are selected for pro-
ducing candidate solutions of the next generation.
Such an iterative process continues for a fixed num-
ber of generations or until an optimality criterion is
reached. The genetic algorithm is a popular method in
computer science and there are many ways of imple-
menting it (Whitley 1994). Here, we briefly describe
the implementation tailored to our problem.

2.3.1. Initialization
In our representation, a solution is a vector of joints
connecting the actual segments (J1, J2, . . . , JS−2, JS−1

3
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Figure 2. Controlling segments. (a) Illustration of a
five-segment model (not drawn to scale) including the head
(S1) and body segments (S2 − S5). Each segment, i, (black
line) rotates around an anchor point (filled black circle)
where pitch angles are denoted by (θi). Segment ends are
indicated by empty circles. (b) Pitch angles over three tail
beats for S1 (black), S3 (dark grey) and S5 (light grey) are
shown as an example where actual measurements and their
sine wave approximations are plotted using dashed and
solid lines, respectively. Sine wave parameters, pitch
amplitude (αi) and relative timing with respect to the head
segment ϕi − ϕ1 are also shown.

where S is the number of segments). Each joint has a
value between 0 and 1L (indicating the position along
the body with L standing for the body length). Each
generation consists of a fixed number of candidate
solutions (Nsol) that are evaluated together, and the
goodness (or fitness) of a solution is calculated using
the weakest link approach as previously described in
section 2.2.2. In the first generation, we initialize the
joint positions (of each solution) quasi-randomly. We
apply a constraint to maintain an ascending order in
the joint positions (i.e., J1 < J2 < · · · < JS−2 < JS−1).
In the second and following generations, we create
candidate solutions (alternatively termed offsprings)
from the solutions of the previous generation (par-
ents) using four genetic operators: selection, cloning,
crossover and mutation.

2.3.2. Parent selection
During the process of parent selection, we first rank
the possible solutions according to their fitness scores
and normalize the rankings (r) between 0 (low-
est fitness score) and 1 (highest fitness score). Each
solution has a probability (P) of being selected as

a parent based on its fitness,

P = rz, (5)

where z determines the bias towards solutions with
high fitness scores. In this approach, solutions are rep-
resented as portions in a pie chart and the size of the
portion is proportional to the P. We then select par-
ents using the classical roulette wheel method by gen-
erating a random number between 0 and 2π and select
the solution that the number falls into.

2.3.3. Offspring creation
We select two parents for producing two offsprings,
either by (1) cloning, where the resulting offsprings
are identical copies of their parents (one offspring per
parent), or (2) crossover, where the offsprings carry
information from both parents. During crossover, we
split parents into two parts (anterior and posterior
joint positions) and the offsprings inherit one part
from each parent. Offsprings are also allowed to have
minute changes in the joint positions through muta-
tions to maintain diversity and explore new solutions
locally. The rate and degree of mutations are con-
trolled by two independent parameters. We next fil-
ter out those offsprings with invalid joint positions
(i.e., removing those joint positions that are either
outside of the body limits or not in an ascending
order). This iterative process continues until we gen-
erate a sufficient number of offsprings to fill the quota,
Nsol.

2.4. Actuating segments
Once a multi-segment model is created (be it
through the segment growing method or the genetic
algorithm), the next step is to determine the control
parameters that actuate these segments. In this study,
we focus on the situation of steady swimming. We
assume that each segment has one degree of freedom
which rotates around a joint (pitching hereinafter)
and the motion is periodic, which is a common archi-
tecture used in multi-segment fish robots, e.g., (Liu
and Hu 2010). To describe the pitch angle, θ, of each
segment, i, over time we use a sine equation

θi = αi ∗ sin(ωt + ϕi), (6)

where two variables α and ϕ controlling the pitch
amplitude and timing, respectively, t is the time stamp
and ω = 2πf with f being the tail beat frequency. The
theoretical basis for this representation comes from
previous fish studies where lateral movements of each
point along the midline is described using a Fourier
series. In this representation, the most significant con-
tribution coming from the first term oscillating at the
tail beat frequency (Videler and Hess 1984, Root et al
2007, Akanyeti and Liao 2013). We first estimate f by
analyzing the movements of the caudal fin over mul-
tiple tail beats. We then estimate α and ϕ (for each
segment) using the method of least squares so that

4
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the difference between measured and predicted θ is
minimized.

At the end, we represent the kinematics of the
S-segment model with 2S + 1 motion parame-
ters

[
f ,α1,ϕ1,α2,ϕ2, . . . ,αS−1,ϕS−1,αS,ϕS

]
and

S actuation points (distributed along the body)
[r1, r2, . . . , rS−1, rS] which specify the points of
rotation for each segment. We divide segments
into two groups: head segment (the first seg-
ment, S1) and body segments (starting from S2)
(figure 2). In this configuration, the head and
the most anterior body segments rotate around
the same point (r1 = r2) but they face opposite
directions. To standardize pitch timing across
datasets, we use the timing of the head movement
as a reference to adjust the timing of body movements[
f ,α1, 0,α2,ϕ2 − ϕ1, . . . ,αN−1,ϕN−1 − ϕ1,αN ,ϕN − ϕ1

]
.

2.5. Datasets
We demonstrate the utility of our approach by ana-
lyzing two datasets from our previous work (Akanyeti
et al 2017): (1) trout dataset which includes five
rainbow trout swimming steadily at around 2 L s−1

(L = 21.8 ± 2.9 cm), and (2) multi-species dataset
which includes ten species swimming steadily (one
fish and one speed per species). These species are
Florida gar (Lepisosteus platyrhincus, L = 36.9 cm,
1 L s−1), northern barracuda (Sphyraena borealis,
L= 33 cm, 2.6 L s−1), clown knifefish (Chitala ornata,
L = 19.4 cm, 1.4 L s−1), sheepshead (Archosargus pro-
batocephalus, L = 32 cm, 1.8 L s−1), crevalle jack
(Caranx hippos, L = 45.5 cm, 3.1 L s−1), mangrove
snapper (Lutjanus griseus, L= 23 cm, 3.2 L s−1), Indo-
Pacific tarpon (Megalops cyprinoides, L = 23 cm, 2.7
L s−1), tomtate (Haemulon aurolineatum, L = 20 cm,
1 L s−1), pinfish (Lagodon rhomboides, L = 28 cm,
2.9 L s−1) and rainbow trout (L = 23 cm, 3.4 L s−1).

All fish data were collected using a high-speed
camera (250 frames per second and a minimum of
three tail beats per trial), where each frame was dig-
itized to obtain 30 equally spaced x and y coordinates
to represent the body midline.

2.6. Data analysis
Custom-written Octave and Matlab scripts are used
to analyse the data. Midline data were normalized
with respect to the body length L and all distance
measures are reported in L. All results are shown as
mean ± standard deviation of the mean, unless stated
otherwise.

2.6.1. Parameter selection for segment growing
method and genetic algorithm
Because each midline consists of 30 points, we fix
Sinit and ΔS at 0.033 L (for the segment growing
method). Our initial investigation with preliminary
data suggests that running the genetic algorithm for
10 generations and evaluating 200 solutions per gen-
eration (i.e., Nsol = 200) is sufficient to produce a

Figure 3. Performance of multi-segment models in
describing fish steady swimming midlines (trout dataset).
(a) Mean model error up to 10 segments; variable-length
(black line y = 0.1x−1.5, R2 = 0.95) versus equal-length
approach (gray, y = 0.1x−1.3, R2 = 0.95). 0.01L error line is
shown as reference (dashed line). (b) Relative difference in
mean error between variable-length and equal-length
segment models. (c) Relative difference in mean error
between variable-length segment models and
single-segment models. All error bars indicate standard
deviations from the mean.

meaningful solution in a reasonable amount of time
(an example is shown in supplementary figure 3). The
probability of crossover over cloning is set to 0.3. Dur-
ing crossover, parents with an even number of joints
are divided into two equal halves whereas parents with
an odd number of joints are divided into two parts
where the anterior part has one extra joint. We equate
z to 8. The rate and degree of mutation are fixed at
5% and 0.01L, respectively. During mutation, there is
a 50–50 chance that the joint position would move in
the anterior (or posterior) direction.

2.6.2. Agreement between segment growing
method and genetic algorithm
We first check whether the segment growing method
and the genetic algorithm produce similar multi-
segment models. We fit a linear regression comparing
joint positions generated by these two methods and
we calculate similarity using the slope of the regres-
sion and the coefficient of determination (namely, the
R2 value). We hypothesize that the slope and R2 val-
ues will be close to one (which corresponds to perfect
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match) indicating strong agreement between the two
methods. We also visualize the Bland–Altman plot to
evaluate the limit of agreement between two methods.

2.6.3. Change of model performance vs increasing
number of segments
To estimate the relationship between the model per-
formance (y) and the number of segments (x), we use
a power equation

y = axb, (7)

where the coefficients a and b are estimated using
the least squares method. Assuming that the model
error will decrease with respect to an increasing num-
ber of segments (b < 0), the magnitude of b indi-
cates the decay constant. The goodness of the fit is
evaluated by the R2 value. We use both methods to
systematically generate models with a different num-
ber of segments (up to 10 segments). In the seg-
ment growing method, we generate multiple models
by systematically increasing the error threshold from
0.001L to 0.1L with 0.001L increments and select the
model with the best overall performance (for each
segment number). In the genetic algorithm, we sim-
ply enter the desired number of segments and the
algorithm looks for the best combination of segment
lengths to minimize the error.

2.6.4. Comparison with equal-length segment and
single-segment models
Both the segment growing method and the genetic
algorithm produce models that may have variable-
length segments (variable-length segment models
hereinafter). For instance, the model shown in the
supplementary figure 1 has its first segment longer
than the second segment, the second segment longer
than the third segment, and so on. How important
is it to have variable-length segments? To address
this question, we compare the performance of the
variable-length segment models to the models with
equal-length segments. Equal-length segment mod-
els are often used in robot designs for simplicity and
very few studies have formally investigated the effi-
cacy of variable length approach (Yu et al 2007, Su
et al 2014). We perform the comparison in two dif-
ferent ways. First, we repeat the analysis described in
section 2.6.3 for the equal-length segment models.
While increasing the number of segments, we predict
that the error will decrease faster (i.e., with a larger
magnitude of b) in the variable-length segment mod-
els than in equal-length segment models. Second, we
calculate the relative change in error (Δe) using:

Δe = 100 ∗
(

1 − e1

e2

)
, (8)

where e1 and e2 are the errors of the variable-length
and equal-length segment models, respectively, and
Δe varies within the range of 0% (no change, e1 = e2)
to 100% (e1 = 0 and e2 > 0). We also use equation (8)

to compare the performance of the variable-length
segment models to that of the single-segment model,
which represents the entire fish body using one seg-
ment like a rigid plate. In swimming studies, rigid
plates such as hydrofoils (Anderson et al 1998) are
often used as a benchmark while evaluating the con-
tribution of undulatory movements in propulsion.

2.6.5. Species comparison
We obtain a five-segment model to describe the swim-
ming kinematics of every fish in the multi-species
dataset. We study how segment lengths and motion
parameters vary among the models. We hypothe-
size that the segment configuration of each species is
related to its morphology. To begin to test this hypoth-
esis, we check whether there is a correlation between
head segment length (or the position of the most of
anterior joint) and the maximum body width by fit-
ting a linear regression using the least squares method.
To evaluate whether there is a common propulsive
strategy across fishes, we study a family of equations
(e.g., linear regression, polynomials, power and expo-
nential growth) to describe how pitch amplitude and
phase varies across body segments (i.e., αi,ϕi = f (ri)
where i = 2, 3, 4, 5). To minimize the risk of overfit-
ting, we choose the simplest model with R2 > 0.9.
We check how much the head amplitude decreases
while increasing segment length. To reconcile head
and body kinematics, we also check whether there
is a correlation between the head and the tail beat
amplitudes.

2.6.6. Traditional kinematics analysis
During steady swimming, midline points oscillate
from side to side at the tail beat frequency. For each
species, we measure the peak-to-peak amplitude and
timing (phase) of these oscillations to evaluate how
midline points move with respect to each other. We
estimate head and tail amplitudes from the first and
last point along the midline, respectively. To calcu-
late the body wavelength, we first estimate the body
wave speed from the phase envelope (how phase val-
ues change along the body) and then divide the speed
by the tail beat frequency. We also study body curva-
ture (defined as the reciprocal of the radius of a circle)
and how it changes along the midline. For each mid-
line point, we calculate curvature by taking two adja-
cent points into account (one anterior and posterior).
We average curvature values over time and report the
maximum mean curvature and where it occurs along
the body. We calculate the Spearman rank correlation
to evaluate whether there is a statistical relationship
between these kinematics variables and the segment
lengths in five-segment multi-species models.

3. Results

There is a strong agreement between the models
generated by the segment growing method and the
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Figure 4. Optimal joint positions in five-segment models
(multi-species dataset). Datasets are ordered according to
the position of the most anterior joint (moving closer to the
head from top to bottom). Fish silhouettes (both ventral
and side views) are also shown.

genetic algorithm. For both datasets, the two algo-
rithms converge on models with the same num-
ber of segments and joint positions (supplementary
figure 4). Therefore, we only present results generated
by the segment growing method to prevent repetition.

We find that those models with variable-length
segments consistently perform better (i.e., producing
a lower error) than the models with equal-length seg-
ments (figure 3(a)). While the error decreases with
number of segments in a non-linear fashion (first
rapidly and then slowly similar to an exponential
decay), the decay rate is faster in the variable-length
segment models (b = −1.5 ± 0.1) than in the equal-
length segment models (b = −1.3 ± 0.1). This sug-
gests that all else being equal, the variable-length
approach produces more parsimonious models with
fewer segments than the equal-length approach. For
instance, a model with four variable-length segments
is sufficient to mimic the actual fish midlines with less
than 0.01L error (supplementary figure 5), whereas
the equal-length approach requires at least two more
segments (six segments in total) to achieve a simi-
lar result (supplementary figure 6). Otherwise, mod-
els with four equal-length segments fail to describe
the movements of the posterior body adequately (in
particular, towards the caudal fin see supplementary
figure 7).

When using the same number of segments,
the variable-length segment models outperform the
equal-length segment models, for instance by 52%
(0.009 ± 0.001 L < 0.018 ± 0.002 L, with the four-
segment model), 59% (0.006 ± 0.001 L < 0.015
± 0.002 L, with the five-segment model) and 55%
(0.004 ± 0.001 L > 0.010 ± 0.002 L, with the
six-segment model) (figure 3(b)). Compared to the
single-segment model (0.056 ± 0.008 L, supplemen-
tary figure 8), four, five and six-segment models
improve the performance by 85%, 90% and 92%,
respectively (figure 3(c)).

We observe that, for the optimal performance,
anterior segments should be longer than the posterior
segments regardless of how many segments models
may have (supplementary figure 9). Regarding mod-
els with up to five segments, the segments gradually
become shorter as we move along the body, e.g., 0.39
± 0.05 L (S1)> 0.28± 0.02 L (S2)> 0.18± 0.01 L (S3)
> 0.15 ± 0.01 L (S4) in the four-segment model and
0.27± 0.06 L (S1) > 0.26± 0.03 L (S2) > 0.2 ± 0.01 L
(S3) > 0.14 ± 0.01 L (S4) > 0.13 ± 0.01 L (S5) in the
five-segment model. In models with a bigger number
of segments, we see the same trend apart from the first
and the last segments, which are used to describe the
head and caudal fin movements, respectively.

Our results from the multi-species dataset sug-
gest that using five segments is more than sufficient
to describe the kinematics of steady swimming (the
average model error is 0.005 ± 0.001 L). Similar
to the trout dataset, we find that in all species the
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Figure 5. Control parameters for body segments S2 (black circles), S3 (white), S4 (dark grey) and S5 (light grey). Each data point
corresponds to a measurement from different fish in the multi-species dataset. (a) Pitch amplitude (y = 1.976e3.09x , R2 = 0.93).
(b) Pitch phase relative to the head segment (y = 6.1x − 0.82, R2 = 0.94, p < 0.01).

Figure 6. Analysis of head movements. (a) Pitch amplitude versus length (y = −20.04x + 10.83, R2 = 0.57, p < 0.05). (b) Tail
beat amplitude versus head pitch amplitude (y = 0.01x + 0.13, R2 = 0.49, p < 0.05). Each data point (empty circles) corresponds
to a measurement from different fish in the multi-species data set.

anterior segments are longer than the posterior seg-
ments (figure 4). However, there is a substantial varia-
tion among species in the way that the anterior body is
partitioned. We find that wider fish have shorter head
segments (supplementary figure 10). For instance, in
the crevalle jack (maximum body width = 0.14 L)
the head segment is short and ends at the base of the
cranium (0.19 L), whereas in the Florida gar (maxi-
mum body width= 0.08 L) the head segment is much
longer and spans half of the body (0.48 L). Moving
along the body, we see less and less variation in the
segment lengths. In particular, we note that the stan-
dard deviations from the mean length are 0.09 L (S1),
0.06 L (S2), 0.04 L (S3) and 0.02 L (S4).

Our kinematics analysis shows that the 10 (sub-)
carangiform species studied here exhibit large varia-
tions in the kinematics parameters traditionally used
to study steady swimming: speed (1 L s−1 – 3.1 L s−1),
body wavelength (0.7 L – 1.1 L), tail beat amplitude
(0.12 L–0.21 L), head amplitude (0.01 L – 0.07 L),
maximum curvature (3.3 L – 5.3 L) and maximum

curvature point along the body (0.83 L – 0.9 L) (sup-
plementary figure 11 and supplementary table 1). We
see that these variations are reflected in the segment
formation of our models (supplementary table 2);
most notably, fish swimming with longer wavelength
have longer segments in the posterior body.

We discover that as diverse as these fishes are
one control strategy may unite them all. There exists
a simple relationship between the location of a
segment and how it moves, and this relationship
does not change whether we study barracuda (elon-
gated body), trout (fusiform body) or sheepshead
(laterally compressed). For segments representing
the fish body, pitch amplitude increases exponen-
tially (figure 5(a)) and pitch phase increases linearly
(figure 5(b)) in accordance with the joint position.
For segments representing the head, pitch amplitude
decreases with length: the longer the head, the smaller
the pitch (figure 6(a)) and there is a coupling between
head and body segments with a phase difference cor-
related with the position of the most anterior joint.
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We also find a positive correlation between the head
and tail beat amplitudes, where tail beat amplitude
increases with head amplitude (figure 6(b)).

4. Discussions

We have described a novel approach which can auto-
matically translate undulatory fish movements into
empirical design guidelines for roboticists. In our
approach, we first partition the fish body into a series
of interconnected segments. We then study the rel-
ative movements of these segments with respect to
each other. In this study, we have demonstrated the
usefulness of this approach by analyzing the steady
swimming kinematics of 10 (sub-)carangiform swim-
mers. We have presented the optimal segment for-
mation and control parameters that allow accurate
description of the kinematics of these fishes (table 2),
and that can be used as a resource for future robotics
work.

Below, we discuss our findings within the context
of current fish robots described in the literature which
vary in body lengths (from 17 to 66 cm), number of
segments (from three to six), relative length of each
segment (e.g., head segment length varies from 0.2 to
0.8 L), having rigid versus compliant segments and
actuated versus passive joints (figure 7).

4.1. Accurate description of steady swimming
kinematics with five segments
Our analysis suggests that five-segment models can
approximate the undulatory movements of (sub-)
carangiform swimmers during steady swimming with
at least 99% accuracy (model error <0.01L). For
optimal performance, the segments should become
shorter moving towards the tail; this pattern is con-
sistent for all species studied here. Although, there are
not many fish robots designed this way, several studies
have already showed that optimizing segment lengths
(using real fish data) can improve the performance of
freely swimming robots (Yu et al 2007).

How closely do robots need to mimic the midline
kinematics of fishes? We have shown that the accu-
racy of multi-segment models increases with num-
ber of segments. However, we still do not know how
segment number affects the actual performance of a
robot, which is typically evaluated in terms of swim-
ming speed and power efficiency. In other words, with
all else being equal, can a five-segment robot swim
faster than a four-segment robot without spending
more energy? And if so by how much? Our mod-
elling approach cannot directly address these ques-
tions as it does not consider internal and fluid forces
while computing optimal segment formation. How-
ever, it offers reasonable starting points which may
help exploring the design space more effectively. To
systematically evaluate the swimming performance

and hydrodynamic effects of different segment con-
figurations, further experiments including physical
robots (Yu et al 2007) and computational fluid
dynamics simulations (Eloy 2013, Liu et al 2017) are
required.

We recognize that it is not easy to manufacture
robots with many small segments that are actuated
independently. Perhaps it is not a coincidence that
we see more robot designs which substitute poste-
rior segments with a compliant body and a pas-
sive, flexible tail. In recent years, there is a growing
amount of evidence suggesting that soft, underactu-
ated fish robots can achieve better swimming perfor-
mance than multi-segment rigid robots (Zhong et al
2018). However, to design and control these robots
effectively, we need more comprehensive theoreti-
cal models which can link kinematics to interactions
between motor commands, soft body properties and
the fluid environment accurately (Zhong et al 2018,
Epps et al 2009).

4.2. No proto-(sub-)carangiform swimmer
During steady swimming, fishes exhibit a wide
range of undulatory kinematics that can be broadly
classified into four swimming modes; anguilliform,
sub-carangiform, carangiform and thunniform
after (Breder 1926, Lindsey 1978). The majority
of fish robots are designed after an abstract (sub-)
carangiform swimmer with the following general
design characteristics: the body has a fusiform shape,
body amplitudes increase exponentially towards the
tail, and the tail beat amplitude and body wavelength
are assumed to be around 0.2 L and 1 L, respectively
(Fiazza et al 2010). Here, we have shown that this
simplified approach does not encapsulate the mor-
phological and kinematics differences we observe in
(sub-)carangiform swimmers. For instance, the body
width, the tail beat amplitude and the body wave-
length of the 10 species studied here vary greatly;
their coefficient of variation (standard deviation
divided by mean) are 0.24, 0.18 and 0.13, respec-
tively. Similarly, the key locations where bending
moments are applied (especially in the anterior
part) are distinct for each species (the coefficient
of variation is 0.28) and very likely stemming from
differences in morphology. Our preliminary analysis
between morphology and kinematics suggest that
the maximum body width is a good predictor of the
head segment length (wider fish have shorter head
segments).

4.3. One body control strategy for all fishes
Our findings suggest that as diverse as (sub-)
carangiform swimmers are, they may all use the same
movement strategy to undulate. How much and when
a segment moves is determined simply by its joint’s
location along the body and this relationship does not
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Table 2. Optimal actuation points (where segments rotate around) and control parameters of five-segment models (multi-species
dataset). Note that S1 and S2 have the same actuation points but face the opposite directions.

Species S1 S2 S3 S4 S5

Florida gar
Actuation points (L) 0.48 0.48 0.7 0.82 0.9
Pitch amplitude (degree) 1.83 4.79 13.01 21.74 35.50
Pitch phase (radian) 0 1.88 3.30 4.15 5.13
Northern barracuda
Actuation points (L) 0.4 0.4 0.66 0.80 0.90
Pitch amplitude (degree) 1.06 3.24 10.49 18.84 26.64
Pitch phase (radian) 0 1.58 3.08 3.98 5.04
Clown knifefish
Actuation points (L) 0.39 0.39 0.63 0.76 0.88
Pitch amplitude (degree) 1.63 4.99 13.42 22.48 28.44
Pitch phase (radian) 0 1.72 3.16 4.41 5.6
Rainbow trout
Actuation points (L) 0.34 0.34 0.58 0.76 0.89
Pitch amplitude (degree) 3.83 4.97 10.22 19.98 31.88
Pitch phase (radian) 0 1.54 2.97 4.09 4.99
Mangrove snapper
Actuation points (L) 0.31 0.31 0.55 0.74 0.86
Pitch amplitude (degree) 6.69 6.50 12.41 20.22 28.82
Pitch phase (radian) 0 0.94 2.25 3.08 4.06
Indo-pacific tarpon
Actuation points (L) 0.31 0.31 0.54 0.72 0.85
Pitch amplitude (degree) 5.88 7.36 13.99 22.65 31.17
Pitch phase (radian) 0 1.15 2.55 3.52 4.37
Sheepshead
Actuation points (L) 0.27 0.27 0.57 0.75 0.86
Pitch amplitude (degree) 5.47 4.96 13.41 20.71 29.77
Pitch phase (radian) 0 0.93 2.48 3.37 4.53
Pinfish
Actuation points (L) 0.25 0.25 0.54 0.73 0.86
Pitch amplitude (degree) 8.1 5.75 11.76 19.52 28.13
Pitch phase (radian) 0 0.77 2.35 3.37 4.42
Tomtate
Actuation points (L) 0.21 0.21 0.53 0.73 0.86
Pitch amplitude (degree) 4.41 3.46 9.37 20.26 30.92
Pitch phase (radian) 0 0.58 2.08 3.04 3.98
Crevalle jack
Actuation points (L) 0.19 0.19 0.5 0.7 0.85
Pitch amplitude (degree) 6.3 5.07 10.3 17.8 25.6
Pitch phase (radian) 0 0.67 2.24 3.16 4.29

change whether we study the movements of two dif-
ferent segments in the same fish or the same segments
in two different fish. What separates fishes, however,
are the joint locations where bending moments are
applied. Once these locations are factored in, the kine-
matic diversity collapses into a single swimming pat-
tern that is governed by a simple formula. What this
means is that the same control algorithm can gen-
erate different swimming styles, simply by chang-
ing the segment formation. For instance, a robot
can switch from swimming like a trout to swimming
like a barracuda by lengthening the most anterior
segment.

Fishes are tuned to swim with high swimming effi-
ciency (Anderson et al 1998, Taylor et al 2003, Gazzola
et al 2014, Nangia et al 2017). Our kinematics mod-
elling is informative for roboticists as it provides clear
guidelines on how to build a multi-segment robot and
how body segments should move with respect to each
other on the basis of biological evidence. However, it
does not tell us how these movements can be realized

in a real robot. We still do not know whether each
segment should be actuated independently, or pas-
sive tail joints would suffice achieving fish-like bend-
ing kinematics. For instance, a recent study has shown
that partitioning the tail with passive joints can reduce
the cost of transport up to 50% in a tuna-inspired
robot (White et al 2020). Similarly, in the case of
hybrid robots with rigid body segments in the ante-
rior body and compliant segments in the posterior
body, our models are still informative while choos-
ing the position of the anterior joints. In addition,
once built, a robot will need a dynamic controller,
which incorporates mechanical and hydrodynamic
forces, to generate timely motor commands that can
lead to the desired body movements. A number of
control architectures featuring central pattern genera-
tors (Bal et al 2019), proportional-integral-derivative
(Salumäe and Kruusmaa 2013) and fuzzy controllers
(Liu and Hu 2006), and principles from Braitenberg
vehicles (Salumäe et al 2012) have been successfully
applied to drive fish robots.
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Figure 7. Current fish robot designs. Rigid (solid line) and
compliant segments (dashed line). Actuated (filled circle)
and passive joints (empty circle). Each joint controls the
following segment on the right. The most anterior segment
corresponds to the head segment. From top to bottom:
(Zheng et al 2010, Long et al 2006, Wang et al 2008, Low
and Chong 2010, Hirata 2000, Epps et al 2009, Gibouin
et al 2018, Zhu et al 2019, Liu et al 2005, Hirata et al 2000,
Liu and Hu 2006, Marchese et al 2014, Ay et al 2018,
Kruusmaa et al 2014, Zhong et al 2017, Yu et al 2007, Rossi
et al 2011). For each study, robot lengths are provided on
the left. Note that this brief survey does not intend to
summarize all fish robots discussed in the literature.

4.4. Active head control may improve swimming
performance
We show here that longer fish rotate their head
less (pitch amplitude decreases with increasing head
length). In all fishes, head and body movements are
coupled where body segments follow the lead of the
head in a timely manner. These two relationships,
in return, positively correlate with the variations we
see in tail beat amplitude (e.g., fish with larger head
oscillations have larger tail beat amplitudes).

We have recently observed a similar relationship
in accelerating fishes (Akanyeti et al 2017). Our find-
ings suggest the importance of head control in swim-
ming, which is often overlooked when building fish
robots. Until now, design efforts in robotics have
mainly focussed on the control of the posterior body.
In these robots, the head may constitute a large por-
tion of the anterior body and it usually oscillates
passively due to reaction forces and torques gen-
erated by the undulatory movements of the poste-
rior body. In contrast, there is mounting evidence in
the fish literature suggesting that timely head move-
ments improve swimming performance, be it through
reducing hydrodynamic drag (Lighthill 1969) or pro-
ducing thrust (Gemmell et al 2016, Lucas et al 2020).
Active head movements can also aid in directional
control such as turning (Gray 1933), attacking prey
(Nelson and Maciver 1999), feeding (Richard and
Wainwright 1995), enhancing flow sensing (Akanyeti
et al 2016).

4.5. Future work
We recognize that modelling fish movements in two-
dimensions using a series of interlinked rigid body
segments is rather simplistic. In reality, fish move in
three-dimensions (e.g., cupping motion of the cau-
dal fin) and modulate the stiffness of the body and
fin rays in real-time to improve swimming efficiency
(Long and Nipper 1996, Esposito et al 2012, Tytell et al
2010). It remains to be seen how optimal segment for-
mation and control would change if the tail segment is
allowed to be compliant, pitching and rotating at the
same time.

Our comparative analysis on a multi-species
dataset is limited to one individual swimming at
one speed per species. Our ongoing work focuses
on studying the effects of a fish’s speed and size
upon multiple individuals, and on characterizing the
bending kinematics of anguilliform and thunniform
swimmers. Our initial investigation from preliminary
data suggests that our findings can be extended to
describe the bending kinematics of thunniform swim-
mers accurately. In contrast, different segment forma-
tions (i.e., more equal-length segments) are needed
to describe the kinematics of anguilliform swimmers;
especially when they swim with shorter wavelengths
(unpublished data).

We are also looking at how the bending kinemat-
ics of a fish change across behaviours (e.g., Kármán
gaiting, accelerating forward to catch a prey, turning
and escape responses). We predict that fast behaviours
exhibiting large body amplitudes and curvatures
(e.g., C-start) will require higher fidelity models with
many segments than behaviours with subtle body
movements (e.g., gliding). Similarly, the segment
formation may vary dynamically during intermit-
tent swimming such as burst and gliding where fish
alternate periodically between forward linear accel-
eration and powerless gliding. Through these fur-
ther studies, we can begin to build a comprehen-
sive dictionary which translates the behaviour reper-
toire of fishes into pragmatic design solutions for
roboticists.

Data

Fish midline data and our scripts are available on
request. Table 1 presents the joint positions, pitch
amplitude and pitch phase for each fish in the multi-
species dataset (only for five-segment models). Sup-
plementary table 1 presents the kinematics variables
(including the body length and swimming speed) of
each fish in the multi-species dataset.

Data availability statement

All data that support the findings of this study are
included within the article (and any supplementary
files).
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