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1. Introduction

In recent years, we have witnessed a dramatic 
growth of research and deployment of micro aerial 
vehicles (MAVs) owing to numerous foreseeable 
applications. At decimeter scale, multi-rotor systems 
have thrived thanks to its mechanical simplicity and 
high maneuverability. Yet, small flying robots are still 
severely limited in terms of payload capabilities and 
computational power [1–3]. There remain several 
key challenges associated with the energetic cost of 
staying airborne, autonomous navigation through 
unstructured environments, etc that prevent more 
pervasive uses of these small robots [4, 5]. These issues 
pose considerable complications towards the goal 
of autonomous operations. Fortunately, for several 
tasks related to sensing, localization, and navigation, 
biological systems provide us further inspirations for 
tackling the mentioned challenges.

With poor resolution compound eyes and only 
tiny nervous systems, insects demonstrate exceptional 
aerodynamic maneuvers such as grazing landing 
and agile collision avoidance. Scientists have discov-

ered that birds and insects frequently use optic flow 
in short range navigation [6], flight speed regulation 
[7], landing [8], as well as obstacle avoidance [9]. 
Instead of directly measuring the distance, the optic 
flow technique measures the image motion, providing 
the ratio of flight speed to the distance to the surface 
[10]. Inspired by insects, researchers have pioneered 
the use of optic flow for robotics applications, aim-
ing to l everage the low computational requirement 
and reducing the sensory components, which are 
crucial considerations for small aerial vehicles such as 
a 100 mg flapping-wing robot [11] or a 39 g pocket-
sized quadrotor [12].

In robotics, optic flow-based algorithms have 
been proposed and implemented in mobile robots 
and aerial robots for guidance and navigation [13]. 
In [14], Fuller and Murray devised an insect-inspired 
controller for detecting patterns of optic flow for a 
mobile robot with flight-like dynamics to navigate a 
corridor. Using the concept of time-to-contact, Izzo 
and de Croon introduced a strategy for landing on a 
surface using ventral optic flow based on the expan-
sion of imaged ground [15]. In [3], a 2.6 g omnidirec-
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Abstract
With tiny and limited nervous systems, insects demonstrate a remarkable ability to fly through 
complex environments. Optic flow has been identified to play a crucial role in regulating flight 
conditions and navigation in flies and bees. In robotics, optic flow has been widely studied thanks 
to the low computational requirements. However, with only monocular visual information, optic 
flow is inherently devoid of a scale factor required for estimating the absolute distance. In this paper, 
we propose a strategy for estimating the flight altitude of a flying robot with a ventral camera by 
combining the optic flow with measurements from an inertial measurement unit. Instead of using 
the prevalent feature-based approach for calculation of optic flow, we implement a direct method 
that evaluates the flow information via image gradients. We show that the direct approach notably 
simplifies the computation steps compared to the feature-based method. When combined with an 
extended Kalman filter for fusion of inertial measurement units measurements, the flight altitude 
can be estimated in real time. We carried out extensive flight tests in different settings. Among 31 
hovering and vertical flights near the altitude of 40 cm, we achieved the RMS errors in the altitude 
estimate of 2.51 cm. Further analysis of factors that affect the quality of the flow and the distance 
estimate is also provided.
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tional vision sensor enabled a 30 g miniature coaxial 
helicopter to control flight speed and stabilize the 
heading using wide-field optic flow. In addition to this, 
several optical devices have been developed to facilitate 
the use of insect-inspired strategies in robots. Exam-
ples include a miniature artificial compound eye with 
a panoramic field of view [16], a robust minimalistic 
high frame rate optic flow sensor [17], an open hard-
ware camera with a CMOS image sensor for optic flow 
estimates designed for MAVs [18], and a 33 mg 1D 
optic flow sensor for a flying microrobot [11].

Recently, researchers have explored the integration 
of optic flow information with other known quantities 
[19] or measurements from other sensors to exploit the 
‘scaling’ information, allowing true velocity or distance 
to be estimated [18, 20–22]. In [20], the opto-aeronautic 
algorithm was developed for estimation of wind speed 
and flight height using inputs from optic flow and air 
velocity sensors, whereas in [18], an ultrasonic sensor 
was incorporated. In other instances, inertial measure-
ment units (IMUs) are chosen as they often exist for 
attitude stabilization. The fusion of measurements from 
two sensors usually requires a robust efficient strategy. In 
[21, 23], extended Kalman filters (EKF) were employed 
to recover a scale factor. In [22], the authors formulated 
a nonlinear estimation scheme for the task, allowing the 
transient response of the observer to be tuned. Based on 
the knowledge of control inputs, optic flow was used to 
robustly estimate the distance for landing in [19].

Several researchers have also demonstrated other 
novel methods that use optic flow in aid of the distance 
estimation or landing tasks. By imposing the control 
to ensure a constant time-of-flight and measuring the 
acceleration, the distance can be estimated with the 
approached proposed in [24]. Using only the knowl-
edge of the control inputs and monitoring the oscil-
lations of the robot without any knowledge of the 
robot’s acceleration, the optic flow-based flight con-
troller was shown capable of providing the estimate of 
flight altitude in hover as well as during landing [25].

Compared to popular alternative keyframe-based 
visual-SLAM methods that involve building and 
maintaining a map of visual features [26–28], these 
optic-flow based approaches are potentially less com-
putationally intensive and more robust against failures 
as they do not need prolonged continuous feature 
tracking [21, 22].

Thus far, the majority of research involving com-
bining optic flow and inertial measurements calculate 
the flow by detecting and tracking features between 
consecutive image frames using an established Lucas–
Kanade (LK) algorithm [9, 22, 25]. The LK method 
is suitable for computing optic flow for a sparse fea-
ture set [29]. It was suggested that the required feature 
extraction and matching steps occupy most of the pro-
cessing time, up to 85% in the case of [21]. Alternative 
to the LK method, there exists an alternative optic flow 
method developed by Horn et al [30], which directly 
provides time-to-contact information from image 

gradients without the need to identify and track image 
features. This principle has been extended to estimate 
the time-to-contact (without resolving for a scale fac-
tor) for motion control of mobile robots in [31].

In this paper, we aim to exploit this direct optic 
flow method in the context of flight altitude estima-
tion. To achieve that, we consider a flying robot with a 
downward-looking monocular camera. We outline a 
theoretical basis to relate the motion of the robot and 
its altitude to the optic flow from the camera. Detailed 
analysis is included to identify factors that affect the 
performance of the computed flow. Then we propose 
an estimation routine based on a Kalman filter frame-
work to incorporates the measurements from IMU to 
provide the scale factor needed to estimate the absolute 
distance. Static and flight experiments were performed 
to verify the models and test the estimation method. 
Further detailed analysis of the results is then discussed. 
In summary, our key contributions are threefold: (i) the 
modeling and implementation of the direct optic flow 
method in the context of a flying robot with a monocu-
lar vision. That is, we offer a model relating the expected 
optic flow to the motion of a robot flying over a flat ter-
rain; (ii) analysis of camera settings and flight param-
eters that have critical consequences to the accuracy of 
the optic flow data; (iii) an extended Kalman filter for 
estimating the inverse of flight altitude with a known 
observability condition. While alternative implemen-
tations with have been previously shown [22, 24], our 
method is simple, highly accurate at low altitude and 
robust against vibrations from flight.

The next section begins with a brief introduction of 
optic flow and the descriptions on how the LK method 
and the direct approach can be applied to deduce the 
motion (up to a scale factor) of a flying robot with a 
ventral vision. The analysis includes the introduction 
of three dimensionless quantities that are relevant to 
the accuracy of the computed flow. Section 3 shows 
a formulation of the inverse flight altitude and other 
flow measurements in the state-space representation 
form suitable for an EKF. An analytical expression for 
the observability condition is provided. In section 4, 
we perform two sets of experiments to demonstrate 
the advantage of the direct optic flow approach over 
the LK method and to verify the importance of the 
introduced dimensionless quantities. Flight experi-
ments are carried out in section 5 to examine our pro-
posed estimation framework. Finally, conclusion and 
further discussions are provided in section 6.

2. Optic flow

Suppose a stationary point of interest P =  [
X Y Z

]T
 in the inertial frame is projected onto 

the the location (u, v) on the camera plane as depicted 
in figure 1. Let I (u, v, t) represents the intensity of 
an image pixel at this position at time t. Due to the 
movement of the camera, we expect the image of point 
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P between two subsequent images to move from (u, v) 
to (u +∆u, v +∆v). Under the constant brightness 
assumption or optic flow constraint, it is expected that 
I (u, v, t) = I (u +∆u, v +∆v, t +∆t) [10]. To the 
first order approximation [32], it follows that

∂I

∂u

du

dt
+

∂I

∂v

dv

dt
+

∂I

∂t
= 0, (1)

where du/dt  and dv/dt  are components of the optic 
flow field.

2.1. Optic flow and camera motion
To relate the motion of a camera with respect to the 
inertial frame to the resultant optic flow, we consider 
a camera with a focal length f located at the point 

Pc =
[
Xc Yc Zc

]T
 defined in the inertial frame 

o − x̂ŷẑ  as shown in figure 1. Let the coordinate frame 
associated to the camera be oc − x̂cŷc ẑc . The rotation 
matrix R =

[
x̂c ŷc ẑc

]
 relates the orientation of the 

inertial frame and the camera frame. The image plane 
is perpendicular to the camera axis (ẑc) at the distance 
f (focal length) away from the origin oc. According to 
this arrangement, the point P is projected onto the 
image plane at the position (u, v) given by

u = f
RT (P − Pc) · e1

RT (P − Pc) · e3
= f

x̂T
c (P − Pc)

ẑT
c (P − Pc)

,

v = f
RT (P − Pc) · e2

RT (P − Pc) · e3
= f

ŷT
c (P − Pc)

ẑT
c (P − Pc)

,

 

(2)

where ei’s are basis vectors (e.g. e1 =
[
1 0 0

]T
).

If we denote the rotational rate of the frame oc with 

respect to itself as ω =
[
ωx ωy ωz

]T
, the time deriv-

atives of the camera frame axes become ˙̂xc = ωzŷ − ωyẑc, 
˙̂yc = ωxẑ − ωzx̂c, and ˙̂zc = ωyx̂ − ωxŷc . Assuming that 

point P is stationary with respect to the inertial frame 

(Ṗ = 0), it can be shown that the time derivatives of 
the image location (u, v), or optic flow, are

du

dt
=− x̂T

c Ṗc

ẑT
c (P − Pc)

f +
ẑT

c Ṗc

ẑT
c (P − Pc)

u

+ ωzv − ωy
f 2 + u2

f
+ ωx

uv

f

dv

dt
=− ŷT

c Ṗc

ẑT
c (P − Pc)

f +
ẑT

c Ṗc

ẑT
c (P − Pc)

v

− ωzu + ωx
f 2 + v2

f
− ωy

uv

f
.

 

(3)

From this point, we consider the scenario where the 
camera is pointing towards the ground such that 
the camera axis is almost vertical. Define d as the 
distance from the origin of the camera frame to the 
ground plane along the camera axis, it turns out that 
the projection of point P along the camera axis, or 
ẑT

c (P − Pc), is

ẑT
c (P − Pc) = d

(
1 −

R31
R33

u
f + R32

R33

v
f

1 + R31
R33

u
f + R32

R33

v
f

)
. (4)

Furthermore, in the case that the camera axis 
is almost vertical, such as a downward-looking 
camera attached to a hovering quadrotor, we have 
R31, R32 � R33. Keeping only the first order terms (see 
[33] for a complete derivation), equation (4), together 
with equation (3), simplifies to

(u, v)(u, v)

Pc, oc

x̂c

ŷc

ẑc

P

x̂
ŷ

ẑ

o

d

f

Figure 1. Definitions of the camera frame, the image plane, and the inertial frame.

Bioinspir. Biomim. 13 (2018) 036004



4

P Chirarattananon 

du

dt
=−

(
ϑx + ωy

)
f +

(
ϑz − ϑx

R31

R33

)
u +

(
ϑz

R31

R33
− ωy

)
u2

f

−
(
ϑx

R32

R33
− ωz

)
v +

(
ϑz

R32

R33
+ ωx

)
uv

f
,

dv

dt
=−

(
ϑy − ωx

)
f +

(
ϑz − ϑy

R32

R33

)
v +

(
ϑz

R32

R33
+ ωx

)
v2

f

−
(
ϑy

R31

R33
+ ωz

)
u +

(
ϑz

R31

R33
− ωy

)
uv

f
,

 (5)

where we have introduced ϑx = x̂T
c Ṗc/d, ϑy = ŷT

c Ṗc/d  
and ϑz = ẑT

c Ṗc/d. These quantities, which from now 
on will be referred to as visual observables [25] (also 
defined as apparent egovelocity in [20]). They provide 
the velocity information of the camera frame up to a 
scale factor (d).

2.2. Lucas–Kanade optic flow algorithm
Equation (5) relates the optic flow (du/dt, dv/dt) to 
the motion and attitude of the camera. A number of 
previous works use feature extraction methods to 
initially detect features on the image and then employ 
the Lucas–Kanade tracker (LK) [32, 34] to determine 
the optic flow between consecutive image frames  
[13, 22–25]. To estimate the visual observables with 
the LK method, we simplify equation (5) by neglecting 

ϑx
R31
R33

u and ϑy
R32
R33

v terms under the assumption that 

R31, R32 � R33. For each tracked feature Ψi = [ui, vi]
T, 

it satisfies

Ψi =
d

dt

[
ui

vi

]
≈




−f 0

0 −f

ui vi

u2
i /f uivi/f

uivi/f v2
i /f

−vi 0

0 −ui




T

︸ ︷︷ ︸
Λi




ϑx + ωy

ϑy − ωx

ϑz

ϑzR31/R33 − ωy

ϑzR32/R33 + ωx

ϑxR32/R33 − ωz

ϑyR31/R33 + ωz




︸ ︷︷ ︸
b

,

 (6)

where we have defined a 2 × 7 matrix Λi and a vector of 
unknowns b. With multiple features, we can construct 

Ψ =
[
Ψ1 Ψ2 . . .

]T
, Λ =

[
Λ1 Λ2 . . .

]T
and 

express the equation as a linear least-squares problem: 
Ψ = Λb to solve for b. The approach enables us to 
efficiently compute, for example, ϑx + ωy , ϑy − ωx , 
and ϑz using the optic flow data from various locations 
on the image. With the knowledge of the angular 
velocities from the IMU measurements, ϑx  and ϑy  are 
readily obtained.

2.3. Direct optic flow method
Instead of relying on feature detection and tracking 
method, it has been shown in [30, 31] that we 
can directly combine the optic flow constraint in 
equation (1) with the equation describing the camera 
motion (in the scenario described in figure 1, this 
corresponds to equation (5)). If we let Iij denote the 

pixel intensity at I
(
ui, vj, t

)
, the result directly relates 

the image gradients to the visual observables and the 
camera’s attitude:

−
∂Iij

∂t︸ ︷︷ ︸
Υij

=




−
(
∂Iij/∂u

)
f

−
(
∂Iij/∂v

)
f(

∂Iij/∂u
)

u +
(
∂Iij/∂v

)
v(

∂Iij/∂u
)

u2/f +
(
∂Iij/∂v

)
uv/f(

∂Iij/∂u
)

uv/f +
(
∂Iij/∂v

)
v2/f

−
(
∂Iij/∂u

)
v

−
(
∂Iij/∂v

)
u




T

︸ ︷︷ ︸
χij




ϑx + ωy

ϑy − ωx

ϑz

ϑzR31/R33 − ωy

ϑzR32/R33 + ωx

ϑxR32/R33 − ωz

ϑyR31/R33 + ωz




︸ ︷︷ ︸
b

,

 (7)

where we have defined a scalar Υij, a 1 × 7 matrix 
χij, and a vector of unknowns b. Once again, we have 

neglected two terms: ϑx
R31
R33

u and ϑy
R32
R33

v to arrive at 
equation (7). Similar to equation (6), this equation can 
be directly solved for b using the least-squares method 

in the form Υ = χb (with Υ =
[
Υ11 Υ12 ...

]T

and χ =
[
χ11 χ12 ...

]T
) using the values of Iij’s 

from consecutive image frames. In contrast to the 
LK method, this direct method does not require the 
feature tracking process. Featureless areas in the image 
produce pixels with the values of ∂I/∂t, ∂I/∂u, and 
∂I/∂v close to zero. Consequently, these points do not 
invalidate equation (7). This significantly reduces the 
computational requirement of the process.

2.4. Effects of pixelation, fame rate, and feature size 
on the accuracy of visual observables
In this section, we inspect the effects of camera 
pixelation, feature size, and frame rate on the 
accuracy of the optic flow estimate. To understand 
the relationship between different parameters, we 
consider a simplified situation where a hypothetical 
one-dimensional camera (the camera produces a 
one-dimensional array of pixels instead of the typical 
two-dimensional arrays) resides in a two-dimensional 
plane (o − x̂ẑ). This setting can be regarded as a 
simplified version of the setup in figure 1.

2.4.1. Horizontal motion
Suppose the camera stays at a constant distance d from 
the ground, but it traverses laterally (along the x̂c-axis) 
at speed vx. Furthermore, let the camera x̂c-axis 
coincides with the x̂-axis of the inertial frame and L be 
a length that describes the dominant lengthscale of the 
pattern on the floor. Assuming a uniform ideal lighting 
condition and a purely sinusoidal pattern on the 
floor, the brightness of the point P(x) can be written 

as I0
2

[
sin

(
2π x

L

)
+ 1

]
. Without loss of generality, the 

pixel intensity at point u on the image can be expressed 
as

I (u, t) =
I0

2

[
sin

(
2π

(
ud

fL
+

vxt

L

))
+ 1

]
, (8)

where f is the camera’s focal length. Notice that the 
pixel brightness varies overtime as the camera moves 
at speed v in the direction parallel to the ground. 

Bioinspir. Biomim. 13 (2018) 036004
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In principle, to calculate the visual observable ϑx  
according to equation (7), we obtain ∂I/∂t and ∂I/∂u 
as

∂I

∂t
=

2πv

L

I0

2
cos

(
2π

(
ud

fL
+

vxt

L

))

∂I

∂u
=

2πd

fL

I0

2
cos

(
2π

(
ud

fL
+

vxt

L

))
,

 

(9)

and ϑx  is found to be

ϑx =
1

f

∂I

∂t
/
∂I

∂u
=

vx

d
, (10)

as anticipated.
In practice, however, the camera sensor has a finite 

pixel size. If we let w denote the width of each pixel, the 
image brightness of a pixel located at u is averaged over 
the distance w such that

Ī (u, t) =
1

w

∫ u+w/2

u−w/2
I (u, t) du

=
I0

2

[
fL

πdw
sin

(
πdw

fL

)
sin

(
2π

(
ud

fL
+

vt

L

))
+ 1

]
.

 (11)
Here, we introduce the notation δ [·] to represent the 
difference between the ideal value and the practical 
value of a quantity of interest. The difference between 
I (u, t) and ̄I (u, t), or δ [I (u, t)], is the consequence of 
pixelation. We find that

δ [I (u, t)] = Ī (u, t)− I (u, t)

=

[
fL

πdw
sin

(
πdw

fL

)
− 1

]
sin

(
2π

(
ud

fL
+

vt

L

))
.

 (12)
To numerically evaluate the time and spatial 
derivatives of the pixel value for the calculation of 
visual observables, we consider the central difference:

∆

∆t
Ī (u, t) =

fp

2

(
Ī

(
u, t +

1

fp

)
− Ī

(
u, t − 1

fp

))
,

∆

∆u
Ī (u, t) =

1

2w
(Ī (u + w, t)− Ī (u − w, t))

 (13)

where fp is the camera’s frame rate. Based on 

the previous definition of δ [·], it follows that 

δ [∂I/∂t] = ∆
∆t Ī (u, t)− ∂I/∂t and δ [∂I/∂u] =  

∆
∆u Ī (u, t)− ∂I/∂u. After some algebraic mani-

pulation, it can be shown that

δ

[
∂I

∂t

]
/
∂I

∂t
=

(
fL

πdw
sin

(
πdw

fL

))

(
fpL

2πv
sin

(
2πvx

fpL

))
− 1,

δ

[
∂I

∂u

]
/
∂I

∂u
=

(
fL

πdw
sin

(
πdw

fL

))

(
fL

dw
sin

(
dw

fL

))
− 1.

 

(14)

From equations (12) and (14), it can be seen that 
the numerical errors of ∂I/∂t and ∂I/∂t can be 
quantified using two dimensionless quantities 

πdw/fL and 2πv/fpL. For the sake of simplicity, we 
define γd = πdw/fL and γx = 2πvx/fpL. Physically, 
γd represents the ratio of the pixel size with respect 
to the feature size as expressed in the image frame, 
whereas γx is the ratio of the camera movement 
to the feature size between consecutive frames. 
Both quantities in equation (14) approach zero as 
γd, γx → 0. Subsequently, we can approximate the 
error in the calculated visual observable due to the 
pixelation and numerical differentiation as

(δ [ϑx] /ϑx)
2 ≈

(
δ

[
∂I

∂t

]
/
∂I

∂t

)2

+

(
δ

[
∂I

∂u

]
/
∂I

∂u

)2

.

 (15)
For illustrative purposes, we consider the case where 
γd, γx → 0. It follows that equation (15) simplifies to

(δ [ϑx] /ϑx)
2 ≈

(
γ2

d

6
+

γ2
x

6

)2

+

(
γ2

d

6

(
1 +

1

π2

))2

.

 
(16)

This suggests that both γd and γx directly affects the 
estimation of ϑx . We anticipate the accuracy of the 
estimate of ϑx  to deteriorate as, for example, the feature 
size becomes too small compared with the altitude, or 
the camera moves excessively fast relative to the frame 
rate.

2.4.2. Vertical motion
In this case, we assume the camera, with the focal length 
f, is in an identical situation to the previous scenario, 
but it traverses vertically instead of horizontally. 
The expression for an image intensity is similar to 
equation (8):

I (u, z, t) =
I0

2

[
sin

(
2π

uz

fL

)
+ 1

]
, (17)

where z = z(t) such that ż(t) = vz. Partially 
differentiating equation (17) with respect to t and 
u yields the solution for the corresponding visual 
observables according to equation (7) as 
ϑz = − (∂I/∂t) / (u∂I/∂u). The effects of pixelation 
and sampling, nevertheless, only allow us to obtain the 
estimates of ∂I/∂t and u∂I/∂u through the numerical 
differentiation in a similar fashion to equation (13). 
Employing the same method, it can be shown that

δ

[
∂I

∂t

]
/
∂I

∂t
≈

(
fL

πdw
sin

(
πdw

fL

))

×
(

fpfL

2πuvz
sin

(
2πuvz

fpfL

))
− 1,

δ

[
∂I

∂u

]
/
∂I

∂u
=

(
fL

πdw
sin

(
πdw

fL

))

×
(

fL

dw
sin

(
dw

fL

))
− 1,

 

(18)

where d is the instantaneous height of the camera, i.e. 

z(t) = d(t). Notice that the expression of δ
[
∂I
∂t

]
/∂I
∂t  in 

equation (18) is distinct from the one in equation (14) 
owing to the presence of u. To further understand 
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the discrepancy brought by the discretization, we 
define u∗ = max u, as the maximum value of u, 
which is limited by the camera sensor’s size, and 
γz = 2πvzu∗/fpfL . In the limit that γd, γz → 0, we find 
that

(δ [ϑz] /ϑz)
2 ≈

(
γ2

d

6
+

1

6

( u

u∗ γz

)2
)2

+

(
γ2

d

6

(
1 +

1

π2

))2

�

(
γ2

d

6
+

γ2
z

6

)2

+

(
γ2

d

6

(
1 +

1

π2

))2

.

 (19)

The uncertainty of ϑz has the same structure as 
that of ϑx  in equation (16). However, the value of 
γd = πdw/fL, which is a function of the altitude, is 
now time-varying.

3. Estimation of inverse distance

In contrast to stereo vision, information from 
monocular vision such as optic flow or visual velocity is 
inherently devoid of a scale factor. The scale ambiguity 
can be resolved by fusing the visual observable from 
optic flow with acceleration measurements from the 
IMU. To begin, we evaluate the time derivative of d 
from the definition (Pc + dẑc) · e3 in section 2.1 as

ḋ = −
(
ϑz +

(
ϑx + ωy

) R31

R33
+
(
ϑy − ωx

) R32

R33

)
d.

 (20)

Define α = d−1 as the approximate inverse distance 
of the camera from the ground, with the assumption 
that ẑ  and ẑc are almost parallel (R31, R32 � R33), 
equation (20) becomes

α̇ ≈ ϑzα. (21)

Subsequently, we obtain the time derivative of the 
visual observables according to the definitions given in 
section 2.1:

ϑ̇x ≈ ωzϑy − ωyϑz +
x̂T

c P̈c

d
+ ϑxϑz

ϑ̇y ≈ ωxϑz − ωzϑx +
ŷT

c P̈c

d
+ ϑyϑz

ϑ̇z ≈ ωyϑx − ωxϑy +
ẑT

c P̈c

d
+ ϑ2

z .

 

(22)

Notice that the terms with ̈Pc  represent the acceleration 
of the camera in the camera frame. In the circumstance 
where the camera and an IMU are part of the same 
object, these terms are equivalent to the readings 
from the accelerometers (ax, ay, and az) combined 
with the projected gravity (where the angles, also 
used for flight attitude control, are obtained from 
fusion algorithms such as [35]). For instance, we have 
x̂T

c P̈c = ax − R31g , where ax is the the reading from the 
x̂ axis of the accelerometer and R31 is approximately 
the pitch angle of the robot as internally estimated 

by the IMU. Treating X =
[
α ϑx ϑy ϑz

]T
 as a 

state variable, its dynamics are inherently nonlinear. 

Nevertheless, we can still express Ẋ in the form 
resembling the state-space representation:

d

dt




α

ϑx

ϑy

ϑz




︸ ︷︷ ︸
Ẋ(t)

=




ϑz 0 0 0

ax − R31g ϑz ωz −ωy

ay − R32g −ωz ϑz ωx

az − R33g ωy −ωx ϑz




︸ ︷︷ ︸
F(t)




α

ϑx

ϑy

ϑz


 ,

︸ ︷︷ ︸
X(t)

 
(23)

where F(t) functions as a state matrix. The 
corresponding output vector of the system Y  contains 
the visual observables as estimated by the algorithm in 
section 2:

Y =
[
ϑx ϑy ϑz

]T

=
[

03×1 I3×3

]
︸ ︷︷ ︸

C

X, (24)

where C is an output matrix. Together, equations (23) 
and (24) describe the nonlinear dynamics of the state 
variable in a state-space representation form .

3.1. Extended Kalman filter
The dynamics of the system described by 
equations (22) and (20) are nonlinear in nature. While 
we can directly calculate the visual observables directly 
from the captured images and IMU measurements, the 
distance d, or its inverse α, is not directly measured. 
In theory, an observer can be designed to estimate 
α. In the case of a linear system, Kalman filter can be 
employed to recursively find an optimal estimate of the 
state vector. Nonlinear systems similar to our proposed 
system typically requires nonlinear observers or other 
variants of Kalman filters such as extended Kalman 
filter or unscented Kalman filter. By expressing the 
dynamics of the state vector in the standard state-
space representation as in (23) and (24), it allows us to 
promptly estimate the state vector using the extended 
Kalman filter. This approach significantly simplifies the 
computation as well as the hardware implementation 
while providing a decent performance.

To employ the Kalman framework, we dis-
cretize the system in equations (23) and (24) 
using the forward Euler method [36]. Let T be 
a sample time and k be a time index such that 
Xk+1 − Xk ≈ Ẋ (tk)T = F (tk)TX (tk). The discrete-
time state-space form of the system is

Xk+1 = (I + FkT)︸ ︷︷ ︸
Ak

Xk + µk, Yk = CXk + νk,
 

(25)

where we define Ak as a discrete-time state matrix, and 
µk  and νk  as 4 × 1 process noise and 3 × 1 observation 
noise assumed to be drawn from a zero mean 
multivariate normal distribution with covariance 
Qk and Rk: µk ∼ N (0, Qk) and νk ∼ N (0, Rk). 
Equation (25) represents the system model. The update 
equation for the state estimate X̂k is then

X̂k+1 = AkX̂k + Kk+1

(
Yk+1 − CkAkX̂k

)
,

with Kk being the optimal Kalman gain as described 
in [37]. The scheme allows us to iteratively obtain the 
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estimate of Xk, which includes the inverse altitude, 
from the measurements of visual observables in Yk.

3.2. Observability
To ensure that the proposed filter can reliably 
estimate α, the discrete-time system described in 
equation (25) must be observable. Herein, we analyze 
the observability of the respective system by inspecting 
the observability Gramian of a simplified scenario.

For a time-varying discrete-time system in the 
form of equation (25), the k-step observability Gra-
mian is defined as

Qk = CT
0 C0 + AT

1 CT
1 C1A1 + . . .+ AT

1 . . .

AT
k−1CT

k−1Ck−1Ak−1 . . .A1.
 

(26)

The system is observable over k steps if and only if Qk 
is full rank, i.e. Qk is nonsingular [38]. For the case 
of our system described by equation (25), the 2-step 
observability Gramian is Q2 = CTC + AT

1 CTCA1. 
Assuming minimal angular velocity (ωx,ωy,ωz ≈ 0), 
the determinant of the observability Gramian is

detQ2 = T2
[

1 + (1 + ϑzT)2
]2 [

(ax − R31g)2

+
(
ay − R32g

)2
+ (az − R33g)2

]
.

 

(27)

It can be seen that, for a finite sample 
time T, the system is observable as long as 
(ax − R31g) 2 +

(
ay − R32g

)
2 + (az − R33g) 2 > 0. In 

fact, each of these terms corresponds to the acceleration 
of the camera along its body axis. The summation is 
the square of the total acceleration. In other words, 
the system is observable as long as its net acceleration 
is not zero. In theory, this means we are unable to get 
the estimate of α if the camera is mounted on a robot 
in a perfect hovering condition. In practice, slight 
movement is likely adequate to ensure that the system 
is observable. This observability condition, however, 
does not indicate the degree of observability.

One measure of observability is the square root of 
the condition number of Qk [39]. This condition num-
ber, κ, indicates how large the change in the initial con-
dition in one direction affects the output in another 
direction. The task of finding the state vector from the 
observed outputs becomes ill-conditioned at exces-
sively large condition number.

4. Performance evaluation

In this section, we perform a set of experiments to 
compare the performance of the direct optic flow 
method to the feature-based method outlined in 
section 2. In addition, the effects of pixelation, fame 
rate, and feature size are investigated in terms of two 
parameters (γd and γf ) introduced in section 2.4.

4.1. Flow calculation and experimental setup
The setup for the following experiment is illustrated in 
figure 2 (in the handheld experiment configuration). 
We use an oCam-5CRO-U camera (Hardkernel) and 
a single board computer Odroid-XU4 (Hardkernel) 
for capturing images, processing, and computing the 
visual observables. The camera is physically attached 
to an AscTec Hummingbird quadrotor (Ascending 
Technologies). The onboard computer communicates 
with the quadrotor via serial communication. This 
allows us to access the measurements from the IMU 
on the robot at the rate of  ≈150 Hz. Command signals 
from the ground station for the robot are transmitted 
to the single board computer via UDP over wifi at 100 
Hz.

We use a Python script for managing the commu-
nication between the onboard computer and other 
devices (the camera, robot, and ground station). 
Another python routine is implemented to process 
images for visual observables. For the LK method, the 
pipeline starts by detecting 50 features in each image 
using the FAST corner detectors [40]. The features are 
matched to the next image with the Lucas–Kanade 

Figure 2. A schematic diagram depicting the setups for three types of experiments. The arena is affixed with a checkerboard pattern 
on the ground. The motion capture system provides ground truth measurements for a robot-camera platform. The single board 
computer functions differently for different experiments.
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optical flow algorithm to directly provide du/dt  and 
dv/dt  [34]. The corner detectors and LK algorithms 
were implemented in Python using OpenCV wrap-
pers. The visual observables are then calculated from 
50 points using equation (6) and the method of least 
squares. To eliminate the angular velocity components 
present in equation (6), the corresponding measure-
ments from the IMU are used for subtraction.

The direct flow method involves the spatial and 
time derivative of pixel values, which can be suscepti-
ble to image noises. Therefore, each image is initially 
smoothened using a 5 × 5 average kernel. The spatial 
derivatives, ∂I/∂u and ∂I/∂v, are computed using 
normalized 3 × 3 Sobel kernels in their respective 
directions. The time derivative is directly obtained 
by subtracting two consecutive smoothened frames. 
The visual observables are computed using the 
method of least squares based on equation (7), and 
the angular velocities are subtracted out by the IMU 
measurements. To further reduce the computational 
requirement, only one in every sixteen pixels (in a grid 
arrangement) was used in the least squares regression. 
This amounts to 4800 pixels out of the total of 76 800 
pixels for a 320 × 240 image. These computations 
were carried out in Python.

Moreover, for both methods, we may opt to apply 
equations (6) or (7) to fully estimate seven unknowns. 
Then only the first three elements of b are used for the 
EKF, discarding other elements. Instead of using the 
full models, we may neglect the last four rows of Λi and 
χij to estimate only the truncated b (which is a 3 × 1 
vector in this case). This approximation is reasonable 
due to the assumption that the camera axis is almost 
vertical (R31, R32 � R33) and the angular velocities are 
relatively small compared with the visual velocities. 
These reduced models potentially decrease the compu-
tational load.

The combined camera-computer-robot system 
was placed in the 3.0 × 3.0 × 2.5 m arena fitted with 
six motion capture cameras (OptiTrack Prime 13w). 
The motion capture system tracks four retroreflective 
markers placed on the robot to provide real-time posi-
tion and orientation feedback for the ground comp-
uter. This information can be processed to obtain the 
expected visual observables, acceleration, velocities, 
and angular velocities of the camera. Thanks to the 
accuracy (∼0.1 mm) and sample rate (240 Hz) of the 
motion capture system, we treat these quantities as 
ground truth measurements for evaluating the per-
formance of the estimated visual observables or IMU 
measurements.

4.2. Comparison between LK and direct methods
First, we aim to compare the visual observables 
calculated from the traditional LK method and the 
direct method. We placed a checkerboard pattern 
with the square size of 5 × 5 cm on the floor. The 
camera-robot prototype was commanded to take 

320 × 240 images at 30 and 60 frames per second 
(fps) and store the images locally. Simultaneously, 
IMU measurements from the robot were logged. The 
communication between the onboard computer 
and the ground station allows us to synchronize and 
associate each image frame with the exact pose of the 
robot as determined by the motion capture system. 
The robot and the camera were handheld manually 
moved around at the distance  ≈30 cm to 100 cm from 
the ground. Several image sequences were recorded, 
providing more than 2500 images for each frame 
rate. The recorded data were then post-processed to 
compute the visual observables using the LK method 
(equation (6)) and the direct method (equation (7)), 
both with full and reduced models. Since the same sets 
of images were used for both methods, we can make a 
direct comparison of the results.

Figure 3 shows the experimental results of the 
calculated visual observables from the LK and direct 
methods using reduced and full models. The com-
puted visual observables are compared with the 
ground truth values calculated from the camera trajec-
tory provided by the motion capture system to obtain 
RMS errors for comparison. The results show that at 
30 fps, both methods produced visual observables with 
similar RMS errors. The difference between full and 
reduced models are also insignificant. The accuracy 
of both approaches improves dramatically (the RMS 
errors are  ≈60−70% smaller) when the frame rate is 
60 fps. The improvement is slightly more pronounced 
for the LK method. Overall, there is no significant dif-
ference between the direct method and the LK method 
in terms of RMS errors.

The time plot in figure 3 reveals a similar trend in 
more detail, compared to the ground truth, the com-
puted ϑz’s are subject to high frequency disturbances. 
With an increased frame rate from 30 to 60 fps (effec-
tively reducing γx, γy, γz by a factor of two), both meth-
ods provide smoother ϑi’s that follow the ground truth 
more closely with less oscillations.

Furthermore, we compare the time the Python 
script used to produce the visual observables by both 
methods in full and reduced modes (including only 
the image processing time, i.e. the without captur-
ing or image acquiring process). Figure 4 presents the 
distribution of the time taken per image frame. The 
data reveals that the median computational times per 
frame (solid horizontal lines) are approximately 10 ms, 
similar for all configurations. Nevertheless, it can be 
seen that the reduced direct method consistently used 
only 9.3–10.0 ms (25th − 75th percentile) per frame, 
whereas the reduced LK method required 1.7–22.3 ms 
(25th–75th percentile) per frame. The noticeable small 
deviation in processing time of the direct method is 
due to its deterministic nature of the algorithm. In 
contrast, the speed of feature-based methods needs 
more computational time for complex images or 
when  features are lacking. As a result, on average, the 
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LK methods require slightly more computational 
time than the direct methods (presented as solid dots 
in  figure 4). The time used in image processing task 
is crucial as it was shown to occupy as much as 85% 
processing time in the estimation routine in [21]. The 
consistency in computation time is desirable for a real-
time estimation process.

4.3. Comparison between different patterns
In the previous performance tests and subsequent 
experiments, we used a checkerboard pattern to 
provide visual texture for optic flow. The advantages of 
a checkerboard pattern are, for example, the presence 
of clear edges and corners and the lengthscale of the 
pattern can be precisely defined. However, it is possible 
that a particular pattern may affect the performance of 
the direct or LK methods differently.

To verify this hypothesis, we carried out further 
handheld experiments with identical conditions to 
the tests in section 4.2. In this experiments, however, 
the checkerboard pattern was replaced with two dif-
ferent patterns: connected rings and leaf as shown in 
figure 5. The two new patterns differ from the origi-
nal checkerboard pattern by the absence of straight 
edges. The connected ring pattern is also devoid of 
sharp corners. Figure 3 shows the results of the cal-
culated visual observables from the LK and direct 
methods using the reduced models from images 
taken at 60 fps. The RMS errors of ϑi’s from the two 
new patterns are consistently smaller than that of the 
checkerboard pattern. However, the improvement is 
marginal. The tests here suggest that both methods 
are reasonably robust to the texture used in indoor 
environments.

4.4. Characterization of pixelation, speed and 
feature size on the accuracy of visual observables
In section 2.4, we examined how the finite pixel size, 
camera frame rate, and relative motion affect the 
estimate of visual velocities under some simplifying 
assumptions. Three dimensionless quantities: γd, γx 
and γz , were found to play a role in the estimates of ϑx  
and ϑz. To validate our analysis for the case of a camera 
having some horizontal speed, we systematically 
carried out a static experiment with the details as 
follows.

An identical camera (oCam-5CRO-U) and a 
single board computer (Odroid XU4) to the previ-

Figure 3. RMS errors of visual observables from the handheld experiments. (Left) Bar plots contrasting the RMS errors of the 
calculated visual observables obtained from the LK method and the direct method at two camera frame rates (30 fps and 60 fps). 
(Right) The plots showing 5 s portions of the visual observable along the camera axis calculated from both methods compared to the 
ground truth.

Figure 4. A box plot presenting the distribution of the times 
used to process one image frame using the direct and LK 
methods with full and reduced models. Each box shows the 
median, 1st and 3rd quartiles. The dots represent the mean 
computational times.
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ous experiment were statically mounted as shown in 
 figure 2. A checkerboard pattern was affixed on a lin-
ear motorized stage such that the pattern was parallel 
to the image plane, approximately 50 cm away from 
the camera. Here, the checkerboard pattern approxi-
mately represents the sinusoidal pattern in the analysis 
in section 2.4. To elaborate, for a Checkerboard pattern 
with 5 × 5 cm squares, the texture repeats itself every 
10 cm. The corresponding lengthscale L is, therefore, 
10 cm (see figure 5 for an example). The motorized 
stage allows the checkerboard pattern to programmat-
ically travel along the camera’s x̂c-axis. The motion 
of the pattern relative to the camera essentially pro-
vides equivalent effects to a moving camera pointing 
towards the fixed ground as previously assumed.

The camera was commanded to record images at 60 
fps for 200 s. In the meantime, the stage moved the pat-
tern back and forth at constant speed of approximately 
3.8 cm · s−1 as measured by the motion capture sys-
tem. This generates a constant ϑx. The experiment was 
repeated with the checkerboard patterns of different 
sizes, including 1 × 1, 2 × 2, 3 × 3, and 5 × 5 cm, to vary 

the values of γd without altering d. The stored images 
were then downsampled to simulate lower camera frame 
rates down to 1 fps. This results in different values of γx. 
We then calculated the visual observable (ϑx) of different 
cases using the reduced direct method. With the ground 
truth value of ϑx  from the aid of the motion capture 
system, we obtained the RMS errors of ϑx  from differ-
ent conditions. The errors are shown in figure 6(a) in 
terms of γx and γd, along with the theoretically predicted 
bounds by the formula from section 2.4.1.

The trend seen in figure 6(a) generally agrees with 
the predictions that γx and γd have important roles 
in the accuracy of the visual observable estimates. 
That is, the errors grow as γx increases. For the same 
value of γx, γd = 0.25 produces greater errors than 
γd = 0.12. There, nevertheless, exist two anomalies. 
First, we observe relatively large errors in ϑx  at small 
γx (∼0.3 or smaller). Second, at very small γd (0.05 and 
0.08), the errors are unexpectedly substantial, exceed-
ing the predicted bounds.

To further understand the cause of the relatively 
large errors at low γx, we reproduce figure 6(a) to show 

Figure 5. RMS errors of visual observables from the handheld experiments with different patterns. Two additional patterns with less 
structure (connected ring and leaf) were tested with the proposed direct method and LK method to evaluate the effects of texture on 
the performance of the methods.

Figure 6. Normalized RMS errors of the visual observable from different pattern sizes and camera frame rates. (a) The normalized 
RMS errors of ϑx  against the dimensionless parameter γx at four values of γd’s. The dashed lines show the bounds of errors for 
γd = 0.08 (green) and γd = 0.25 (black) as theoretically predicted by equation (15). (b) The RMS errors of ϑx  versus the image 
displacement (in pixel).
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the RMS errors as a function of the image velocity in 
the unit of pixels per frame (this quantity corresponds 
to vxf /wdfp). Apart from those with γd = 0.25, which 
have relatively large RMS errors owing to the the large 
γd, other sets of data suggest that the RMS errors in 
ϑx  are minimized when the motion between image 
frames is just below 5 pixels. In other words, the errors 
grow as the motion drops below 5 pixels per frame. We 
speculate that the implementation of the 5 × 5 average 
kernel to smoothen image in the processing step pre-
vents the detection of minuscule movements between 
two consecutive image frames, causing the rise in the 
RMS errors of ϑx .

Other factors may also contribute to the observed 
anomalies. For example, we used checkerboard pat-
terns for the experiments to approximate the sinusoi-
dal functions. The implementation of the algorithm 
to calculate visual velocities also deviates slightly from 
the theoretical method as the average filter and Sobel 
operators were used to deal with noisy images. The 
large errors from exceptionally small γd = 0.05 (from 
a 5 × 5 cm pattern) could be a result of relatively sparse 
data points as the majority of image pixels are black or 
white with no spatial or temporal variation.

5. Flight experiments

To verify that the proposed inverse distance estimation 
framework can reliably produce the estimate of flight 
altitude despite the presence of noise from calculation 
of optic flow, evaluation of the time derivative of 
visual observables, and the use of accelerometer 
measurements, in this section, we perform flight 
experiments with a quadcopter in the indoor flight 
arena to investigate the performance of the proposed 
strategy under various flight conditions.

5.1. Flight tests
To perform flight experiments, we setup the arena 
and prepare the robot similar to the experiment 
in section 4.1 as depicted in figure 2. Here, the 
onboard computer processes the captured images 
for visual observables in real-time at 60 fps using 
the reduced direct flow method implemented on a 
Python script. The arena ground was fitted with a 
5 × 5 cm checkerboard pattern. According to the 
characterization result in figure 6, we aimed to ensure 
that γx is less than 0.5 in flight to minimize the errors 
of computed visual observables. For a hypothetical 
horizontal flight speed of 0.5 m · s−1 and a 5 × 5 cm 
checkerboard pattern, γx is expected to be  ≈0.5. In 
contrast, if a 1 × 1 cm pattern was chosen, γx would be 
excessively large at  ≈2.5.

The image processing routine is identical to the 
handheld experiment in section 4.1. The single board 
computer is also responsible for retrieving IMU meas-
urements and passing on the position feedback for the 
robot to ensure that it stays at the commanded posi-
tion. The IMU measurements and computed visual 

observables are transmitted to the ground station 
via UDP. We found that the visual observable data 
consistently lagged behind the IMU measurements 
by  ≈84 ms. This number represents the onboard 
image processing time, which can be compensated by 
delaying the IMU measurements by the same amount. 
The ground controller executes the estimation algo-
rithm in real-time using the xPC target environment 
(MathWorks Matlab) at the rate of 500 Hz. The com-
putation involved with the inverse distance estimation 
is relatively inexpensive compared to the calculation 
of visual observables. We opted to implement this part 
of the algorithm on the ground station owing to the 
ease of implementation and debugging purposes. In 
flight conditions, the single board computer generally 
reports the CPU usage of less than 10% on one of the 
eight available cores.

In the implementation of the Kalman estimator, in 
theory, the covariance matrices associated to the pro-
cess noise and the measurement noise (Qk and Rk) can 
be estimated from the current system state and empiri-
cal data from the IMU. For simplicity, we treated them 
as constant and they were experimentally tuned. The 
gyroscopic readings were used for the angular veloci-
ties, the accelerometer outputs were taken for ax, ay, 
and az needed for the matrix F in equation (23), and 
the pitch and roll angles from the IMU fusion used for 
flight attitude stabilization were also used as R31 and 
R32 for the matrix F. Moreover, a 3rd-order Butter-
worth low pass filter with a cutoff frequency of 6 Hz 
was applied to all IMU measurements and computed 
visual observables in order to minimize the measure-
ment noise and vibration effects. To investigate the 
performance of the proposed estimation schemes, 
we carried out the flight tests with three flying pat-
terns: hovering, vertical, and horizontal flights. First, 
the robot was commanded to hover at 40 cm altitude 
(γd ≈ 0.04). Second, the robot was instructed to fol-
low a sinusoidal altitude setpoint, centered at 40 cm 
with the amplitude of 10 cm, with the period ranging 
from 5 to 10 s (γz < 0.01). Third, we let the robot fly in 
a horizontal circular pattern with a radius of 30 cm at 
the constant altitude of 40 cm. The periods were set to 
values between 8 and 20 s (γx, γy < 0.25 ).

In total, we conducted 8 hovering flights, 23 verti-
cal flights, and 23 horizontal flights. For each flight, we 
extracted the estimation data from the middle portion 
of the flights, excluding taking off and landing peri-
ods. Each flight provides 30–45 s of valid data for us to 
examine the results.

5.2. Estimation results
Figure 7 shows the altitude estimation results (from 
inversion of the estimated α’s) and relevant quantities 
from three flights selected to represent different flight 
modes (hovering, vertical and horizontal). The RMS 
errors in α and altitude (d) of these flights are 0.12, 
0.08, 0.21 m−1 and 1.91, 1.48, 3.86 cm respectively. 
According to the plots, the estimate of α from the 
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horizontal flight is visibly poorer than the others. In 
fact, the same trend is observed across several flights.

In terms of visual observables, the hovering flight 
produced relatively small visual observables in all 
directions. The vertical flight resulted in a noticeably 
greater ϑz, corresponding to the vertical flight speed of 
up to  ≈12 cm · s−1. On the other hand, the horizon-
tal flight reached the maximum speed of  ≈40 cm · s−1, 
rendering ϑx  and ϑy  to periodically peak at  ≈±1 s−1. 
When compared to the ground truth calculated from 
the motion capture measurements, however, the exists 
no significant correlation between the RMS errors of 
the visual velocities and their magnitudes. Figure 7 fur-
ther suggests that, among these flight conditions, the 

robot did not deviate considerably from the upright 
orientation as the pitch and roll angles (R31/R33 and 
R32/R33) remained bounded by 0.12 rad, or 7◦.

Figure 8 further illustrates the altitude estimation 
errors from flights from three flight conditions over time. 
The plot verifies that the estimation errors do not tend to 
grow over time. Nevertheless, some temporal patterns 
can be observed in the case of vertical and horizontal 
flight. The respective oscillations are related to the perio-
dicity of the commanded flight trajectories.  Figure 8 also 
strengthens the observation of the significantly larger 
estimation errors in the case of horizontal flights.

To understand what contributes to the relatively 
large estimation errors seen in horizontal flights, 

Figure 7. Measurements and estimates from example hovering, vertical, and horizontal flights. (Top) The plots show the estimated 
altitude compared to the ground truth from the motion capture system. (Middle) The visual observables along the camera frame 
axes calculated by the reduced direct method are compared with the ground truth. The difference characteristics of different flight 
modes are evident. (Bottom) The pitch and roll angles of the robot given by the IMU and the motion capture system. The data 
suggests that the attitude of the robot do not deviate significantly from the perfect hovering condition in all three flight modes.

Bioinspir. Biomim. 13 (2018) 036004



13

P Chirarattananon 

we compiled the data from all 54 flights and plot the 
RMS errors in α and d against the RMS values of vari-
ous quantities in figure 9(a). Color codes are used to 
distinguish different flight types. The plots confirm 
the initial supposition that the horizontal flights suf-
fered relatively large estimation errors. The majority of 
hovering and vertical flights have the RMS errors in d 
under 3 cm, whereas the horizontal flights resulted in 
the RMS errors ranging from  ≈3−9 cm, depending on 
the period of the circular trajectory. The averaged RMS 
errors in altitude is is 2.51 cm for hovering and vertical 
flights and 4.54 cm for horizontal flights.

5.3. Analysis of the results
In fact, figure 9(a) suggests that the magnitudes of ϑx  
and ϑy  might play an important role in the quality of 
the inverse altitude estimates. The plots between the 
RMS errors in α and the RMS of other quantities, 
including pitch and roll angles, acceleration, and the 
condition number, do not show any visible trend. 
To quantify the correlation between the RMS errors 
of the estimate and these parameters, we calculated 
the correlation coefficients between the pairs, 
ρ (·, ·). The magnitudes of the correlation coefficients 
are presented in figure 9(b), with 0 indicating no 
correlation and 1 indicating total correlation.

One may expect some relationship between the 
estimation errors and the pitch/roll angles owing to 
the assumption R31, R32 � R33 used in the derivation 
of the estimation method. In addition, the absence of 
acceleration (P̈c) may violate the observability condi-
tion according to equation (26). Similarly, the square 
root of the condition number, κ1/2, could have a simi-
lar role as a large condition number leads to a reduced 
observability. However, figure 9(b) verifies that only 
ϑx,ϑy and ϑxR31/R33,ϑyR32/R33 have a significant 
correlation with the estimation errors, with the coef-
ficients of 0.88 and 0.81.

A possible explanation for the observed phenom-
ena is, for hovering flights or flights with low ground 
speeds, the variations in the pitch/roll angles and accel-
eration are insignificant. It can be seen in figure 9(a) 
that the RMS values of R31/R33, R32/R33 or P̈c  of hori-
zontal flights cannot be distinguished from those of 
hovering or vertical flights. The same observation 
applies to the condition number. This means that all 
flights are similar in attitude and degree of observabil-
ity.

The likely explanation why the magnitudes of 
ϑx  and ϑy  have considerable effects on the  quality 
of the estimates could be due to the approx-
imation made to achieve equation (7). Therein,  
we assumed ϑz − ϑxR31/R33,ϑz − ϑyR32/R33 ≈ ϑz  
based on the assumption on attitude: 
R31, R32 � R33. The former condition becomes less 
accurate when ϑx,ϑy � ϑz , which is expected for the 
case of horizontal flight with little variation in alti-
tude. A similar approximation was also made to obtain 
equations (21) from (20). Therefore, for horizontal 
flights, we anticipate the algorithm to perform better  
without assuming ϑz − ϑxR31/R33,ϑz − ϑyR32/R33 ≈ ϑz.   
This, nonetheless, will inevitably lead to increased 
complexity in the estimation routine.

6. Conclusion and discussion

In this paper, we have tackled the problem of an 
online altitude estimation for flying robots with a 
monocular vision and an IMU using an optic flow-
based approach. Compared to the traditional feature-
based methods, we experimentally demonstrated that 
the performance of the direct method is comparable to 
that of the former method both in terms of accuracy 
and computational speed for providing the visual 
observables in our specific test conditions. The quality 
of the computed visual observables was also shown 
to depend on various factors related to the camera 
and flight configurations. We introduced three 
dimensionless parameters to use as guidelines for 
appropriately determining the camera settings under 
various flight conditions.

With the proposed EKF scheme, we successfully 
estimated the flight altitude with the average RMS 
error of 2.51 cm considering 31 hovering and vertical 
flights at  ≈40 cm altitude. The quality of the estimate 
was found to deteriorate upon an increase in the hori-
zontal components of the visual observables. This is 
likely owing to the approximations made in the calcul-
ation of the visual observables and the estimation 
scheme.

Our estimation results compare favorably with 
other prominent works. Among 31 flights with the 
average RMS errors of 2.51 cm, our best three flights 
have the RMS errors of 1.42, 1.43, and 1.48 cm. We 
believe one contribution to the relatively small errors 
we achieved is the computational efficiency of the 

Figure 8. Altitude estimation error over time. The plots show the altitude estimation with respect to the groundtruth (dashed red) 
from all flights (solid grey) in three flight modes. The averaged errors are shown in solid black lines.
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direct optic flow approach. This, in turn, enables us to 
compute the visual observables at 60 fps, significantly 
improving the accuracy of the estimation. However, 
thus far, our work still critically relies on the assump-
tion of flat ground with no camera occlusion. In con-

trast, in [22], a random sample consensus (RANSAC) 
algorithm was employed to reject outliers in optic flow 
measurements. The strategy improved the robustness 
of the estimation in more realistic, cluttered environ-
ments.

Figure 9. Averaged RMS errors of altitude (d̂ − d) and inverse altitude (α̂− α) from all 54 flights plotted against the averaged RMS 
values of other flight parameters. The plots allow qualitative visual inspection of the correlation between the estimation errors and 
various quantities. (Bottom) Comparison between the correlation coefficients of the RMS errors in α and different quantities. The 
plot reveals a strong correlation between the altitude errors and the visual observables in the horizontal directions.
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6.1. Effects of vibration on altitude estimation
Unlike applications on mobile robots or controlled 
experiments [24, 31], in the context of flying robots, 
one major challenge in achieving accurate estimates 
of the inverse distance from the combination of IMU 
measurements and the images is owing to the present 

vibrations in flight. In evidence of this, in [21], it was 
reported that the RMS errors in velocity estimates 
in flight were higher than those from a handheld 
experiment, citing the vibrations and motion blur as 
the cause of inaccuracies. Similarly, in [22], the results 
showed that the RMS errors of the estimated velocity 

Figure 11. Altitude and associated visual observable during landing maneuvers of five representative flights. The plots show the 
flight trajectory over two seconds until the robot reached the altitude of 5 cm during landing. The averaged RMS errors in altitude 
estimates over this period of the five presented flights are 2.68, 2.18, 2.49, 1.43, and 2.06 cm. The values of ϑz can be seen rising 
rapidly towards the end of the landing as a result of the reduced altitude.

Figure 10. Averaged RMS errors of altitude (d̂ − d) and inverse altitude (α̂− α) from vertical flights at 40 cm and simulated vertical 
flights from the handheld experiments. The plots show the RMS errors against other quantities to reflect the effects of vibration on 
the estimates.
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from flight are approximately one order of magnitude 
larger than the values obtained from simulated data or 
a handheld experiment.

To further inspect this claim, performed addi-
tional handheld experiments to imitate vertical flights 
in  section 5. In this situation, the robot was manually 
moved vertically with the amplitude of  ∼10 cm at the 
altitude of  ∼40 cm, similar to the previous vertical 
flights. The camera captured series of images, com-
puted the visual observables and the inverse altitude 
was estimated using the extended Kalman filter in a 
similar fashion. Five simulated flights were recorded. 
The estimation results and some parameters are pre-
sented with the previous vertical flight data in figure 10. 
The figure also verifies that the handheld experiments 
were performed at the mean altitude of  ∼40 cm, com-
parable to previous vertical flights.

We found that the errors in altitude estimates from 
the handheld experiments are marginally larger than 
those from vertical flights. To explain the results, we 
found that, when compared to the ground truth, the 
quality of computed visual observables (ϑz ) from 
the handheld experiments did not improve from 
the vertical flights (see figure 10). This suggests that  
the mechanical vibration did not significantly affect 
the quality of the images. On the other hand, the ver-
tical component of the acceleration from the IMU 
(az − R33g  in equation (23)) from the handheld exper-
iments were found to be more accurate than the ones 
from flights when compared to the ground truth. This 
alone is likely to adversely affect the altitude estimates.

The oscillation from flight, nevertheless, also 
brings about the more overall acceleration required for 
the observability of the inverse altitude as described by 
equation (27). In evidence of this, we compare the con-
dition number of observability Gramian (Qk) in the 

form of log10 κ
1/2 as shown in figure 10. It can be seen 

that condition numbers of handheld flights are con-
sistently and noticeably higher than those from actual 
flights, indicating that handheld flights have relatively 
poor observability. This leads us to believe that the 
vibration from flight causes unfavorable effects on the 
IMU measurements, but simultaneously improve the 
observability of the estimation scheme.

While we experimentally found that the flight 
vibration can be beneficial to the estimates, there are 
several experimental conditions that may affect the 

final outcomes. For instance, the degree of oscillations 
may vary between robots and flight controllers used. 
Therefore, we believe that our findings here should be 
interpreted with care.

6.2. Altitude estimation during landing maneuvers

Using the strategy borrowed from biology, flying 
robots have demonstrated an ability to achieve smooth 
landing by holding constant the time to contact with 
the surface [15, 41], similar to how honey bees control 
their speed by holding constant the rate of optic flow 
[31]. The technique enables insects and robot to 
automatically reduce the speed of flight upon reaching 
the contact without the knowledge of the actual 
distance to the surface.

With the estimate of distance, aerial robots poten-
tially benefit from the ability to deploy a landing gear 
at a suitable moment or to approach the surface at 
arbitrary speed [42, 43]. That is, the landing task is no 
longer constrained to a constant rate of optic flow. To 
illustrate that our proposed strategy can reliably pro-
vide the distance estimate as the robot approaches 
the ground, we plot the landing trajectories from five 
representative flights in figure 11. This shows that the 
EKF accurately predicts the altitude at various landing 
speed with the RMS errors on the order of 2 cm. Upon 
approaching the surface at approximately constant 
speed, the respective visual observable ϑz rises radi-
cally and reaches the value of  ≈4 s−1 in final moments 
(significantly higher than 0.3 s−1 observed in flights as 
shown in figure 7). The values of ϑz calculated from 
the direct method were highly accurate until the robot 
was  ≈10 cm from the ground, at which point the field 
of view is likely too small for features to be captured by 
the camera.

6.3. Estimation errors at higher flight altitude
In the flight experiments, the robot was commanded to 
perform various flights near the altitude of 40 cm with 
the resultant RMS estimation errors of 2.51 cm. When 
it comes to landing flight with the flight altitude below 
40 cm, we found that the RMS errors were generally 
below 2.50 cm. Because of the nonlinear dependence 
of the visual observables on the flight altitude d (for 
example, at very large d, v′i s converge to zero for the 
same flight speed), it is reasonable to assume that 
the RMS errors of α or d are dependent on the flight 
altitude. The estimation is likely more accurate at 
lower altitude.

To demonstrate this, we performed ten more hover-
ing flights at higher setpoint altitude ranging from  ∼70 
to 125 cm. The RMS errors in α̂ and d̂  are plotted 
against the average flight altitude with previous hover-
ing flight data included in figure 12. The results suggest 
that as d0 increases, the RMS errors of α̂ declines, but 
the estimation error of the flight altitude still increases. 
When the robot hovers at  ∼1.2 m, the altitude estima-
tion error is  ∼10 cm. This is comparable to the results 
from in [22], where a robust feature-based ego-motion 

Figure 12. The plots showing the estimation errors of flight 
inverse altitude and altitudes from vertical flights performed 
at various height.
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estimation algorithm was shown to provide the RMS 
error of 9.23 cm for a flight at 1 m altitude. Our results 
indicate the effectiveness of the proposed implemen-
tation of the direct optic flow method and the EKF 
scheme that are relatively simple in comparison.

To gain further insights into the relationship 
between the expected estimation errors from various 
flight altitude, we consider the steady-state condition 
of the Kalman estimation in a simplified situation. 
Assume that the robot is only moving vertically. The 
vertical trajectory oscillates about the nominal alti-
tude d0 with some speed ẑT

c Ṗc = v̄z and acceleration 
az − R33g = āz . If we treat ̄vz , āz and d0 to be approxi-
mately constant, the state matrix originally defined in 
equation (23) becomes

F(t) =




v̄z/d0 0 0 0

0 v̄z/d0 0 0

0 0 v̄z/d0 0

āz 0 0 v̄z/d0


 . (28)

With this constant trajectory assumption, we assume 
further that the process noise and measurement noise 
are independent of d0 and are also constant. In such 
situation, the extended Kalman filter predicts a steady-
state covariance matrix Σ̄ that can be evaluated from 
the Ricatti equation [37]

Σ̄ = AΣ̄AT + Q − AΣ̄CT
(
CΣ̄CT + R

)−1
CΣ̄AT ,

 (29)

where A  =  I  +  FT according to the discretization 
previously used in equation (25).

Up to this point, we have argued that, if the robot 
was following the same trajectory at different altitude, 
we anticipate that the only difference would be d0 as 
the actual velocity and acceleration are independent of 
altitude. For the sake of simplicity, we also assume that 
the vertical velocity and acceleration are also constant. 
Doing so allows us to evaluate a steady-state covari-
ance matrix of the state estimation. This covariance 
matrix will differ when d0 varies. Hence, it allows us to 
understand the effect of d0 on the anticipated altitude 
estimation error.

Using v̄z = 0.2 ms−1 and āz = 0.2 ms−1 as nomi-
nal conditions, we solve the Ricatti equation for Σ̄. The 
expected variance of α̂ is given by the first element of 
Σ̄. If we let α̃2 denotes this value, it is conceivable that 
α̃ relates to the RMS error of α̂ from flight experi-
ments. We find that α̃ also reduces as d0 increases as 
shown as a dashed line in figure 12. In terms of the 

actual flight altitude, the fact that α = d−1 translates 

to α̃ ∼ d̃/d2
0. Therefore, we can also predict the uncer-

tainty in ̂d  from α̃. This prediction, ̃d , is also shown in 
figure 12 as a dashed line. The trend agrees with our 
experimental results that the estimation error of flight 
altitude grows as the altitude increases.

To further understand the simplified analysis here, 
it should be mentioned that the role of d0 on the value 

of α̃ stems from the diagonal element of F in equa-
tion (28). The characteristic of plots in figure 12(b) is 
insensitive to simulation parameters. For instance, if 
the covariance matrix Q and R are scaled up by a factor 
of γ, equation (29) shows that Σ̄ will be scaled up by 
the same factor. That is, the shape of lines in figure 12 
are intact.

It is also important to note that, the trend predicted 
in figure 12 is a result of the particular implementa-
tion of the extended Kalman filter we propose. It can be 
seen that the implementation here differs from previ-
ous works [19, 22]. The proposed scheme can be used 
whether the visual observables are obtained via the LK 
method or the direct method and the estimation errors 
are likely to depend on the altitude with a similar char-
acteristic. Other implementation methods will likely 
result in a different relationship between the estima-
tion error and altitude from our results in  figure 12. 
The quality of the altitude estimation depends not 
only on the accuracy of the visual observables but also 
on the estimation method.
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