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Abstract 13 
Praying mantises hunt by standing on their meso- and metathoracic legs and using them 14 

to rotate and translate (together, “pivot”) their bodies toward prey. We have developed a 15 

neuromechanical software model of the praying mantis Tenodera sinensis to use as a platform 16 

for testing postural controllers that the animal may use while hunting. Previous results showed 17 

that a feedforward model was insufficient for capturing the diversity of posture observed in the 18 

animal (Szczecinski et al., 2014). Therefore we have expanded upon this model to make a 19 

flexible controller with feedback that more closely mimics the animal. The controller actuates 24 20 

joints in the legs of a dynamical model to orient the head and translate the thorax toward prey. It 21 

is controlled by a simulation of nonspiking neurons assembled as a highly simplified version of 22 

networks that may exist in the mantid central complex and thoracic ganglia. Because of the 23 

distributed nature of these networks, we hypothesize that descending commands that orient the 24 

mantis toward prey may be simple direction-of-intent signals, which are turned into motor 25 

commands by the structure of low-level networks in the thoracic ganglia. We verify this through 26 

a series of experiments with the model. It captures the speed and range of mantid pivots as 27 

reported in other work (Yamawaki, Uno, Ikeda, & Toh, 2011). It is capable of pivoting toward 28 

prey from a variety of initial postures, as seen in the animal. Finally, we compare the model’s 29 

joint kinematics during pivots to preliminary 3D kinematics collected from Tenodera. 30 

  31 
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Introduction 1 
Praying mantises use visual feedback to orient their heads toward prey while keeping 2 

their feet stationary using a highly mobile neck, mesothorax-prothorax joint, and legs. When 3 

pivoting (i.e. rotating and translating their bodies and heads) toward static prey, mantises actuate 4 

their body segments (Yamawaki et al., 2011) and legs (Cleal & Prete, 1996) in coordinated ways 5 

to locate prey in the center of their visual field before striking. Early cybernetic models described 6 

the control system that converts an error signal, the distance of the prey from the center of the 7 

visual field, into precise head saccades that center the target (Laessig & Kirmse, 1972; 8 

Mittelstaedt, 1957). However, these models did not address the types of commands that are 9 

necessary to coordinate all the joints in each leg into a coordinated motion. 10 

 11 

Coordinating legs and body segments is a complicated task, requiring that descending 12 

commands be sent from higher command centers that process vision to the legs to rotate or 13 

translate the body. In other insects, the central complex (CX) plays a role in sensory-guided 14 

motion, such as locomotion speed (Bender, Pollack, & Ritzmann, 2010), the orientation of the 15 

body during walking and climbing (Guo & Ritzmann, 2013), measuring distance in the visual 16 

field (Wessnitzer & Webb, 2006) and navigation (Vitzthum, Muller, & Homberg, 2002).  17 

 18 

We are interested in the structure of insects’ central nervous systems (CNS) and how they 19 

use structures like the central complex (CX) to guide movement via descending commands to 20 

local control networks. Some animals appear to use task-level control to generate joint 21 

commands for a complicated task, such as placing one’s foot in a particular position (Ting et al., 22 

2009). By feeding back information about the error in the task-level goal (in this example, foot 23 

position) into the joint controllers and applying additional constraints about posture, a unique 24 

motor program can be produced. In contrast, insects in an active walking state use the active 25 

reaction (AR) during stance phase to control redundant joints (Hellekes, Blincow, Hoffmann, & 26 

Büschges, 2011). The AR applies positive feedback control to particular joints, allowing them to 27 

move when acted upon by the ground or other joints. This is an effective solution for controlling 28 

redundant joints in a computationally inexpensive way and has been tested in simulations 29 

(Schmitz, Schneider, Schilling, & Cruse, 2008). Yet another proposed solution is to use an 30 

internal body model to exploit the mechanical properties of the body. Imagine pulling a 31 

marionette by a single string attached to the head; the passive motion of the puppet’s legs can be 32 

calculated and used as control inputs to the joint controllers (Schilling, Paskarbeit, Schmitz, 33 

Schneider, & Cruse, 2012). When this model is implemented as a recurrent neural network, joint 34 

motion can be quickly calculated that moves the body in the desired direction, as dictated by the 35 

marionette’s “string.” Mechanisms like these that reduce the dimensionality of control may 36 

enable the CX to use relatively simple descending commands to control posture.  37 

 38 

Making a model of a nervous system can be a useful tool for gaining insight into system 39 

function or generating hypotheses for filling gaps in knowledge (Ritzmann, Quinn, Watson, & 40 

Zill, 2000). Past models have used finite state machines (Ekeberg, Blümel, & Büschges, 2004) or 41 

artificial neural networks (Beer, Chiel, & Sterling, 1989; Cruse, Kindermann, Schumm, Dean, & 42 

Schmitz, 1998) to model the causality or connectivity observed in nervous systems. However, 43 

models that additionally include the dynamics of neurons and synapses potentially reveal more 44 

about system function than those that do not. Much of the prior work in legged animal nervous 45 

system modeling that utilizes dynamical neuron and synapse models focuses on oscillator 46 

Page 2 of 32CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  BB-100479.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



coordination for inter- or intra-leg coordination, and generally omits the details of how any 1 

particular joint’s motion is controlled (Daun-Gruhn & Tóth, 2010; Szczecinski, Brown, Bender, 2 

Quinn, & Ritzmann, 2013). However, the scope of the present research is to examine what 3 

mechanisms might lead to precise posture adjustments, requiring that we consider the forces 4 

acting on the body and the role of mechanical feedback in muscle control.  5 

 6 

The most complete insect model that does examine posture control in detail is Walknet. 7 

Walknet uses artificial neural networks and more recently recurrent neural networks (Schilling, 8 

Hoinville, Schmitz, & Cruse, 2013; Schilling, Paskarbeit, et al., 2013) to mimic postural and 9 

locomotory behaviors seen in stick insects. Many tools exist for training artificial neural 10 

networks, and as such Walknet is trained to replicate the posture, reflexes, and walking 11 

coordination of stick insects. The network structure is heterarchical, meaning that networks with 12 

different functions are swapped in and out to control different motions, such as stance or swing 13 

phase. Walknet is certainly capable and represents the most complete insect neuromechanical 14 

model that currently exists. For the work in this paper, however, we chose to more directly 15 

model the components (i.e. neurons and synapses) and connectivity of insect neural systems. We 16 

elect to use conductance-based neuron models (Equation (3)) rather than static neurons because 17 

their dynamics are more similar to those in animals, and may be important to how they control 18 

motion. In addition, we model the neural system as a single, continuous network, mimicking the 19 

structure of insect nervous systems.  20 

 21 

This requires that we use animal data regarding network topology and dynamics. A 22 

wealth of knowledge is available explaining how insects perceive joint motion (Bucher, Akay, 23 

DiCaprio, & Büschges, 2003; Field & Matheson, 1998; Hess & Büschges, 1999), how those 24 

signals are transduced into neural signals (Büschges & Wolf, 1995; Wolf & Büschges, 1995), 25 

and the gains and filter properties of the control system-muscle-limb loop (Bässler, Büschges, 26 

Meditz, & Bässler, 1996). In addition, insects maintain posture while standing using the 27 

resistance reflex (Büschges & Gruhn, 2007), as well as loading information (Zill, Schmitz, & 28 

Büschges, 2004) and body height (Cruse, Riemenschneider, & Stammer, 1989; Cruse, Schmitz, 29 

Braun, & Schweins, 1993). These data are used to produce the joint control network topologies 30 

in this work.  31 

 32 

This paper presents an improvement over our previous neuromechanical model for 33 

studying prey targeting behavior (Szczecinski, Martin, Ritzmann, & Quinn, 2014). It encodes 34 

task-level controllers for body height, translation, and rotation into a network of conductance-35 

based nonspiking neuron models. This task-level feedback is represented by a low-36 

dimensionality control signal, possibly originating in the CX, sent to the thoracic leg control 37 

networks. The low-level muscle control networks process this information to produce motion 38 

that corrects the error in body rotation and translation. Our model produces pivots (rotations and 39 

translations) that orient the body toward prey from a variety of initial postures. The control 40 

network, though static, reproduces bifurcations in joint motion observed in the animal, changing 41 

the direction of some joints’ motion depending on the context without additional descending 42 

commands. Finally, we make a comparison to preliminary 3D kinematics collected from a 43 

mantis, and discuss how to improve the model going forward. 44 
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Figure 1 – A. Body segments and joints of the praying mantis Tenodera sinensis. Segments are indicated by cyan 
pointers, and joints are indicated by magenta. Leg joints are indicated on cut-aways of the metathoracic (T3) legs. 

Axes of rotation drawn as dashed lines lie in the plane of the paper. In all, 27 body joints are actuated in this 

model (6 per 4 legs, 3 body joints). B. A screenshot from the simulation, showing the model standing on its hind 

four legs. C. Table showing segment names, their mass in the simulation, and their length and radius. Radii 

marked with an asterisk (*) are maximum radii of tapered segments. Values replaced by a dash (-) are either 

nonexistent (i.e. head length) or not meaningful metrics of size. 

 1 
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Methods 1 

Modeling components 2 

All modeling was performed in AnimatLab 2 (Cofer et al., 2010). The mantis body is 3 

modeled as 28 rigid bodies connected by 27 hinge joints. The hind and middle legs have six 4 

joints each, as observed in the animal: three Thorax-Coxa (ThC) joints, a Coxa-Trochanter (CTr) 5 

joint, a Trochanter-Femur (TrF) joint, and a Femur-Tibia (FTi) joint (Figure 1A). The front legs 6 

have all of these except the TrF joint, which is nearly fused (Corrette, 1990). The prothorax and 7 

mesothorax are connected by two hinge joints, one that allows the prothorax to pitch with respect 8 

to the mesothorax, and one that allows yaw. Finally, a single hinge neck joint allows the head to 9 

yaw. This is a simplification of the animal’s flexible neck (Levereault, 1938), but is sufficient to 10 

study prey targeting in the horizontal plane. All joints have friction, because dissipative forces 11 

are known to play a large role in the control of insect posture (Zakotnik, Matheson, & Dürr, 12 

2006). The front legs are held off the ground against the prothorax, as in preparation for a prey 13 

strike, and do not participate in any pivots (and are not counted in the model’s degrees of 14 

freedom, Figure 1B). Segment lengths, joint locations, and range of motion were taken from the 15 

body of a dead male from our colony. Each segment has the average density of the animal, 16 

computed by dividing its total mass by its total volume (Figure 1C). 17 

 18 

The model stands freely on a flat plane. Only friction keeps its feet from sliding, whereas 19 

insects actively grip the substrate they stand on to keep their feet in place (Bässler, 1983). This 20 

simplification requires that we set the static and sliding coefficients of friction to 5 to prevent 21 

slipping. The legs are only mechanically decoupled if one raises off the ground, or if ground 22 

friction is reduced. 23 

 24 

An antagonistic pair of linear Hill muscles actuates each joint, with attachments based on 25 

cockroach anatomy (Carbonell, 1947), justified by their evolutionary proximity (Svenson & 26 

Whiting, 2004). The linear Hill muscle model is comprised of four elements: a contractile 27 

actuator, spring, and damper all in parallel, placed in series with another spring. The time 28 

derivative of the tension T in the muscle can be expressed as: 29 
𝑑𝑇

𝑑𝑡
=

𝑘𝑠

𝑐
(𝑘𝑝𝑥 + 𝑐�̇� − (1 +

𝑘𝑝

𝑘𝑠
) ⋅ 𝑇 + 𝐴𝑐𝑡)   (1) 30 

where 𝑘𝑠 is the stiffness of the series spring, 𝑘𝑝 is the stiffness of the parallel spring, 𝑐 is the 31 

damping of the muscle, 𝑥(𝑡) is the length of the muscle, and 𝐴𝑐𝑡 is the activation, a sigmoid: 32 

𝐴𝑐𝑡(𝑉𝑀𝑁) = 𝐴 ⋅ (1 + exp(𝐵 ⋅ (𝐶 − 𝑉𝑀𝑁)))
−1

   (2) 33 

where A, B, and C describe the amplitude, steepness, and input voltage offset of the sigmoid, 34 

respectively, and 𝑉𝑀𝑁 is the voltage of the innervating motor neuron. More details about the 35 

model can be found in (Shadmehr & Arbib, 1992). 36 

 37 

Neurons are modeled as leaky conductance-based models with no ion-specific channels. 38 

The neurons do not spike, and as such resemble nonspiking neurons known to exist throughout 39 

motor control systems in insects (Büschges & Wolf, 1995) or the average activity of a population 40 

of spiking neurons. The neuron’s membrane voltage V changes according to: 41 

𝐶𝑚𝑒𝑚
𝑑𝑉

𝑑𝑡
= 𝐺𝑚𝑒𝑚 ⋅ (𝐸𝑟𝑒𝑠𝑡 − 𝑉) + ∑ 𝐺_𝑠𝑦𝑛 ⋅ (𝐸_𝑠𝑦𝑛 − 𝑉)𝑛

𝑖=1 + 𝐼𝑎𝑝𝑝   (3) 42 

in which C is capacitance, G is conductance, and E is a static reference voltage (i.e. reversal 43 

potential). The subscripts mem stand for membrane, syn stand for synaptic, and app stand for 44 
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applied. The summation is over all of the n incoming synapses for one neuron. Neurons 1 

communicate via synapses by changing their conductance according to: 2 

𝑔𝑠𝑦𝑛 = {

0 𝑉 < 𝐸𝑙𝑜

𝐺max  
𝑉−𝐸𝑙𝑜

𝐸ℎ𝑖−𝐸𝑙𝑜
𝑉 ≥ 𝐸𝑙𝑜  𝑎𝑛𝑑 𝑉 ≤ 𝐸ℎ𝑖

𝐺max  𝑉 > 𝐸ℎ𝑖

    (4) 3 

 4 

where 𝐸𝑙𝑜  is the synaptic threshold, 𝐸ℎ𝑖 is the synaptic saturation, 𝑔𝑠𝑦𝑛 is the instantaneous 5 

conductance of the synapse, and 𝐺max  is the maximal conductance of the synapse.  6 

 7 

Joint controller design 8 

A proportional controller was designed for each joint to provide position feedback to the 9 

muscles based on muscle control structures thought to exist in the animal. In the animal, each 10 

joint must provide different torques depending on its position along the leg and its orientation. 11 

Therefore each controller-muscle actuator loop was designed according to the torque 12 

requirements and range of motion of that joint. Rather than merely optimizing some or all of the 13 

parameters to produce the desired motion for this study, we used network topology and animal 14 

data to solve for parameters that give the model basic capabilities (e.g. supporting its own weight 15 

in a variety of poses, etc.). The design process is described here. 16 

 17 

The feedback controller is shown in Figure 2A. Shape- and color-coded sections of the 18 

network were tuned separately and then assembled to produce the desired behavior. These 19 

sections will be described according to the flow of information: the desired and actual joint angle 20 

are compared, generating an error signal; this error signal activates the motor neurons, which 21 

stimulate the muscles to generate tension; muscle tension causes motion, which is registered by 22 

sensors and converted into the current joint angle for comparison to the desired value. 23 

 24 

The basic component of a feedback loop is a network that can compare the actual and 25 

desired system state, in this case, the joint angle. It is known that nonspiking interneurons (NSIs) 26 

in the thoracic ganglia of insects provide excitatory and inhibitory input to motor neurons in the 27 

leg (Wolf & Büschges, 1995). These NSIs exist in parallel, antagonistic pathways, and some 28 

show activity that correlate with leg position. We used these results to inspire the design of a 29 

network capable of computing the difference between the actual and desired joint angle of each 30 

joint. For each joint, extension is encoded in the NSI labeled Actual in Figure 2A. When the joint 31 

is fully flexed, Actual sits at its resting potential. Extending the joint will proportionally 32 

depolarize Actual, to a maximum 20 mV above rest when fully extended. If the joint is more 33 

extended than the desired position, the flexor motor neuron Flx MN should be excited to correct 34 

the error, and the extensor motor neuron Ext MN should be inhibited. This is accomplished via 35 

the Too Ext NSI, which along with the Too Flx NSI carry position information in parallel 36 

antagonistic pathways to the motor neurons.  37 

 38 

Steady state analysis shows how this structure generates an error signal for stimulating 39 

the motor neurons. Solving Equation (3) for steady state (
𝑑𝑉

𝑑𝑡
= 0) yields 40 

𝑉𝑆𝑆 =
𝐺𝑚𝑒𝑚 ⋅ 𝐸𝑟𝑒𝑠𝑡 + ∑𝐺𝑠𝑦𝑛 ⋅ 𝐸𝑠𝑦𝑛 + 𝐼𝑎𝑝𝑝

𝐺𝑚𝑒𝑚 + ∑𝐺𝑠𝑦𝑛
    (5) 41 
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Applying this to the Too Ext NSI in the network in Figure 2A,  1 

𝑉𝑇𝑜𝑜 𝐸𝑥𝑡
𝑆𝑆 =

𝐺𝑚𝑒𝑚 ⋅ 𝐸𝑟𝑒𝑠𝑡 + 𝑔𝐷𝑒𝑠𝑖𝑟𝑒𝑑 ⋅ 𝐸𝐷𝑒𝑠𝑖𝑟𝑒𝑑 + 𝑔𝐴𝑐𝑡𝑢𝑎𝑙 ⋅ 𝐸𝐴𝑐𝑡𝑢𝑎𝑙

𝐺𝑚𝑒𝑚 + 𝑔𝐷𝑒𝑠𝑖𝑟𝑒𝑑 + 𝑔𝐴𝑐𝑡𝑢𝑎𝑙
    (6) 2 

In which 𝑉𝑇𝑜𝑜 𝐸𝑥𝑡
𝑆𝑆  is the steady state voltage of the Too Ext NSI. Lower case gs are synaptic 3 

conductances (not maximum synaptic conductances; see Equation (4)), and upper case Gs are 4 

constant conductances. The subscripts Desired and Actual correspond to parameters of the 5 

synapses leaving these neurons, respectively, and synapsing onto Too Ext. As long as 𝑉𝐴𝑐𝑡𝑢𝑎𝑙  and 6 

𝑉𝐷𝑒𝑠𝑖𝑟𝑒𝑑  are within the bounds specified in Equation (4), 𝑔𝐴𝑐𝑡𝑢𝑎𝑙  is linearly proportional to 7 

𝑉𝐴𝑐𝑡𝑢𝑎𝑙  and 𝑔𝐷𝑒𝑠𝑖𝑟𝑒𝑑  is linearly proportional to 𝑉𝐷𝑒𝑠𝑖𝑟𝑒𝑑 . Our joint rotation encoding (see previous 8 

paragraph) guarantees this, allowing us to express the “middle” case in Equation (4) in a simpler 9 

form: 10 

𝑔𝐷𝑒𝑠𝑖𝑟𝑒𝑑 = 𝑎 ⋅ 𝑉𝐷𝑒𝑠𝑖𝑟𝑒𝑑 + 𝑏    (7) 11 

𝑔𝐴𝑐𝑡𝑢𝑎𝑙 = 𝑎 ⋅ 𝑉𝐴𝑐𝑡𝑢𝑎𝑙 + 𝑏    (8) 12 

a and b are constants calculated with 𝐸𝑙𝑜  and 𝐸ℎ𝑖 from Equation (4). In our system, 𝑎 = 0.05 and 13 

𝑏 = 3. We can now make some substitutions that simplify analysis by constraining some 14 

parameter choices. Let  15 

𝐺𝑚𝑒𝑚 = 1     (9) 16 

𝐸 =
1

2
⋅ (𝐸𝐷𝑒𝑠𝑖𝑟𝑒𝑑 + 𝐸𝐴𝑐𝑡𝑢𝑎𝑙 )     (10) 17 

Δ𝐸 =
1

2
⋅ (𝐸𝐷𝑒𝑠𝑖𝑟𝑒𝑑 − 𝐸𝐴𝑐𝑡𝑢𝑎𝑙 )     (11) 18 

Combining Equations (10) and (11) shows that 19 

𝐸𝐷𝑒𝑠𝑖𝑟𝑒𝑑 = 𝐸 + Δ𝐸     (12) 20 

𝐸𝐴𝑐𝑡𝑢𝑎𝑙 = 𝐸 − Δ𝐸    (13) 21 

Note that this requires that the synapse from Desired is excitatory and that from Actual is 22 

inhibitory. We can substitute Equations (9-13) into Equation (6) 23 

𝑉𝑇𝑜𝑜 𝐸𝑥𝑡
𝑆𝑆 =

𝐸𝑟𝑒𝑠𝑡 + (𝑎 ⋅ 𝑉𝐷𝑒𝑠𝑖𝑟𝑒𝑑 + 𝑏) ⋅ (𝐸 + Δ𝐸) + (𝑎 ⋅ 𝑉𝐴𝑐𝑡𝑢𝑎𝑙 + 𝑏) ⋅ (𝐸 − Δ𝐸)

𝐺𝑚𝑒𝑚 + (𝑎 ⋅ 𝑉𝐷𝑒𝑠𝑖𝑟𝑒𝑑 + 𝑏) + (𝑎 ⋅ 𝑉𝐴𝑐𝑡𝑢𝑎𝑙 + 𝑏)
    (14) 24 

Collecting terms  25 

𝑉𝑇𝑜𝑜 𝐸𝑥𝑡
𝑆𝑆 =

𝐸𝑟𝑒𝑠𝑡 + (𝑎 ⋅ (𝑉𝐷𝑒𝑠𝑖𝑟𝑒𝑑 + 𝑉𝐴𝑐𝑡𝑢𝑎𝑙) + 𝑏) ⋅ 𝐸 + 𝑎 ⋅ (𝑉𝐷𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑉𝐴𝑐𝑡𝑢𝑎𝑙 ) ⋅ Δ𝐸

𝐺𝑚𝑒𝑚 + 𝑎 ⋅ (𝑉𝐷𝑒𝑠𝑖𝑟𝑒𝑑 + 𝑉𝐴𝑐𝑡𝑢𝑎𝑙) + 𝑏
  (15) 26 

Additionally we define the error between Desired and Actual  27 

𝑒 = 𝑉𝐷𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑉𝐴𝑐𝑡𝑢𝑎𝑙     (16) 28 

and the mean of Desired and Actual 29 

𝑉 =
1

2
⋅ (𝑉𝐷𝑒𝑠𝑖𝑟𝑒𝑑 + 𝑉𝐴𝑐𝑡𝑢𝑎𝑙 )    (17) 30 

Substituting Equations (16-17) into Equation (15) 31 

𝑉𝑇𝑜𝑜 𝐸𝑥𝑡
𝑆𝑆 =

𝐸𝑟𝑒𝑠𝑡 + 2(𝑎 ⋅ 𝑉 + 𝑏) ⋅ 𝐸 + (𝑎 ⋅ 𝑒 + 𝑏) ⋅ Δ𝐸

𝐺𝑚𝑒𝑚 + 2(𝑎 ⋅ 𝑉 + 𝑏)
  (18) 32 

If we require that E, the mean of the synaptic potentials coming into Too Ext (Equation (10)), is 33 

equal to 𝐸𝑟𝑒𝑠𝑡, define the sum of the conductances of these synapses 34 

𝑔 = 2(𝑎 ⋅ 𝑉 + 𝑏)    (19) 35 

and define   36 

𝑈𝑇𝑜𝑜 𝐸𝑥𝑡
𝑆𝑆 = 𝑉𝑇𝑜𝑜 𝐸𝑥𝑡

𝑆𝑆 − 𝐸    (20), 37 

we obtain 38 
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𝑈𝑇𝑜𝑜 𝐸𝑥𝑡
𝑆𝑆 =

𝑎 ⋅ Δ𝐸

1 + 𝑔
⋅ 𝑒 = 𝑘𝑝𝑜𝑠 ⋅ 𝑒    (21) 1 

in which 𝑘𝑝𝑜𝑠 is the gain (or amplification) of the comparator. This shows that the change in the 2 

membrane potential of Too Ext from its resting potential is proportional to the difference 3 

between the membrane potential of Desired and Actual. This is the basic requirement for a 4 

feedback comparison between a desired and actual state, and depends on the parallel antagonistic 5 

structure of the network (Figure 2A, red rectangles). This analysis can be repeated for Too Flx, 6 

with the same result as long as the synaptic potentials 𝐸𝐷𝑒𝑠𝑖𝑟𝑒𝑑  and 𝐸𝐴𝑐𝑡𝑢𝑎𝑙  are swapped, 7 

establishing parallel antagonistic pathways. 8 

 9 

These pathways innervate the motor neurons (Figure 2A, blue hexagons), which activate 10 

the muscles. Each muscle’s activation (Act in Equation (1)) is a sigmoidal function of its motor 11 

neuron’s voltage (Equation (2)). An important observation is that changing the baseline 12 

activation of the motor neurons changes the stiffness of the controller acting on the joint. 13 

Stiffness, k is defined as the partial derivative of the applied control torque, 𝜏 with respect to the 14 

deflection from the commanded position, 𝜃. For the case of a proportional controller, this yields: 15 

𝜏 = 𝑘 ⋅ 𝜃 → 𝑘 =
𝜕𝜏

𝜕𝜃
    (22) 16 

In a neuromuscular system, the torque depends not only on the muscle activation, but also on the 17 

gain of the comparator (Equation (21)). Assuming small joint rotation and using the chain rule, 18 

we obtain: 19 

𝑘 =
𝜕𝜏

𝜕𝜃
=

𝜕𝜏

𝜕𝐴
⋅

𝜕𝐴

𝜕𝜃
    (23) 20 
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Figure 2 – Joint controller model, comparator performance, and controller filtering properties. A. Network 

diagram, with components coded by color and shape. All nodes with solid outlines are neurons, whose dynamics 

follow Equation (3). Nodes with dashed outlines are affine maps between the quantities shown on each. For 
clarity, the feedback pathways from the NSIs (red rectangles) to the Ext MN (blue hexagon) are drawn in gray, 

but are the same as those to Flx MN. Note that the NSIs are arranged in parallel, antagonistic pathways. B. 

Simulation data showing that some NSIs’ activity (A, red rectangles) correlate positively to joint position (top), 

while others correlate negatively (bottom), as observed in the stick insect and locust (Büschges & Wolf, 1995). C. 

Simulation data showing joint controllers designed to be similar to that of the locust, exhibiting a gain of 1 until a 

particular frequency, at which it drops off (D. Bässler et al., 1996). The passive properties of the exoskeleton and 

muscles are large compared to the leg inertia, resulting in a Bode plot that almost resembles a first order filter. 

 1 

where A is the activation of the muscle. The 
𝜕𝐴

𝜕𝜃
 term represents the gain of the comparator, or 2 

how much the muscle activation changes for a given change in the joint’s position. The 
𝜕𝜏

𝜕𝐴
 3 

represents the steepness of the muscle activation curve. Since the activation curve is sigmoidal, 4 

biasing the motor neurons upwards toward the inflection point (i.e. half of the muscle’s full 5 

activation) will force the muscles to operate in a regime in which the change of tension is much 6 

larger for the same change in activation. In this way the model can stiffen its joints by actively 7 

cocontracting, a strategy that may be used by insects (Watson & Ritzmann, 1998). 8 
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 1 

Generating muscle tension produces motion, which must be registered by the nervous 2 

system for comparison to the desired position. One mechanism by which insects encode joint 3 

rotations is the stretch of chordotonal organs (CO) that span joints (Field & Matheson, 1998). 4 

Each CO innervates dozens of neurons with sensitivity to joint extension and velocity. Our 5 

model simplifies this; each joint possesses a network that maps the extensor muscle length to the 6 

joint rotation via a layer of neurons (Figure 2A, yellow ellipses). To tune the map, a network 7 

with extensor length as the input and joint rotation as the output with a single hidden layer, 8 

initially with only one node, is designed. Muscle attachments and joint kinematics are used to 9 

calculate the extensor length as a function of the joint angle and used to train all synaptic 10 

properties (see parameters in Equation (4)) with a genetic algorithm (GA). Once the GA is 11 

complete, the most successful parameter combination is refined by a quasi-Newton optimizer 12 

until the steady state network activity matches the expected value as closely as possible. A quasi-13 

Newton optimizer minimizes a function in a sequential fashion like a Newton optimizer, but only 14 

computes the gradient explicitly. It uses subsequent gradient calculations to approximate the 15 

Hessian matrix, reducing the problem from O((n2+3n)/2) to O(2n) (Dennis & Schnabel, 1983). 16 

Such a gradient-based method guarantees the local optimality of the synaptic parameters of the 17 

mapping network (Dennis & Schnabel, 1983). If the resulting map is not accurate enough, an 18 

additional neuron is added to the hidden layer and the process is repeated until the network 19 

encodes the joint angle accurately enough. 20 

 21 

After designing the feedback pathways, muscle properties are calculated. Joint torques 22 

are approximated by calculating the manipulator Jacobian of each leg and multiplying by ground 23 

wrenches (Murray, Li, & Sastry, 1994). For each joint, the most extended pose of the distal joints 24 

is found via a quasi-Newton optimizer. Then, the body weight is applied in the direction 25 

perpendicular to both that joint’s axis and the joint-to-foot vector. Using the joint geometry and 26 

muscle attachments, the maximum muscle force can be calculated by ensuring that the worst 27 

case torque can be applied even when the muscle has its lowest mechanical advantage about the 28 

joint. 29 

 30 

The series stiffness 𝑘𝑠 in Equation (1) represents that of the apodeme (tendon), which is 31 

very stiff, and is calculated by finding the stiffness required to resist the maximal muscle force 32 

when stretched over its entire range of motion. Other modeling studies have made tendons stiffer 33 

(Ekeberg & Pearson, 2005), but in an attempt to better condition the simulation, the stiffnesses 34 

were reduced. Lower stiffnesses produce smaller accelerations. This reduces the risk of an 35 

unsuccessful end of the simulation with a zero-divide and the simulation can run with a larger 36 

step size and, therefore, faster. The parallel stiffness is set to 20% of the series stiffness. Muscle 37 

damping is approximated based on expected maximal joint rotation speeds and joint torques. The 38 

damping is set such that when each joint is moving at its maximum expected speed, the tension 39 

from the damping is equal to half of the muscle’s maximum force output, at which point the joint 40 

would be at its stiffest. 41 

 42 

The result of this design process is evident in a Bode plot of the joint’s response (Figure 43 

2C). Joints were designed to operate at a maximum of 8 Hz, which is a preferred running speed 44 

for cockroaches ( Bender et al., 2011), and on the correct order for rapid (roughly 125 ms) 45 
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posture adjustments that mantises make (Yamawaki et al., 2011). The graph shows that the 1 

resonant frequency of the joint controller is approximately 8 Hz, above which the gain decreases.  2 

 3 

Generating Model Posture – Feedback Model 4 

In our previous work, we developed a model that issued feedforward commands to the 5 

leg joints to execute prey-orienting pivots (Szczecinski et al., 2014). We observed the animal and 6 

identified leg joints that appeared to play the largest role in pre-strike pivots. We then solved an 7 

inverse kinematics problem for each leg, using a quasi-Newton optimizer to minimize the 8 

distance between the position of the foot and the position required for a particular pivot, as a 9 

function of the joint angles. The required joint angle commands for a given body translation and 10 

rotation were then encoded in a mapping network, as described in Joint controller design. 11 

 12 

This method had two drawbacks. The first is that when watching the animal, it is clear 13 

that it can orient itself toward prey from many different starting leg postures. The feedforward 14 

model, however, commands joint angles in a one-to-one fashion for given body translation and 15 

rotation. Therefore it lacks the basic adaptability of the animal’s control system, and the model 16 

presented in this paper addresses this shortcoming. The second drawback of the feedforward 17 

model is that it was not a good predictor of the animal data we collected. The animal data, in the 18 

form of the change of each joint’s angle as a function of the change in the body’s rotation and 19 

position, was very noisy, likely because the animal can pivot from many different starting 20 

postures, and the nonlinearities inherent in leg kinematics obscured any trends that may exist. 21 

 22 

The model presented in this paper uses feedback loops to produce posture (networks 23 

shown in Figure 3 and Figure 4), eliminating the feedforward absolute joint position descending 24 

commands. Instead, it sends more abstract descending commands encoding the deviation in body 25 

rotation, translation, and altitude from desired values. These descending commands specify joint 26 

flexion or extension with muscle force proportional to the error of the head orientation. This 27 

descending command is fused with joint angle data at the thoracic level, and a new position 28 

command is sent to the joint. This is not the same as sending a descending command that is as 29 

simple as a joint angle. Consider the torque produced by a proportional controller, 𝜏, like that 30 

implemented in this model: 31 

𝜏 = 𝑘 ⋅ (𝜃𝐷𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜃)   (24) 32 

In which k is the feedback gain and 𝜃 is the joint angle at this instant, and 𝜃𝐷𝑒𝑠𝑖𝑟𝑒𝑑  is the desired 33 

rotation. The descending command in our model is the difference between the head’s rotation in 34 

the horizontal plane and a desired rotation, which represents the location of the prey in the visual 35 

field. This defines the orientation error e. Fusing e with the joint angle at the thoracic level 36 

produces the controller input: 37 

𝜃𝐷𝑒𝑠𝑖𝑟𝑒𝑑 = 𝑒 + 𝜃    (25) 38 

Substituting this into Equation (24) yields the joint torque output  39 

𝜏 = 𝑘 ⋅ (𝑒 + 𝜃 − 𝜃) = 𝑘 ⋅ 𝑒   (26) 40 

This means that in our model, descending commands can cause the leg joints to produce torque 41 

to take corrective action and orient the head toward prey, regardless of their current position. Of 42 

course, this will not be the case if a joint is at the limit of its range of motion. Our observations 43 

and previous studies in locusts (Zill & Frazier, 1992) suggest that when the end of the range of 44 

motion is reached, the insect will take a single step to move joints to a more favorable position, a 45 

scenario beyond the scope of this work. 46 
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 1 

A diagram of the orientation network is shown in Figure 3. The actual and desired 2 

absolute rotation of the head in the horizontal plane is used as an abstraction of a visual prey 3 

signal. It is known that mantises use visual information to orient toward prey (Mittelstaedt, 4 

1957), so our model registers the rotation of its head as well as a target value (i.e. where the prey 5 

is) (Figure 3, gray shading, “lobula”). In arthropods, the CX receives highly processed signals 6 

from contralateral head sensors, suggesting that this is a candidate of where the signals from 7 

visual centers are compared to one another (Strausfeld, 2012), and the command to turn left or 8 

right toward the prey is produced. Our model implements this behavior via a series of 9 

comparators (Equation (22) and Figure 2A), one for each body segment (Figure 3, violet 10 

shading, “central complex”). Each comparator’s output is sent to a different body segment. In the 11 

model’s thoracic ganglia, the descending command to turn is integrated with the proprioceptor 12 

for that segment, as described by Equation (26) (Figure 3, orange shading, “thoracic ganglia”). 13 

To control the legs, trends of joint motion when the animal pivots (Cleal & Prete, 1996; 14 

Szczecinski et al., 2014) were encoded via connections to the middle legs’ FTi and ThC3 joints 15 

and the hind legs’ CTr joints. These trends are listed in the table in Figure 3. 16 

 17 

Unlike our previous, feedforward model (Szczecinski et al., 2014), the descending 18 

commands discussed so far do not maintain the model’s body height and position. Therefore  19 

another controller is necessary to monitor its body height, lateral position, and longitudinal 20 

position to produce muscle forces that maintain a baseline upright posture. The joint torques 21 

necessary to counter external forces can be calculated by multiplying the leg’s Jacobian matrix 22 

transposed times the external forces and moments (Murray et al., 1994). Biological data, 23 

however, suggests that this problem may be solved without such a complicated body model 24 

(Lévy & Cruse, 2008b). It is known that stick insects use their CTr joint to servo their body 25 

height (Cruse et al., 1989). This observation makes sense because the CTr’s orientation requires 26 

it to support much more of the animal’s weight than the ThC or FTi joints. Using this same logic, 27 

our model uses its middle legs’ CTr joints, as well as the ThC3 joints on the hind legs, to control 28 

the body’s height. The ThC3 joint is included because like the stick insect’s CTr joint, its 29 

orientation forces it to support the body’s weight. Data from cockroaches performing an escape 30 

behavior show that lateral body movements are directed by the middle legs’ FTi joints, and 31 

longitudinal movement is propelled by the hind CTr and FTi joints (Nye & Ritzmann, 1992). 32 

Because of the similarities in these insects’ leg morphologies, our model also controls translation 33 

in the horizontal plane via its middle FTi joints and hind CTr joints. Of course other joints could 34 

be selected, but we chose to control these because of the data available from related insects. 35 

Figure 4 shows a diagram like Figure 3 that details these connections. 36 

 37 

 The model’s static posture is the result of all of these control networks sharing control of 38 

the leg joints. Therefore even the initial posture before executing a pivot is not explicitly 39 

commanded. To generate reproducible data, a startup routine was established. The model begins 40 

suspended above the ground, with all body posture servo loops (Figure 3 and Figure 4) disabled.  41 
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Figure 3 – Diagram of our feedback based orienting model. Regions of the nervous system in which analogs to 
our simplified systems may reside are highlighted. Neurons from the local reflex network in Figure 2 are the 

same color and shape for comparison. Neural data from the trial in Figure 5C illustrates network function. Prior to 

1500 ms, the prey and head angle activate the Too Right neuron. The Vis/Prop Fuse neuron combines the Too 

Right activation with the joint’s current angle, the T2 R FTi Angle neuron. This combination then produces new 

joint commands for the T2 R FTi Des. Angle neuron. The difference between the current angle and the new joint 

command specify the torque output, illustrated by the shaded areas in the plot. The negative torque (τ < 0) is due 

to corrections made by the network in Figure 4. Leg joint pivot coordination rules are summarized in the table at 

the bottom. 
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The joints are commanded to positions that produce plausible leg posture for a mantid. The 1 

model is then dropped onto the ground, and the body position control network (Figure 4) is 2 

activated. The model then stands upright and orients itself forward. Once it finds equilibrium, the 3 

head orienting control network (Figure 3) is activated, and the model tracks a prey signal. In this 4 

study, we are primarily interested in how the animal coordinates its leg joints when pivoting.  5 

Therefore the neck and body joints were made immobile in all of the data shown. They can be 6 

unlocked, and mimic the coordination seen in mantids when pivoting toward static prey 7 

(Yamawaki et al., 2011). 8 

 9 

 
Figure 4 – Diagram of our feedback based posture model. Descending commands that enable body height 

servoing (Servo Body Height) and set the intended body height (Desired Body Height) activate the system, which 

compares the height of the attachment point of each leg to the desired value. As noted in the text, the ThC3 joint 

controls height in the hind legs, and the CTr joint controls height in the middle legs. Neurons from the local reflex 
network in Figure 2A are the same color and shape for comparison. Rules for rejecting perturbations in the 

horizontal plane are also provided; they are implemented via analogous networks. 
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3D Tracking Animal Experiments  1 

 The food-deprived freely-walking adult animals were positioned in the center of an open-2 

top clear acrylic box (40 cm x 40 cm x 15 cm) and three cockroach nymphs were placed into the 3 

corner of the arena. Two nearly-orthogonal cameras (A602f, Basler AG, Ahrensburg, Germany) 4 

were positioned beneath the base of the acrylic arena and video was recorded at 100 frames per 5 

second. The joint and body segments during each discrete movement were aligned on each video 6 

and digitized using the DLT script for Matlab provided by Tyson Hedrick (Hedrick, 2008). A 7 

total of twenty eight points were manually located on the animal during the digitizing process in 8 

both synchronized videos to calculate joint angles in a three-dimensional space. These 9 

measurements allowed us to locate the tarsus, tibia and femur, as well as the location of the 10 

tarsus-tibia, FTi and CTr joints. From these data the FTi and CTr angles could be approximated 11 

Results 12 

Postural Tuning and Stability 13 

We first tuned the dynamics of the model to match those of a mantis pivot. We are 14 

primarily interested in the coordination of the legs that produces pivots, so in all of our 15 

simulation trials, the neck and body joints are locked. Motor commands to pivot are generated by 16 

the networks in Figure 3 and Figure 4, in the form of joint torques proportional to the rotation or 17 

translation error (Equation (26)). Therefore increasing the feedback gain of the comparators in 18 

these networks will increase the torque applied by the joints, and in turn the speed of the motion. 19 

This is accomplished in our model by increasing the maximum conductivity of the synapses in 20 

the first shaded columns of Figure 3 and Figure 4. Published data from Tenodera show that the 21 

duration of the pivot correlates with the rotation that the thorax undergoes (Yamawaki et al., 22 

2011), at about 700 ms per radian. Thus we adjusted the feedback gain of the comparators until 23 

the model produced pivots of comparable speed. A sweep of ten pivots (linearly spaced from 3 to 24 

30 degrees) with our model reveals a mean rotation rate of 1011 ms per radian, with a standard 25 

deviation of 239 ms per radian, putting the model’s speed on the same order of magnitude as that 26 

of the animal. 27 

 28 

The feedback gain that produced the animal-like pivot speeds caused the model to 29 

overshoot the target and oscillate around it or destabilize. Therefore we introduced a “tolerance” 30 

to each feedback loop, that is, a range around the desired state that evoked no corrective 31 

response. This was implemented by hyperpolarizing the neurons in the comparator networks 32 

(Too Low, Too High, etc.) in Figure 3 and Figure 4. The impact of this addition is shown in 33 

Figure 5. Introducing a moderate tolerance to the rotation (+/- 2 degrees), longitudinal translation 34 

(+/- 1.5 mm), and height (+/- 1 mm) control networks greatly improved the stability of the model 35 

while allowing for mantis-like speeds. These values were selected by sweeping tolerance values 36 

for each control loop and comparing the model’s performance, as shown in Figure 5. 37 

 38 

Leg Kinematics of Pivots 39 

Since the posture and orientation controllers do not explicitly specify position commands 40 

for the joints, we analyzed the leg motion during pivots generated by this control system. We 41 

observe that the animal can pivot itself toward prey from a variety of initial leg postures, so our 42 

model must capture this adaptability. To test model performance, we generated families of 43 

curves in which one joint’s initial rotation was modified in increments of 10% of its range of 44 

motion. The model was then allowed to achieve equilibrium due to the body position control 45 
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network in Figure 4, and then commanded to rotate the thorax 30 degrees, roughly the largest 1 

pivot we observed in the animal. 2 

 3 

The model is sensitive to some initial T2 FTi joint rotations, as shown in Figure 6. When 4 

the contralateral, or pushing leg’s FTi angles were varied, the model rotated to within 10% of the 5 

target rotation from 55% of starting positions. The trials in which it did not succeed were those in 6 

which the leg began from an already extended pose; the leg effectively run out of range of 7 

motion. When the ipsilateral, or pulling leg’s FTi angles were swept, the model rotated to within 8 

10% of the target rotation from 82% of starting positions. The model failed to pivot properly 9 

when the FTi began too flexed, not allowing it to flex any further and pull the body laterally. 10 

However, this was only a limitation when the joint began within 10% of its most flexed position. 11 

Observing the animal reveals that it may take single steps with one leg if it reaches its range of 12 

motion, but modeling such an action is outside the scope of this model. Overall, the  13 
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model was successful in 15 of 22 initial T2 FTi joint rotations.  1 

 2 

The T2 CTr starting angle was not varied in this way because in our model, it only 3 

receives feedback about body height, not body rotation. However, one can see that the CTr 4 

 
Figure 5 – For the model to quickly and accurately orient toward prey, the feedback loops in Figure 3 and Figure 

4 need to have properly tuned tolerances, that is, a small range of error that produces no corrective action. A. The 

tolerance on the longitudinal translation feedback loop was swept. The different traces show a variety of 

responses depending on the tolerance. B. When the tolerance is zero or small, the feedback induces oscillation 

about the desired orientation. C. When the tolerance is moderate (1.5 mm in our model), the model moves quickly 

and accurately. D. When the tolerance is large, the model does not oscillate, but is too inaccurate to orient the 

model toward the prey.  
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extends when the FTi becomes too flexed or extended to maintain body height, as seen in other 1 

insects (Bucher et al., 2003; Cruse et al., 1989). These data also qualitatively agree with 2 

previously reported two-dimensional data collected from striking mantids, in which the 3 

contralateral T2 CTr joint extends significantly during most pivots, while the ipsilateral T2 CTr 4 

shows comparatively less motion (Cleal & Prete, 1996). 5 

 6 

 Sweeping the T3 CTr joint rotations yielded similar success rates, shown in Figure 7. 7 

Overall the model pivoted successfully in 14 of 22 initial postures. When the CTr was started in 8 

a very flexed position (dark traces, Figure 7), the tarsus of that leg could not reach the ground, 9 

and the model could not support itself. When the joint was free to rotate, the leg then had to 10 

extend toward the ground and first lift the body, then pivot. Not surprisingly, these pivots were 11 

rarely accurate, apparently because the FTi joint ran out of range of motion (Figure 7, left 12 

column). When the contralateral CTr was started in an extended position, the model hit the limits 13 

of its range of motion and failed to rotate accurately. In a few cases, individual legs did not 14 

maintain ground contact, causing the legs to move freely through the air rather than moving the 15 

body toward the target. Insects use their tarsi to grip the substrate and prevent their feet from 16 

lifting (Bässler, 1983). Our current model, however, does not include tarsal gripping, leading to 17 

occasional out-of-ground-plane motions. In spite of this shortcoming, the model’s control system 18 

is flexible enough to succeed in most, but not all, starting postures.  19 

 20 

Effect of Body Translation on Leg Kinematics 21 

  These data were collected from trials in which the model maintained its longitudinal (i.e. 22 

forward and backward) position. The animal, however, often moves forward or backward while 23 

executing a pivot. As observed in escaping cockroaches as they pivot, executing a different 24 

motion may require drastically different leg motion. For instance, some joints change their range 25 

of motion, or even change direction, when stimulus is applied at different angles (Nye & 26 

Ritzmann, 1992). Is this change the result of a totally different signal from the higher command 27 

centers, or can these unique motions be produced by the same control network, whose 28 

connectivity is never modulated?  29 

 30 

 We hypothesized that the structure of our control system did not need to be varied by 31 

descending commands to produce the same kind of drastic kinematic changes seen in the animal. 32 

To test it, the model was made to perform a variety of different rotations while moving forward 33 

the same amount, or vice versa. Based on previous data collected in cockroaches (Nye & 34 

Ritzmann, 1992) and mantids (Cleal & Prete, 1996), we expected to see two changes in joint 35 

motion. The first is that the ipsilateral T3 CTr joint should change from flexion to extension as 36 

the model translates further forward during a pivot. Second, the contralateral T2 FTi joint should 37 

switch from flexing to extending as the model rotates further for the same forward translation. 38 

 39 

 The results from these experiments are shown in Figure 8. The first column shows that 40 

the ipsilateral T3 CTr joint changes direction as the model’s forward translation is varied from 0 41 

mm to 10 mm while executing a 0.25 radian pivot. This is qualitatively consistent with 42 

observations in animals. The second column shows that the contralateral T2 FTi joint changes 43 

from flexion during forward translation to extension when translating and pivoting 44 

simultaneously. This effect is not as dramatic as the T3 CTr, likely because the ThC joints 45 

contribute to both translation and rotation control in our model. However, these data show that 46 
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this single network with unchanging connectivity is capable of producing the bifurcations in leg 1 

joint kinematics observed in the animal due to the combination of feedback from the body 2 

rotation controller in Figure 3 and posture controller in Figure 4. Figure 8 shows that these are 3 

actively commanded and are not simply the result of mechanical coupling between the legs. 4 

However, removing this mechanical coupling (that is, removing the ground) does cause the feet 5 

to move at different rates, meaning that the coordinated motion of the model depends on some 6 

degree of mechanical coupling.  7 
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Figure 6 – Data showing head rotation and T2 leg joint rotation when the T2 FTi joint is started from different 

positions. The head and prothorax were locked with respect to the mesothorax, meaning that only the legs could 

rotate the head toward the target at 0.5 radian. In 82% of starting T2 FTi joint angles, the model oriented within 
10% of the target, plus the tolerance (red bar). The T2 CTr joint angles also vary, because this joint controls body 

height, and must compensate for the change in FTi angle. The model fails to accurately pivot when its joints 

reach their range of motion, that is, when the contralateral leg fully extends its FTi joint, or when the ipsilateral 

fully flexes it. 
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Figure 7 – Data showing head rotation and T3 leg joint rotation when the T3 CTr joint is started from different 

positions. The head and prothorax were locked with respect to the mesothorax, meaning that only the legs could 

rotate the head toward the target at 0.5 radian. In 64% of starting postures, the model oriented the head within 
10% of the target, plus the tolerance (red bar). Note that the control system can make the CTr joint flex (decrease) 

or extend (increase) depending on the starting point. 

 1 
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Figure 8 – Kinematic data from trials showing that joints may change their direction of travel for the same 

rotation or translation, not based on descending commands, but based on the accompanying translation or 

rotation, respectively. (left) The model was made to rotate 0.25 radian while sweeping 10 mm of possible 

translation. The T3 CTr joint changes from flexion to extension as the forward translation of the model increases 

for the same body rotation. (right) The model was made to translate 10 mm while sweeping 0.4 radian of possible 

rotation. The T2 FTi joint changes from flexion to extension as the model increases its rotation for the same 

translation. The bottom row shows data from the Visual-Proprioception Integration neurons in the center shaded 

columns of Figure 3 and Figure 4. When their activation is above the dashed line, the joint is actively commanded 

to extend. When their activation is below the dashed line, the joint is actively commanded to flex. These data 
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show that the extension and flexion of the joints are the result of descending commands, not the mechanical 

coupling of the legs. 

Comparison to 3D kinematics from the animal 1 

 Preliminary three-dimensional kinematics were collected from mantises as they pivoted, 2 

tracking prey in an open arena. As the method is improved, more data will be collected, but here 3 

we present data from a single trial for comparison to the model. The starting joint angles for the 4 

model were made as close to the animal’s as possible. The model was then commanded to 5 

execute a pivot and translation of the same magnitude as the animal. Data in Figure 9 shows that 6 

while the model and animal are not in total agreement, many of the same trends are captured. For 7 

instance, joints in the ipsilateral T2 leg flex to rotate the body. Joints in the ipsilateral T3 leg 8 

largely remain stationary, acting as a pivot point, while those in the contralateral T3 leg extend a 9 

small amount to push the animal or model forward and to the left. Much more data will need to 10 

be collected to make definitive conclusions about how the leg joints are used to propel the body. 11 
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Figure 9 – Kinematic data from a single pivot from the animal (blue) and the model (red). The model pivoted 

from a posture as close to the animal’s as possible. The vertical axis of the plots are all the same scale, although 

they may be shifted from one another. Many of the same trends are seen in the model and animal, although the 

specific kinematics are not the same in many cases. Collecting additional 3D data from the animal will help 
inform the model in the future. 

 1 

Discussion 2 
We present a hypothetical posture controller for modeling praying mantis pre-strike 3 

postural adjustments built upon joint controllers based on details of insect neurobiology. The 4 

control system is built from realistic models of muscles and neurons, forcing us to address details 5 
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of how such networks function. The low-level controller has structures analogous to those known 1 

to exist in animals (Field & Matheson, 1998; Wolf & Büschges, 1995), and exhibits the same 2 

filtering properties as those in other insects (D. Bässler et al., 1996). As a result, our posture 3 

control networks and the form of descending commands in our model are more thorough 4 

hypotheses than one could produce with a simpler model, and suggest as-yet unexamined 5 

mechanisms that may be found in the animal. Examples in this study include feedback tolerances 6 

to avoid overshoot due to body inertia (Figure 5), and the incorporation of local proprioceptive 7 

information with simple descending commands to produce joint torque commands (Equation 8 

(26), Figure 3, and Figure 4). 9 

 10 

Low-level networks 11 

By modeling low-level circuits, we were able to show how simple descending commands 12 

might interact with local control networks to produce adaptive posture control. Starting with a 13 

detailed model of insect joint control will also allow us to explore different behaviors in the 14 

future. Optimizing controller parameters to produce a single behavior (Zakotnik et al., 2006) 15 

would limit the possibility of extending this model. The animal does not have a nervous system 16 

tuned for a single behavior, and for this reason we have built a model based on what is known 17 

about insect feedback control of muscles (D. Bässler et al., 1996; Wolf & Büschges, 1995), and 18 

calculated parameters based each joint’s function and capability (i.e. range of motion, speed, and 19 

torque). 20 

 21 

Making such a detailed model also required deliberate consideration of the nature of 22 

descending commands that would be necessary for the animal to produce pivoting motions. In 23 

the real world the animal must orient toward prey from many different foot positions, making it 24 

unlikely that it sends descending commands in the form of joint positions. Instead, we combine 25 

local proprioception with simple descending commands to produce more adaptive and flexible 26 

targeting motions, within the bounds of what is known about insect joint control. This feedback-27 

based model can rotate the thorax as much as we see in the animal from many different starting 28 

configurations, not because of complicated descending commands, but instead by processing 29 

descending commands with the local control networks. By constructing a control system with a 30 

topology like that of insects, we were able to hypothesize how descending commands affect local 31 

controllers to produce the adaptable posture we observe in mantises. 32 

 33 

Our low-level controller model is also important to consider because of the compliance it 34 

offers. Joints may produce torques that resist one another, but the passive forces in the muscles 35 

allow the system to overcome these small discrepancies and execute the pivots without locking 36 

up or moving the feet. This is an especially important lesson in robotics, in which such elasticity 37 

is not common (although it is becoming more common: Paskarbeit, Schilling, Schmitz, & 38 

Schneider, 2015; Spröwitz, Ajallooeian, Tuleu, & Ijspeert, 2014; von Twickel, Hild, Siedel, 39 

Patel, & Pasemann, 2011). 40 

 41 

Task Level Control of Pivots 42 

Our results show how one control system, without descending commands to change 43 

connectivity, may produce joint kinematics that are markedly different under minimally different 44 

circumstances. Instead of the animal executing a discrete type 1 or type 2 pivot (Cleal & Prete, 45 

1996), the brain may instead simply send commands to translate and rotate some amount in the 46 
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course of tracking prey. Our model suggests that this signal need not be complicated; the local 1 

networks in the thoracic ganglia could be programmed, in the form of static connections that fuse 2 

local proprioception with descending commands, to automatically convert intended body motion 3 

into joint motion. This idea is an application of task-level control, in which one or more higher 4 

level goals (e.g. appendage location in 3D space, etc.) are used to produce control signals for 5 

multiple joints (Ting et al., 2009). Such a control strategy often has an infinite number of 6 

solutions, and thus depends on constraints to find a unique course of action. In our controller, 7 

each T2 leg actively controls four degrees of freedom, and each leg receives feedback from three 8 

feedback loops: leg attachment height, head rotation, and forward translation. However, 9 

synergies are also present that reduce the dimensionality: the FTi and ThC3 joints work in unison 10 

to rotate the body, and the FTi and ThC1 joints work in unison to move the body forward. The 11 

animal, however, may have more flexible strategies for reducing dimensionality that let it exploit 12 

the extra degrees of freedom to accomplish other tasks.  13 

 14 

This redundancy is further complicated by the fact that the environment may impose 15 

more constraints on motion. For instance, when more than one leg is in contact with the ground 16 

at once, it can be very difficult to produce joint output that does not violate the constraint that no 17 

feet move. One biological solution, called the active reaction, is to control extra joints with 18 

positive velocity feedback, which amplifies the motion imposed on a joint by the ground or other 19 

joints (Lévy & Cruse, 2008a; Schmitz et al., 2008). This method has also been tested in 20 

simulation and on a robot; Walknet uses leg-level feedback loops like those in this paper to 21 

control body height with one joint per leg, and the rest of the joints use the active reaction while 22 

walking (Schmitz et al., 2008). The active reaction may improve the pivots described in this 23 

paper by reducing or eliminating scenarios in which joints repel one another. For instance, joints 24 

on the T2 legs that currently control forward translation could instead be controlled by the active 25 

reaction, and move in response to pushing from the T3 CTr joints, which are known to produce 26 

thrust in other insects (Full, Blickhan, & Ting, 1991). 27 

 28 

Another way to ensure joints do not resist each other is to use an “internal puppet” for 29 

kinematic planning to achieve high-level goals (Schilling, Hoinville, et al., 2013). Joint motions 30 

that satisfy the principle of least action can be calculated by pulling a passive model of the body 31 

in the intended direction of travel, letting the joints move subject to constraints imposed by the 32 

world (or a simulation of it). This technique is capable of solving complicated inverse kinematics 33 

problems and can be used for motion planning (Schilling, Paskarbeit, et al., 2013), but requires 34 

that the modeler construct a kinematic model of the animat and encode it within the controller. It 35 

is unknown whether insects possess such detailed internal models, and our work has not needed 36 

one so far. However, it is possible that replicating more complicated hunting behaviors in the 37 

future may require an internal model for planning, at which point we will implement one. 38 

 39 

Comparison to Animal Data, and Related Future Work 40 

 We will need to continue to collect 3D kinematic data of mantis pivots to better 41 

understand how it uses its legs to orient toward prey. The feedback loops that make up the 42 

posture and orientation control networks in this work were based on observations of mantises 43 

and other insects (Cleal & Prete, 1996; Cruse et al., 1989; Nye & Ritzmann, 1992), the 44 

orientation of leg joints (i.e. the leg Jacobian), and experimentation. They do not represent loops 45 

that must be present in the animal, or the only possible combination of them. Previous studies 46 
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have used thorough 3D kinematics to better inform network connectivity and improve the 1 

accuracy of similar models (Bender, Simpson, & Ritzmann, 2010; Szczecinski et al., 2013), and 2 

improved 3D data, specifically of the ThC joints, would also benefit this model. 3 

 4 

 This lack of ThC data was likely responsible for much of the disagreement between 5 

model and animal data in Figure 9. When attempting to start the simulation from the starting 6 

posture of the animal, placing all four feet on the ground was impossible without ThC 7 

knowledge. Collecting these data in the future will allow us to make a more detailed comparison 8 

with the animal, and better tune the model’s high-level network parameters, such as the strength 9 

of descending commands to each joint controller. This has the benefit not only of producing a 10 

more effective model of the animal (Cruse et al., 1998), but represents an opportunity to disprove 11 

elements of our hypothetical model that cannot replicate animal behavior, even when tuned as 12 

well as possible. 13 

Conclusions 14 

 We present a neuromechanical model of a praying mantis that we use to explore prey-15 

orienting stationary pivots (i.e. rotations and translations) seen in the animal. Building such a 16 

detailed model enables us to make detailed hypotheses, specifically that descending commands 17 

from the CX that control visually-guided pivots could be as minimal as a direction and 18 

magnitude to pivot the body. These signals, when combined with proprioceptors from the leg 19 

joints, are capable of producing a wide range of pivots from many different starting 20 

configurations.  21 
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