
Bioinspiration & Biomimetics      

PAPER

Texture recognition and localization in amorphous robotic skin
To cite this article: Dana Hughes and Nikolaus Correll 2015 Bioinspir. Biomim. 10 055002

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is© .

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for
reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.
All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 3.129.19.251 on 06/05/2024 at 20:01

https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1748-3190/10/5/055002


Texture Recognition and Localization in Amorphous Robotic Skin

Dana Hughes and Nikolaus Correll

Department of Computer Science,

University of Colorado–Boulder,

UCB430, Boulder, CO 80309-0430

{dana.hughes, nikolaus.correll}@colorado.edu

June 8, 2015

Abstract

We present a soft robotic skin that can recognize and localize texture using a distributed set of sensors

and computational elements that are inspired by the Pacinian corpuscle, the fast adapting, uniformly

spaced mechanoreceptor with a wide receptive field, which is responsive to vibrations due to rubbing

or slip on the skin. Tactile sensing and texture recognition is important for controlled manipulation of

objects and navigating in one’s environment. Yet, providing robotic systems or prosthetic devices with

such capability at high density and bandwidth remains challenging. Each sensor node in the presented

skin is created by collocating computational elements with individual microphones. These nodes are

networked in a lattice and embedded in EcoFlex rubber, forming an amorphous medium. Unlike exist-

ing skins consisting of passive sensor arrays that feed into a central computer, our approach allows for

detecting, conditioning and processing of tactile signals in-skin, facilitating the use of high-bandwidth

signals, such as vibration, and allowing nodes to respond only to signals of interest. Communication

between nodes allows the skin to localize the source of a stimulus, such as rubbing or slip, in a decen-

tralized manner. Signal processing by individual nodes allows the skin to estimate the material touched.

Combining these two capabilities, the skin is able to convert high-bandwidth, spatiotemporal informa-

tion into low-bandwidth, event driven information. Unlike taxel-based sensing arrays, this amorphous

approach greatly reduces the computational load on the central robotic system. We describe the design,

analysis, construction, instrumentation and programming of the robotic skin. We demonstrate that a

2.8 square meter skin with 10 sensing nodes is capable of localizing stimulus to within 2 centimeters,

and that an individual sensing node can identify 15 textures with an accuracy of 71%. Finally, we

discuss how such a skin could be used for full-body sensing in existing robots, augment existing sensing

modalities, and how this material may be useful in robotic grasping tasks.

Keywords: robotic skin, amorphous materials, tactile sensing, texture recognition

1 Introduction

In humans, the sense of touch is critical for a variety of tasks: grasping, manipulating and identifying

objects, detecting collisions with the environment, and perception and control of the body [1, 2]. Devel-

oping a sense of touch in robotic devices has been explored for several decades. Within the last decade,

tactile sensors have evolved from being located solely on a fingertip or hand to sensor arrays for full body

sensing [3]. Robotic arms equipped with full-body tactile sensing become capable of navigating cluttered
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environments and avoid damaging fragile objects [4]. This capability becomes even more important with

direct human-robot interaction, such as with nursing robotic assistants or robotic companions [5]. Incor-

porating a sense of touch can improve the robustness of grasping tasks, such as when grasping with an end

effector [6, 7] or with full-body manipulation of large objects [8]. In addition, autonomous mobile robots

can utilize full-body tactile sensing in environments where vision may be limited by occlusion of obstacles,

such as when exploring an object by manipulating it [9] or when navigating through bushes and trees or

manipulating foliage during a foraging task. Here, the ability to not only sense touch, but also texture

might add a whole new dimension of environmental awareness both during human-robot interaction and

when navigating through or manipulating the environment.

Figure 1: A soft, amorphous texture-sensitive skin mounted on the back of a Baxter robot.

The move to full-body, multi-modal tactile sensing presents several engineering challenges which are

not of concern with fingertip and hand sensors [10, 11]. Sensor arrays and networks suffer scalability

issues as the number of sensors becomes large and their required bandwidth increases. Communication

bandwidth and centralized processing of measured values are both bottlenecks in the system, limiting the

number of sensors (and consequently, the sensor density) and individual sensor bandwidth. The ability to

tessillage individual sensors into a large array places constraints on the shape of a sensor. Adhering sensors

to complex robotic structures may result in gaps in the tessellation, severed communication channels and

areas where sensors must be modified or omitted [12].

This paper presents a soft, autonomous sensing skin for localizing and identifying textures rubbed

against the skin that can be manufactured in arbitrary shapes or sizes, only limited by the size and spacing

of individual sensor nodes. We propose a design that considers the skin as an amorphous material capable
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of processing stimuli within the material itself, rather than a matrix of densely packed individual sensors

acting as taxels and communicating measurements directly to a central processor. The tight coupling

between physical and computational properties has been explored recently in the broader context of robotic

materials [13]. Collocating microcontrollers with sensors allows for local and distributed processing of

sensor measurements. The skin only needs to communicate with external devices when an event of interest

occurs (e.g., the skin rubs against an obstacle), reducing communication and processing bandwidth. This is

particularly important when moving from binary tactile sensors to high-bandwidth sensors such as textures,

which require information at bandwidths in the order of hundreds of Hertz. A preliminary version of this

work has been presented in [14] and has been extended by error analysis as a function of spatial location

of each sensing node.

The remainder of the paper is organized as follows. Section 2 provides information regarding the

biological motivation for the approach presented, and related work in the robotics field. Section 3 describes

the design and manufacture of the robotic skin and the distributed algorithm used to locate and identify

textures. Section 4 describes vibration propagation within the skin, source localization and uncertainty

analysis. Section 5 discusses in-network texture identification. Section 6 discusses the benefits to this

approach, applications in robotics, and future work to improve upon the initial prototype.

2 Background

Work has been performed over the last several decades to provide human-like tactile sensing capabilities

in robotic skin. Tactile sensitive skins in robotics are typically designed to mimic sensing modalities found

in humans. In addition, there exists several engineering and application challenges once such a skin is

designed. Pressure sensing, which most resembles the behavior of Merkel’s discs and Ruffini corpuscles,

has seen a majority of the research in robotic skins over the last several decades. Pressure can be detected

by measuring changes in resistance [15, 16, 17], capacitance [18, 19], or optical properties [20, 21] of

the material under pressure, or by measuring changes in magnetic or electric fields [22, 23]. Detecting

vibrations, which mimics the role of Pacinian corpuscles, have been performed using accelerometers [7] and

simple microphones [24, 25].

Early work into texture detection includes the development of a fingertip for identifying texture [26].

This fingertip combined slip detection, temperature, pressure sensors and vision to train a neural network

to distinguish between 20 different textures with almost 100% accuracy. More recently, a robotic fingertip

was developed which was capable of identifying textures from a database of 117 textures with an accuracy

of 95.4% using a Bayesian classifier [27]. As comprehensively surveyed in [3], the last decade has seen

tactile sensing evolve from sensors for fingertips and hands to sensor arrays suitable for full-body tactile

sensing, particularly for force and pressure sensing [28, 29, 30, 31].

Robust texture recognition has several applications in robotics. Navigation using only tactile informa-

tion of the terrain has been explored [32], where tactile information was used to orient a wheeled robot

parallel to the boundary between a tiled and carpeted terrain. In humanoid robots, knowledge of contact

forces in a robotic arm is useful when reaching into and navigating unknown, cluttered environments [4].

In such cases, even categorizing the compliance (rigid vs. hard) and mobility (movable vs. fixed) of objects

the arm makes contact allows for efficient searching and mapping cluttered volumes [33]. In the domain

of assistive robotics, such knowledge is critical to ensure safe interaction between humans and robots [5].
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Understanding the shape and material properties of objects is also very beneficial in grasping. In humans,

tactile feedback is used to control grasping pressure [1]. This approach has been mimicked for grasping

with parallel-jaw grippers [7]. Tactile sensing also enables learning stable grasps for unknown objects,

reducing the need for object models [34], or using the entire body of the robot for grasping large objects

[35]. Finally, tactile sensing is an important capability in the emerging domain of soft robotics [36], possi-

bly allowing high-degree of freedom soft manipulator to autonomously explore and conform to an object’s

surface properties and shape.

A central issue with full-body tactile sensing is transmitting the signals from the sensors to a commu-

nication sink for further processing. Arranging the sensors in a matrix is one solution, and is the approach

used by [29] and [30], among others, for a capacitive pressure sensing skin. An alternative is to organize the

sensors in a hierarchical bus. Using this approach, [37] constructed “cut-and-paste” tactile sensing sheets

whose 1,024 sensors in groups of 32 can be connected to an SMBus. Also, [18] demonstrated a system with

192 capacitive pressure sensors that feed into a hierarchical bus with increasing bandwidth (I2C to CAN)

and can detect binary touch events at 50 Hz. This system has evolved to the ROBOSKIN project [31]. As

the design maxed out the bandwidth of the CAN bus, any additional sensor sharing this communication

channel would drastically reduce the sensor bandwidth. Finally, in [38] capacitive skin patches have been

organized into slave nodes connected to a master node using an EtherCAT-based communication bus. This

distributed architecture allows for a large pressure sensitive skin to be implemented on humanoid robots

while ensuring timing constraints for real-time control using tactile feedback is satisfied. A distributed

tactile architecture [35] provides a self-organizing, full body tactile feedback system which allows tactile

stimulation to be transformed into reactive motion.

The focus of this paper is not to replicate the results of previous work described above, but to investigate

an amorphous architecture and distributed algorithms that can integrate such high-bandwidth, multi-modal

sensors into a stretchable skin in a scalable and robust fashion. We focus on the Pacinian corpuscles as this

sense has the highest bandwidth requirement. The full-body arrays described in [3] have focused primarily

on the development of the sensors themselves and transduction of the signal. There is still much need for

suitable conditioning and processing of the signal within the sensor network, prior to passing the signal to

a central processor [3]. Finally, while the works on distributed tactile architectures have improved on the

communication requirements of large sensing skins, the works have not explored the capability of significant

in-network processing of information, such as texture localization and recognition, as presented here.

3 Skin Design

Vibration sensitive skin is of particular interest in this paper. There currently exists a large body of

literature for pressure sensitive skins, developing skins capable of detecting and processing vibrations can

provide an additional sensing modality for robotic applications. Detecting vibrations provides unique

engineering challenges, such as high-bandwidth signals, and opportunities, such as non-local detection of

stimuli.

Glabrous skin, the hairless region of human skin, contains four different mechanoreceptors used for

tactile perception, as shown in Figure 2 [39, 40, 41]. Individually, these receptors provide sensitivity

to light touch and low frequency vibrations (Meissner’s corpuscles), skin deformation and static force

(Merkel’s discs), skin stretching and tangential shear (Ruffini corpuscles) and high-frequency vibrations

4

Page 4 of 28CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  BB-100423.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(Pacinian corpuscles). This investigation is specifically interested in Pacinian corpuscles. These receptors

have been shown to be the primary means of perception of various textures [42], and an equivalent tactile

sensor for robotic skin can augment pressure sensitive skins. In addition, Pacinian corpuscles have a very

wide receptive field, and are capable of responding to stimuli occuring several centimeters away from the

receptor [40]. This motivates using a sparse network of sensors, rather than a dense array, for this type of

perception.

By collocating computing elements with individual sensors, the skin itself may be programmed to pro-

cess the signal and determine when a signal should be reported to an external device for further processing.

Individual sensor nodes or local neighborhoods of sensors may also perform in-network processing of the

signal, possibly reducing several data points to a single, predefined event. Combining distributed sensing

and computation with known material properties shifts this approach of skin design from one of a sensor

array to an amorphous material. The material may be considered amorphous, both in a physical and

computational sense, in that there is no requirements on the final shape of the skin nor the location of the

sensing nodes. The skin may be cut to a required shape after manufacturing, so long as the underlying

network is not divided into two distinct region. Furthermore, while the sensing nodes are equally spaced in

the prototype, the localization and texture classification algorithms work independently of node spacing,

and only require the position of the node within the skin.

For this investigation, we constructed a prototype skin combining texture sensing and localized com-

putation. The purpose of this prototype is to explore texture detection and identification, networking

issues and stimulus localization. The skin prototype consists of a network of ten sensor nodes embedded

in silicone rubber (Figure 1). The task of texture recognition demonstrates the ability of this type of skin

to solve the computation and communication bottlenecks associated with sensor arrays, while stimulus

localization demonstrates how material selection and skin design can be leveraged.

3.1 Design and Manufacturing

Individual sensor nodes, shown in Figure 3, left, are first placed on a flexible neoprene rubber mesh

(McMaster) and then embedded into silicone rubber (Ecoflex Supersoft 0030). The communication bus

wires are woven in the rubber mesh. The wires are woven in a spiraling pattern, providing strain relief for

the wires and ensuring the resulting skin remains stretchable. When connected to the sensor nodes, the

wires securely attaches the sensor nodes to the mesh. Connecting the nodes and communication wires to

a rubber mesh before embedding in silicone is necessary, as these components would otherwise eventually

tear out of the silicone during use of the skin. Figure 3, middle, shows the sensor network and mesh

before embedding in silicone rubber. The sensor nodes are spaced 15 cm apart. Based on the resonant

frequency of the Pacinian corpuscle, 250Hz is considered the mid-frequency of interest to be measured by

the microphones. In the silicone rubber, 15 cm corresponds to a distance half of a wavelength of sound at

250 Hz. The overall size of the mesh is approximately 61 cm x 43 cm. For comparison,the spatial acuity of

vibration on the human torso (and hence the expected spacing of Pacinian corpuscles), based on two-point

discrimination experiments, is 2 to 3 cm [44].

Ecoflex is a two-part liquid rubber which cures solid. The sensor network and mesh are placed in a

form, the bottom of which is covered with 60-grit aluminum oxide sandpaper to create a surface texture

similar to a fingertip. The male human fingertip contains an average of 22.4 ridges per cm, or a distance of
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Figure 2: Relative location of mechanoreceptors in human skin. Image c©AAAS [43]

0.45 mm between ridges [45]. The grit size of 60-grit sandpaper is 0.25 mm [46], which roughly corresponds

to the groove width of a human fingertip. Figure 3, right, shows the surface of the prototype skin after

the sensor network is embedded in silicone. The resulting skin is approximately 1 cm in thickness. For
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comparison, the thickness of human skin, measures at the forearm, ranges from 0.82 mm and 1.19 mm [47].

Mechanically, Ecoflex has a Young’s modulus of 125 kPa [48], while human skin has a higher modulus of

420-850 kPa, depending on age [49]. Thickness and mechanical properties of the skin are dependent on

the size of sensing components and available silicone rubber, respectively.

3.2 Sensor Node Network

Each sensor node is composed of an Atmel ATxmega128A3U microcontroller attached to a single WM-

64K microphone, which serves as a vibration sensor. The WM-64K microphone is an omnidirectional

microphone with a sensitivity of -45dB, and a signal-to-noise ratio of 58dB. The microphone is attached

to the microcontroller’s 12-bit analog-digital converter (ADC) through an operational amplifier (LM358).

Each microcontroller can communicate with six neighboring nodes in the network using six hardware serial

ports (USARTs) at 115kbps. The 115kbps data rate is the fastest serial communication rate available

on the microcontroller. Two wire interfaces, such as I2C, operate at a similar rate (100kHz or 400kHz),

but may only address a single device at a given time, whereas the six USART ports can communicate

in parallel. Using these six independent communication channels allows arranging the sensor nodes in a

hexagonal lattice packing [50]. Communication channels consist of a four-wire bus consisting of power,

ground, transmit and receive lines. A seventh serial port is optionally available on each node, and is

only used for interfacing to a computer for initial programming and retrieving data at the sink node.

Nodes can propagate a program in a viral fashion throughout the network. The absence of any central

component allows for including or removing nodes at any time. Each node can calculate a unique ID based

on manufacturing information (i.e., tray number, chip row and column, etc.) written into memory of the

microcontroller during production.

Routine tasks are performed in each sensing node through the use of regularly scheduled interrupts.

Communication is performed asynchronously through the use of direct memory access (DMA) channels.

The DMA channels allows packets to be written into or read from predefined buffers in the microcontroller’s

memory independent of the central processing unit, and ensures that the main program does not need to

pause measurements or computation to process communication packets. A clocked interrupt occuring

every 10 µs processes received packets and transmits pending packets. Microphone samples are recorded

into a 256-sample circular buffer at a rate of 1 kHz. When the buffer is full, the spectral energy of the

signal is calculated using the Fast Fourier Transform (FFT), resulting in 128 spectral bins. Each spectral

bin consists of the energy in a band of frequencies in the original signal. The FFT is a computationally

efficient means to compute the discrete Fourier transform (DFT) of the signal. For a 256 sample signal,

the FFT computes the energy spectrum 8 times faster than the DFT. The sensing nodes require 15.9 ms to

calcualte the FFT of the sample buffer. Values for the ambient and transient spectral energy are updated

from the calculated spectral energy. Each node keeps track of information from neighboring nodes with

a table consisting of the neighboring node ID, position in the skin and the overall energy of the transient

signal received at that node.

For the purpose of this work, information is propagated using a simple flooding algorithm. That is,

whenever a sensor node detects a texture, results from classification are flooded through the network and

can be collected anywhere. In order to limit communication to the immediate neighborhood during texture

localization, we have implemented a Bloom-filter based multicast routing algorithm [51, 52].
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Figure 3: Left: Close-up on an individual sensor node. Middle: sensor network woven into a neoprene
lattice. Right: Sensor node network embedded into EcoFlexTM rubber. Finished skin with 60-grit surface
texture.

To compare the reliability and robustness of the proposed network topology to that of a bus-like

architecture, we conducted two sets of experiments. First, we sent 64 byte packets from node 2 to node

3 in Figure 4 (three hops) using a simple flooding algorithm with all adjacent nodes enabled. Figure

5 shows the percentage of received packets as a function of packet loss at each intermediate node for

transport through the amorphous network (solid line) as a function of individual node failure rate (e.g.,

dropped packet, failed bus connection, etc.). In a second experiment, we removed all nodes labeled X

from the network and sent packets from the node 1 to node 4 (6 hops) and measured throughput at each

node for different packet loss (dashed lines). Results show that the amorphous network provides higher

throughput than communication over one hop with nodes deliberately dropping 30% of the packets, and

over two hops with nodes dropping 55% of the packets.

Figure 4: Source and sink nodes used in networking experiment

Individual sensing nodes are designed to operate in an event-based manner, such as detecting a transient

signal or receiving packets from other nodes. To accommodate this, sensing nodes are treated as state

machines with five distinct states, as shown in Figure 6. Nodes respond to stimuli and received packets

differently depending on the current state. The behavior of nodes in each state, including which states

nodes will transition to, are described below.

When nodes are initially started, they enter a CALIBRATION state. Calibration is used to verify the

DC offset of the ADC, and estimate the initial level of the ambient signal. The node fills the microphone

sample buffer and performs an FFT on the signal. If the DC offset is outside a predefined threshold, the
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A(f, t) = αS(f, t) + (1− α)A(f, t− 1) (1)

where A(f, t) is the estimated ambient noise at time slice t, and α is a factor representing the rate

at which the ambient signal is updated. High values of α imply that the ambient estimation is sensitive

to recent events, while lower values result in an ambient estimation which responds slower to changes in

background noise. When the background noise is steady, there should be little change in A(f, t) over time.

For this investigation, a value of 0.05 was used as a smoothing constants, as suggested in [53].

The transient spectrum, T (f, t) is calculated as the difference between the spectrum of the measured

signal and the ambient noise, or

T (f, t) = min(S(f, t)−A(f, t), 0) (2)

If the total energy in the transient signal, which is simply the sum over all frequency bins in the

transient spectrum, exceeds the current ambient level by a threshold, the node transitions to the SENSED

state. While in the IDLE state, nodes ignore received packets, simply forwarding to neighboring nodes.

The purpose of the SENSED state is to ensure that vibrations have propagated through the skin and

has been recorded by neighboring nodes. The node records its measured transient energy value into its local

table. The node then waits a random amount of time between 5 and 25 milliseconds, with 1 millisecond

spacing. A vibration stimulation will be detected by multiple nodes on the skin. The random delay ensures

that neighboring nodes have time to process a stimulus locally, and helps to balance communication load

by ensuring that a group of nodes do not flood the communication channels simultaneously. If the timer

expires, or if the node receives a packet from a neighboring node containing the neighbor’s transient energy

value, it transitions to the SHARE state.

In the SHARE state, the node waits 50 milliseconds to ensure that it receives information about a

vibration from all neighboring nodes. When entering this state, the node broadcasts a packet containing

its ID, location and transient energy value. During this phase, any received packets containing neighboring

transient energy values are added to the node’s local table. After the 50 millisecond time limit, the node

checks its table to determine if its transient energy value is higher than all neighboring node values. If the

node has the loudest transient energy value in its table, it transitions to the PROCESS state. Otherwise,

the local table is cleared and it transitions back to the IDLE state.

A node which has transitioned into the PROCESS state has received the most energy from a detected

source (i.e., the node is closest to the source). Theoretically, only one node should be in the PROCESS

state for a given detection. In the PROCESS state, the node first attempts to determine the position of

the source using the transient energies and locations in its local table. The node which performs processing

for a given stimulus performs both localization of the stimulus and classification of the texture. Position

is estimated first, and then the node classifies the texture of the material which caused the stimulation.

Localization is described in detail in Section 4 and texture identification is described in detail in Section

5. Finally, the node broadcasts a packet containing the position of the source of the stimulation, and the

classification of the texture. The node then transitions into the IDLE state.
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4 Localization of Stimulus

Localization of a stimulus can either be performed by determining which sensor detected the most intense

signal, as is the case in a densely packed sensor array, as in [18, 29, 54] or by utilizing the signals detected

from a collection of sparsely located nodes and knowledge of how a signal propagates through the skin’s

material. Pressure detection in robotic skin is often performed using a sensor array, which mirror the small,

well-defined receptive fields of Meissner corpuscles in human skin. Pacinian corpuscles exist in lower density

in the skin, and have much broader receptive fields. As such, we developed a sparse sensing approach to

localizing vibrations on the skin. The approach used in this paper is similar to sound source localization in

[55], albeit sound propagation in this investigation involves a different propagation medium and structure.

Vibrations propagate through the skin according to the following equation

I(r, ω) =
I0(F, ω)

r
(3)

where I is the intensity of the vibration measured at a distance r from the source of the vibration,

ω is the frequency of the vibration, and F is the displacement force of the vibration. The intensity of

the vibration at the source, I0, is dependent on the displacement force of the vibration and mechanical

properties of the skin (i.e., thickness, density and rigidity), which are assumed to be constant. Details on

the derivation of this equation are given in Appendix A. Performing calculations using a single frequency

(as may be done for localization), the source intensity I0 may be considered a constant.

A sound of sufficient intensity will be detected by various sensors throughout the skin. Figure 7

shows three nodes located at (x1, y1), (x2, y2) and (x3, y3), which measure a transient vibration signal with

intensities I1, I2 and I3, respectively. The position of the source of the vibration, (x, y) can be determined

by minimizing the following equation with respect to the source position

x, y = argmin
x,y

{I21 ((x− x1)
2 + (y − y1)

2)− I22 ((x− x2)
2 + (y − y2)

2)+

I21 ((x− x1)
2 + (y − y1)

2)− I23 ((x− x3)
2 + (y − y3)

2)}
(4)

Details on the derivation of this equation is given in Appendix B. Gradient descent is used to estimate

the position of the source, using the mean of the locations of each node involved in the measurement as an

initial guess. Based on the number of calculations performed, a single iteration of gradient descent requires

5.8 µs. Determining the position of the source may require up to 100 iteration for a very poor initial guess,

which we set as the upper limit on the number of iterations to perform for localizaton. Thus, localization

requires approximately 0.6 ms to calculate in the worse case.

4.1 Uncertainty Analysis

Equation 4 is convex with respect to the position of the stimulation source (x, y). Uncertainty in measured

values, however, will result in variation of the estimate of the position of the vibration source. Treating

measurements as samples from Gaussian random variables, error propagation can be used to determine

the uncertainty in the estimated source position [56]. Details on determining the uncertainty of source

position from noisy measurements are given in Appendix C.

To determine the effect of noisy measurements on the prediction of source location, uncertainty analysis
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Figure 7: Propagation of sound to various sensors from an arbitrary point on the skin.

was performed for various conditions. Specifically, source position uncertainty is estimated as a function

of sound intensity, sensor node spacing, and source position. The combination of these provide insight into

determining node spacing given a desired skin acuity and microphone sensitivity.

4.1.1 Source Intensity

The uncertainty of the estimate of the source position with respect to the intensity of the source is given in

Figure 8, left. The sensing nodes for this were spaced at 15 cm. This plot show a power-law relationship

between source intensity and source position uncertainty, with uncertainty in source location decreasing

as the intensity of the source increases. This is not surprising, given that the sound intensity decreases

inversely as a function of distance, r, and the presence of a r3/2 term in the Jacobian in Equation 20.

This prediction also provides a lower bound on the expected spatial acuity–the lowest source intensity

detectable by the microphone will give the highest location uncertainty expected in the skin.

4.1.2 Sensor Spacing

Figure 8, middle, shows the uncertainty of the source position estimate as a function of sensor spacing,

for sensor node spacings ranging from 1 cm to 20 cm. As nodes are spaced further apart, the relative

uncertainty in position appears to be bounded by a linear relationship with the node spacing. This

relationship could be used to determine the node spacing necessary for a desired tactile acuity.
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4.1.3 Source Location

To determine the effect on the relative position of the source with respect to the sensor nodes, the uncer-

tainty in source position estimate was calculated for the source at various positions, with sensing nodes

spaced 15 cm apart. Figure 8, right, gives the uncertainty of the position as a function of the location.

The position of the source moves from the midpoint between two sensor nodes to a third sensor node, as

shown in the inset of Figure 8, right.

Figure 8: Left: Uncertainty of position as a function of source intensity. Middle: Uncertainty of position
as a function of sensor spacing. Right: Uncertainty of position as a function of source location

4.2 Experimental Results

Two experiments were performed to verify the approach for localizing a vibrating stimulus on the skin.

These experiments consisted of pressing a 2 mm thick vibration motor with a 1 cm diameter at various

locations on the skin. The motor was placed so that the vibration footprint was a 1 cm diameter circle.

The motor vibrated with a centripetal force of 0.887 N at a frequency of 150 Hz. The size of the motor is

assumed to be much smaller than an area stimulated by rubbing, ensuring that the results from the motor

experiment relate well to localizing texture signal sources in practice.

4.2.1 Sound Propagation

To validate sound propagation described in Equation 3, we pressed the vibration motor at specific distances

from a microphone sensor against the skin. Figure 9 shows the intensity of the measured signal with respect

to the distance between the vibration motor and microphone. At each point, 15 measurements were made.

The smooth curve is a least-square fit to the expression I0/r, where I0 represents the unknown source

intensity in Equation 3, and is the term varied to fit the measurement points. This figure demonstrates

that Equation 3 is an accurate enough representation of the propagation of sound in the skin.

4.2.2 Localization

Initial localization experiments involved a 15 cm x 13 cm region of the skin shown in Figure 10, measuring

the signal at three sensor nodes (Node 1, Node 2 and Node 3). The intensity of the vibration motor placed

on a grid with 1 cm intervals were measured by each of these sensors. Figure 11 show the measured

intensity of the transient signal measured by three sensor nodes located in the region. In all of these plots,

the red areas (upper left and right corners, and lower center) indicate higher transient signal intensity, and

darker blue indicates low signal intensity.
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rubbing against the skin [57], and the spectrum may be used as a feature for material classification. Several

common machine learning approaches have been used in the past to perform this task. For example, texture

sensitive fingertips have utilized artificial neural networks [26] and Bayesian classifiers [27]. As these models

are very memory intensive, we implemented a logistic regression model to classify a detected stimulus as

one of 15 predefined textures. Here, the likelihood that the spectrum of a signal, X, is produced by a given

texture t is given by

yt(X) = g(w0 + w1X1 +X2f2...+ wnXn) (5)

where X1 to Xn is the measured spectrum of the signal (in our application, the 128-bin Fourier spec-

trum), w0 to wn is a set of trained weights for the particular texture, g(◦) is the sigmoid function, and

yt(◦) is a value in the range (0, 1) representing the likelihood that the texture t generated the measured

signal. A logistic regression model was selected over a neural network in order to ensure that the model

could be stored on each microcontroller in the skin. For n = 128 frequency components and 15 different

textures, we need to store 1920 weights in the microcontroller, which requires a little less than 4kB of flash

memory. With 128kByte of flash available on the Xmega platform, this approach can therefore scale to

larger number of textures and more potent classifiers. Classification can be performed in 0.6 ms on the

microcontroller.

5.1 Experimental Results

We performed a texture identification experiment using 15 textures, which are summarized in Table

1/Figure 13. We have cut each sample into a small patch of roughly one square inch size. For each

texture, 100 samples were taken by rubbing the texture on the surface of the skin near a sensor by hand,

and recording the transient signal measured by the node. We performed the rubbing by hand to introduce

variation in pressure, speed and proximity to the sensor. The texture sample was rubbed over a region

within 3 cm of the microphone, and the spectrum of the signal was sampled from the sensing node ap-

proximately every 5 seconds. The spectrum of the signal will vary based on the speed which the texture

is rubbed (i.e., through shifting of the frequencies) and distance from the microphone (i.e., by attenuation

of higher frequencies). As such, the variations introduced by generating the data in this manner ensures

that a classification model is robust to these sorts of variations. A logistic regression model was trained on

this data set using Weka, a machine learning library [58], and accuracy was assessed using 10-fold cross-

validation. The logistic regression model was able to classify textures with an accuracy of 71.7%, which

compares favorably to the expected accuracy of 6.7% from random guessing. To compare, a two-layer

neural network was also trained using Weka. Classification was only slightly better with 73.1% accuracy.

Figure 14 shows the confusion matrix for the neural network classifier. The logistic regression confusion

matrix is similar. As can be seen, errors are not specifically located at one specific spot on the off diagonal.

The largest consistent misclassification is between cotton and dense foam. Cotton was misclassified as

dense foam 14% of the time, and dense foam was misclassified as cotton 15% of the time. If these two

classes are combined into a single class, the accuracy improves slightly (73.1% for the logistic regression

model and 75.1% for the neural network model). The remaining errors are distributed relatively uniformly

throughout the matrix.

To investigate the robustness of the logistic regression classifier, classification was performed with the
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Figure 13: Textures used for training and validating the classifier.

Table 1: Textures used for training and validating the classifier.
a. Brillo Pad b. Brush

c. Cardboard d. Coarse Wire Mesh

e. Cotton f. Dense Foam

g. Fine Wire Mesh h. Plastic

i. Sandpaper j. Silicone Foam

k. Skin l. Sponge

m. Terry Cloth n. Textured Silicone

o. Wood

trained classifier on data with added noise. The average energy level of each bin was determined for all

samples. Noise was randomly generated with a mean value of zero, and a standard deviation a fixed

percentage of the average energy of each bin. Classification was performed with noise with a standard

deviation ranging from 0% to 50% of the average energy of each bin. For each standard deviation, 10 sets

of data were produced by adding random noise. Figure 15 shows the average classifcation accuracy and

standard deviation for the levels of added noise. Classification accuracy remains relatively high for relative

noise levels up to about 15%. After this, the average accuracy drops by more than 5% of the original

accuracy, and continues to decrease linearly. From Figure 9, the standard deviation of the measured

signal reaches approximately 50% of the mean signal energy at 5-7cm. Therefore, for our prototype skin

the expected classification accuracy at a single node is 43%. However, as the distance of the source is

increasing from one node, and thus decreasing the expected classification accuracy, the distance to one or

more other nodes is decreasing, and thus increasing the expected classification accuracy of those nodes.

Combining predictions from several nodes may ensure a high classification accuracy.
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Figure 14: Confusion matrix for neural network classification of textures.

6 Conclusion and Future Work

We demonstrated the development and implementation of a soft, amorphous sensing skin that performs

texture recognition, localization and event-driven data transport. Focusing on systems-level challenges in

this paper, we limited this investigation to only one type of sensor (texture), localization of general sound

sources, and data dissemination using a simple flooding protocol. With vibration due to texture having the

highest bandwidth requirements among possible sensors (binary touch, pressure, temperature, capacitance,

conductance, etc.) and the highest processing requirements (calculating a FFT vs. simply recording data

or measuring changes), we believe that the proposed system can easily be extended to other sensor types

and in-network processing algorithms, such as detecting patterns or shapes in a pressure profile. Our

approach is enables skins to be formed to arbitrary shapes, and does not require uniform spacing of sensing

nodes. However

The density of mechanoreceptors, and consequently the spatial resolution of the skin, vary at different

locations in the human body. For example, the distance which the fingertip can correctly discriminate

between two low-frequency vibrating signals is 0.8 to 1.2 mm, while the torso has a much coarser resolution

of 2 - 3 cm [59]. Due to the large physical surface area, the torso provides twice as much tactile information

as a fingertip. The prototype skin presented here provides similar spatial resolution as that of the human
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Figure 15: Accuracy of Logistic Regression classifier with noisy data.

torso, using only a few sensing nodes. To achieve the same resolution with an array of sensors capable of

only local detection of stimulation would require thousands of sensing units.

Research into the mechanoreceptors in human skin indicate that the four mechanoreceptors provide

different types of information to the brain–Merkel disks produce structural information of an object at high

resolution, Meissner corpuscles provide motion signals and are critical for grip control and understanding

the motion of objects the skin is touching, Pacinian corpuscles provide long distance vibration information

transmitted through the skin or objects the skin is in contact, and Ruffini corpuscles give information

about how skin is stretched, which may provide proprioceptive information such as joint angles [60]. These

distinctions may provide valuable insight into the role artificial skins should play in robotics. High resolution

pressure sensitive skins are common in robotic hands, and provide useful information about objects during

grasping, similar to the role Merkel disks play. A multi-modal skin inspired by the mechanoreceptors in

human skin could assist in other robotic tasks. In addition to texture recognition, the ability to detect

vibration over large distances could be useful for controlling gait and determining the compliance of the

surface walked on, through vibrations generated when a foot makes contact with the ground. Sensors

mimicking Ruffini corpuscles could augment existing sensors for determining joint angles and robot poses.

Understanding perceived information detected through the skin is typically performed subconciously–the

human mind does not need to put conscious effort into determining texture, ensuring a stable grip, or
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adjusting walking gait to account for changes in the ground. Similarly, allowing in-network processing of

measurements from multiple sensors embedded in an amorphous skin allows the skin to provide high-level

information to the central computer, enabling more computational time to be used for higher-level tasks.

The classification accuracy of textures (on the order of 70%) using simple logistic regression and a single

sensor does not represent state-of-the-art accuracy. For example, recent results involving Bayesian classifiers

[27] achieve an accuracy of 95.4% using a multi-modal sensing fingertip, combining pressure and vibration

measurements. This approach included performing 36 exploratory measurements to determine texture,

varying parameters such as touch pressure and velocity. Neural network classifiers using accelerometer data

from a tactile sensitive fingertip [32] achieves an accuracy of 94.6%, though this requires a time window of

4 seconds, using features based on statistical values in the time and frequency domain of the accelerometer

signal. Our approach, in constrast, respond to vibration only, and has no knowledge of the pressure or

velocity used to measure the vibrations, and only relies on 0.25 second measurement windows. The required

time to process a single measurement window is less than 20 ms. In addition, memory limitations of the

sensing nodes provide a bottleneck to the complexity of any classifier model incorporated into a node.

However, classification could be performed in a more controlled manner by simply measuring a particular

sensor directly, once this information has been deemed important. Given an external controller, i.e., the

robot on which the skin is attached, the skin could be rubbed over a texture in a controlled manner, with

vibrations measured directly. Thus, the embedded classifier could be considered a preliminary means of

detecting and discriminating textures, with the possibility of improved classification using external control

for measurement and classification.

There may be several ways to improve classification performance within the network. The amorphous

computing approach presented here allows for training different classifiers on each sensing node. This

allows for implementing consensus classifiers [61] that compare texture signatures with those recorded by

their neighbors, or through boosting by treating each sensor node which detected a texture as an individual

classifier [62]. Automatic feature extraction is another area to be explored in texture recognition tasks.

The approach described in this paper and [27, 32] relies on calculating the FFT of the measured signal.

This requires significant computation in the sensing nodes, and result in features which may not be ideal

to classify a particular set of textures. Shift invariant sparse coding [63] is an approach to represent a

collection of time-series signals as the linear combination of a few sparse codes. While determining the codes

is computationally intesive, this can be performed off-line using unlabeled texture data, and could result

in more efficient feature extraction if the size and number of codes are sufficiently small. Similarly, self-

taught learning [64] using autoencoders or generative neural network models (e.g., Restricted Boltzmann

Machines) remain possible areas of exploration for more efficient feature extraction.
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A Sound Propagation in Robotic Skin

The derivation of a model of sound propagation is detailed here. For simplicity, the skin may be considered

a thin vibrating plane. In practice, the skin is expected to be very large in terms of signal wavelength, thus

it is assumed to be infinite in extent. This simplifies the analysis of sound propagation, as only a traveling

wave radiating from a stimulus. A more complete analysis would consider reflections from the edge of the

skin, connections, etc., and would consider various modes of vibration.

The displacement of an infinite plate vibrating at a single point is approximated by the equation

w(r, ω) ≃ iF

8ω

√

2

πρshDkfr
ei(kf r−π/4) (6)

where F is the displacement force of the point source, ω is the frequency of the vibration, ρs, h and D

are the density, thickness and rigidity of the plate, kf is the wavenumber (ω/c), and r is the distance from

the point source [65]. The sound intensity, I(r, ω), is proportional to the square of the displacement:

I(r, ω) =
1

2
ρsc|w(r, ω)|2 (7)

where c is the sound velocity in the skin. Substituting equation 6 into equation 7 yields

I(r, ω) ≃ F 2

64ωπhDk2fr
(8)

Details of this derivation is available in [65].

The material properties of the skin (i.e., density, thickness and rigidity) may be considered constant.

Isolating the terms associated with the material and stimulus results in

I(r, ω) =
I0(F, ω)

r
(9)

where I0(F, ω) is related to the intensity of the vibration signal at the source of the vibration, and is

given by

I0(F, ω) =
F 2

64ωπhDk2f
(10)

B Localization of Vibration Stimulus

Given measurements from multiple sensing nodes, estimating the location of the stimulus is easily ex-

pressed as an error minimization problem. The approach to estimating the location given here is based on

measurements from three sensors, as shown in Figure 7 but may be extended to more sensors.

Consider a vibration induced in the skin at point (x, y), with source intensity I0(F, ω), as described by

equation 10. For purposes of localization, a single frequency in the spectrum of the vibration (i.e., the

frequency bin of the FFT of the measured signal with the largest amplitude) is used. This simplifies the

source intensity to a constant value, referred to as I0 in this derivation.

As the signal propagates through the skin, it’s intensity decreases inversely as a function of the distance

from the source, as given by equation 3. The expected intensity of the vibration measured at node i, Îi,
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is simply

Îi =
I0
ri

(11)

where ri is the distance from the source of the vibration to the sensing node

ri =
√

(x− xi)2 + (y − yi)2 (12)

Assuming no noise, the difference between the intensity measured at node i, Ii, and Îi will be zero.

Using measurements at three nodes, the position of the source (x, y) is given by minimizing the sum of the

squared differences between expected and measured intensities at each node

x, y = argmin
x,y

∑

i∈{1,2,3}

(

I0
ri

− Ii

)2

. (13)

The displacement force F of the source of the vibration is not known. Threfore, the value of I0 cannot

be determined and must be removed from this equation. This can be done by combining the measurements

at two nodes, whose intensity is expressed as

I21 =
I20

(x− x1)2 + (y − y1)2

I22 =
I20

(x− x2)2 + (y − y2)2

(14)

where nodes 1 and 2 are located at positions (x1,y1) and (x2,y2), respectively, and have a measured

intensity of I1 and I2. These two equations can be rewritten as

I21 ((x− x1)
2 + (y − y1)

2) = I20

I22 ((x− x2)
2 + (y − y2)

2) = I20
(15)

The difference between these two equations results in the following single equation,

I21 ((x− x1)
2 + (y − y1)

2)− I22 ((x− x2)
2 + (y − y2)

2) = 0 (16)

Given measurements from N nodes, it is possible to derive N − 1 independent equations of the above

form. Minimizing the error (i.e., the deviation from zero) in these equations with respect to (x, y) can be

performed using gradient decent. The equations are convex, so gradient decent is guaranteed to converge

on a global minimum.

C Localization Uncertainty

Derivation of the error in the location of a source signal given noisy measurements is given here. Assume

three sensing nodes have detected a signal. The signal intensities measured at each node, Ii, are sampled

from Gaussian random variables with mean given by equation 8 and standard deviation σi

Ii(ω, r) = N
(

I0(ω)

r
, σi

)

(17)
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The estimate of the source position was determined iteratively using Equation 4, and an equation

directly estimating the source position as a function of measured intensities at the sensor nodes is not

available. Equation 8 provides a function relating the measured intensities to source position. Using the

explicit position of the source (x, y) and the measurement at three sensor nodes, this equation can be

written as







I1(x, y)

I2(x, y)

I3(x, y)






=











I0(x,y)√
(x−x1)2+(y−y1)2

I0(x,y)√
(x−x2)2+(y−y2)2

I0(x,y)√
(x−x3)2+(y−y3)2











(18)

The frequency term ω is not explicitly represented in this equation for clarity, and analysis may be

considered for a single frequency bin measurement. The uncertainty of the measurements, expressed using

the covariance matrix ΣI , can be calculated from the covariance matrix of the source position, Σxy, and

the Jacobian matrix of Equation 18. The Jacobian matrix is defined as

J(x, y) =
∂I

∂x, y
(19)

which is calculated as

J(x, y) = −I0











(x−x1)

((x−x1)2+(y−y1)2)
3/2

(y−y1)

((x−x1)2+(y−y1)2)
3/2

(x−x2)

((x−x2)2+(y−y2)2)
3/2

(y−y2)

((x−x2)2+(y−y2)2)
3/2

(x−x3)

((x−x3)2+(y−y3)2)
3/2

(y−y3)

((x−x3)2+(y−y3)2)
3/2











(20)

Using this, the uncertainty of a measurements due to uncertainty in the source position is approximated

by

ΣI ≈ JΣxyJT (21)

Calculating the uncertainty of the source position from the measurements simply requires left and right

multiplying equation 21 by the pseudoinverse of the Jacobian

Σxy ≈ (JTJ)−1JΣIJT (JTJ)−1 (22)

Measurement errors are assumed to be due to local variations in the sensing nodes (e.g., variations in

microphones and amplifiers, quantification errors in the ADC, etc.). Therefore, measurement errors will

be considered independent, and ΣI given by

ΣI =







σ 0 0

0 σ 0

0 0 σ






(23)

assuming all node measurements have the same standard deviation.
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