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1 Introduction

Current and future long-baseline experiments are designedto observe an appearance or disappear-
ance of neutrino events by studying a neutrino beam at various distances from the beam origin.
This difference can be quantified by comparing the observed spectra to the non-oscillation case.
To do this, a probability distribution function (PDF) must be constructed empirically from detec-
tor Monte Carlo (MC) and reweighted according to the neutrino oscillation model chosen and any
corresponding systematic uncertainties.

1.1 Neutrino oscillation probability

In the standard 3 neutrino formulation, neutrinos propagate as a superposition of three mass eigen-
statesm1,2,3. A neutrino interaction is governed by its flavour, and can beinferred indirectly via
observation of the outgoing lepton from a neutrino interaction vertex. The probability that a neu-
trino of flavourνα and energyE (GeV) will be be observed with a flavourνβ after propagation of
distanceL (km) through vacuum can be determined from its mass statesmi and the unitary PMNS
transition matrixUflavour,mass:

P(να → νβ ) =

∣

∣

∣

∣

3

∑
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im2
i

L
E

)∣
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2

(1.1)

This equation is illustrated for theνµ → νµ survival probability in the top plot of figure1.

The propagation of neutrinos through matter induces non-negligible effects onνe andν̄e due
to forward scattering on electrons in matter. These so-called matter effects add computational
complexity but can be calculated as prescribed in [1].
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Table 1: Assumed oscillation parameters for all studies presented.

Parameter Value

sin2(θ12) 0.311

sin2(θ23) 0.5

sin2(θ13) 0.0251

∆m2
32 (eV2) 2.4×10−3

∆m2
12 (eV2) 7.6×10−5

δcp 0

Earth Density (g/cm3) 2.6

Baseline (km) 295
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Figure 1: Top: νµ → νµ neutrino survival probability calculated with matter effects for a prop-
agation distance of 295 km through a constant matter densityof 2.6 g/cm3 . Bottom: a mockνµ

neutrino beam spectra under the influence of this oscillation probability, compared to the no os-
cillation case. The trough of the oscillation probability function can been seen to line up with the
trough of the oscillated spectra at 0.6 GeV. Oscillations were calculated using parameter values
listed in table1 with normal hierarchy.

1.1.1 Event-by-event reweighting

Neutrino oscillation analyses are often performed by producing a large sample of simulated events
in order to estimate the PDF, as many reconstruction effectsmay be complex. These simulated
events are produced at a certain set of oscillation parameters and experimental parameters, all of
which must be varied in order to find the optimal output parameters for analysis. Binned maximum
likelihood analyses are an effective way to compare the datato the MC to optimize the parameters.
Calculating the effect of the variation of oscillation and systematic parameters can be done in two
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ways for these binned MC PDFs. One option is to calculate the effect of the variation at the center
of each bin and apply it to the whole bin; this has the advantage of being relatively quick, but the
disadvantage of losing any shape information which residesinside the bin boundaries. The other
option is to retain all of the simulated events and calculatethe variations on an event-by-event basis;
this has the advantage of retaining any shape information within the bin, but the disadvantage of
requiring many more calculations.

Both oscillation parameters and systematic uncertainty parameters are subject to this binning
effect. An example of a systematic uncertainty that would beimpacted by binning is a scale uncer-
tainty for energy reconstruction, critical for oscillation analyses. Using a binned weighting method
loses the information about the reconstructed energy of anygiven event, and so produce a different
predicted number of events than simply scaling the true reconstructed energy of the constituent
MC events. Further discussion of systematic uncertaintiesis beyond the scope of this note, but it
comprises part of the motivation to find a computationally efficient way to treat the constituent MC
events individually.

The binning effect on oscillation parameters can be as largeas a few percent. One can see
this effect by placing an histogram bin with a typical width of 25 MeV from 0.6 GeV to 0.625 GeV
(near to the oscillation maximum shown in figure1). Considering the case of integrating the true
neutrino energy spectrum in this bin and multiplying by the oscillation probability at the bin center
(0.6125 MeV), and comparing this with the result of integrating the product of the oscillation prob-
ability and the input neutrino spectrum one finds a difference of 2.6%. This difference arises from
the approximation that all neutrinos within the bin edges have the same true energy.

This is a strong motivation to find a way to treat the constituent MC events according to their
true properties. Since this method increases the number of oscillation weight calculations by several
orders of magnitude, it is not practical to perform these calculations on a CPU, and so we describe
the implementation of this calculation on a GPU.

2 Implementation on a GPU

A typical CPU consists of∼ 4 cores with clock speeds in the range of 3–4 GHz and have the
capacity to run multi-threaded applications. In contrast,a modern consumer GPU has 100–1000
cores that are used for graphical calculations, however thearchitecture can now be exposed for
non-graphical applications with APIs such as CUDA [2] and OpenCL [3]. Suchgeneral purpose
graphics processing units(GPGPU) can greatly outperform a CPU if a problem can be parallelized
accordingly.

Because each event in a Monte Carlo sample is independent, oscillation weight calculations
can be performed in parallel. The libraryProb3++ [4] was ported to the GPU using thecompute
unified device architecture(CUDA) API to enable fine-grained concurrent calculations.The results
displayed in figure2 show the execution times for varying numbers of calculations in series (CPU)
and parallel (GPU). Also compared is the original code running multithreaded using OpenMP [5].

2.1 Method

In the results presented, a series of C/C++ algorithms for calculating oscillation probabilities were
ported to CUDA. Functions that execute on the device must be compiled separately by thenvcc
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compiler provided by NVIDIA and linked into the host programusing a compiler such asgcc.
Within the GPU code, an array of energy values were allocatedand instantiated in host memory

(the system’s RAM) and then copied to the device memory (the graphics card’s video RAM) using
API function calls provided by CUDA.

In addition to the event energies, components that are dependent only on the oscillation pa-
rameters (i.e. equation 10 of [1]) are computed on the CPU and then copied to the GPU in the same
manner as the energy array.

The calculations inProb3++ were modified into a set of CUDA kernel functions (functions
that run in parallel on the GPU) and were then executed on eachelement of the array in paral-
lel, which performs the oscillation probability calculation in double precision. The result of this
calculation is written to an array in the device memory, and is then copied back to the host. All
memory allocation and transfer operations to and from the GPU device are handled via CUDA API
functions. A simplified example of this process can be found in listing 1.

Listing 1. Example of copying data to GPU memory and executing a kernel.

// size of array

size_t size = n * sizeof(double);

// allocate host memory

double *true_energy_host = (double*) malloc(size);

double *osc_weight_host = (double*) malloc( size);

// allocate device memory

double *true_energy_dev = cudaMalloc((void **) &true_energy_device, size);

double *osc_weight_dev = cudaMalloc((void **) &osc_weight_device, size);

// fill energy array

...

// copy energy array to the device

cudaMemcpy(true_energy_dev, true_energy_host, size, cudaMemcpyHostToDevice);

// instantiate and perform copy of mixing matrix

...

// execute GPU kernel on the array

calculateOscProb<<<gridsize, blocksize>>>(...);

// copy the results back to the host

cudaMemcpy(osc_weight_host, osc_weight_dev , size, cudaMemcpyDeviceToHost);

2.2 Results and validation

The Comparison of CPU vs. GPU execution times as a function ofnumber of events reweighted
shows the CPU performing better at small number of events, with the GPU performing up to 132
times faster at 1.45 million calculations (figure2). The “crossover” point is hardware dependent,
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Figure 2: Comparison of execution time for varying numbers of calculations between CPU and
GPU implementations. The plateau observed in the CUDA results is due to the total number of
threads not yet fully occupied. At 103–104 number of calculations, the GPU becomes saturated
and starts to execute in series.

and is expected to change with different CPU/GPU combinations, and also different algorithm
implementations. At best, the multi-threaded code gains only 2–3 times speed improvement. Fig-
ure 3 shows the benchmark with results plotted as a ratio to singlecore execution time. As seen
in figures2 and3, the GPU implementation plateaus until it reaches a point where all threads are
occupied and the limit of concurrent execution is reached [6].

The overheads associated with copying to and from host and device memory across the PCI-E
bus can be a large source of latency, and as can be seen in figure2, the CPU will outperform the
GPU if the number of concurrent calculations is small.

To validate the GPU code, 10 million random energy values were drawn from a uniform dis-
tribution between 0 and 30 GeV, and were used to calculate oscillation weights on CPU and GPU.
The residuals between CPU and GPU calcuations were found to be on the order of 10−12 for double
precision, and are plotted in figure4. The residual is attributed to the difference between hardware
implementations of arithmetic operations [7], and in this test is considered negligible.

The GPU implementation and original version ofProb3++ were also compared within a sim-
ple toy oscillation fitter written using theBayesian Analysis Toolkit[8]. The motivation is to give
realistic measure of speed improvement for an application in a physics analysis, as well as to show
that there is negligible difference between both CPU and GPUmethods when used in a realistic
way. The fit uses a Markov Chain Monte Carlo to sample the oscillation parameter space, building
a Bayesian posterior density via the Metropolis Hastings algorithm, from which credible intervals
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Figure 3: Execution time plotted as a ratio to the single core implementation.
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Figure 4: Left: residuals between weights calculated on CPUwCPU and GPUwGPU for the same
oscillation parameters and value of energy.Right: the absolute difference between energy spectra
weighted bywCPU andwGPU.

can be constructed. The likelihood function is defined as:

L(~o, ~f |~D) = ∏
i

p(~D|~o, ~f ) (2.1)

Where~o are the two parameters of interestθ23 and ∆m2
32, ~f are the nuisance parameters

θ12,θ13,∆m2
12 andδcp, and p is the probability mass function of a dataset~D given parameters~o
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Figure 5: Left: 1-dimensional sin2(θ23) marginal distribution. Right: difference between the
1-dimensional marginal distribution of sin2(θ23) generated on CPU and GPU. The marginal dis-
tribution encodes information about the most probable value and the uncertainty of the parameter.

and~f . The toy fit simulates a long baselineνµ disappearance analysis by fitting a fakeνµ far-
detector energy spectra~D, created by sampling from a landau function and weighted using the
oscillation parameters found in table1.

The PDF is constructed by taking a large number of samples (onthe order of millions) from
the landau distribution and binning these samples into a histogram weighted by the oscillation
probability calculated withProb3++. An example of oscillated and unoscillated spectra can be
seen in figure1.

As the Markov Chain Monte Carlo proposes a new set of oscillation parameters each step, the
PDF is reconstructed using the event-by-event method described above and compared to the data.
Therefore the calculation of oscillation weights providesa large overhead to the fit method and is
directly related to the calculation of likelihood.

The 5 oscillation parameters have flat prior distributions and thus have no likelihood constraint
term, and all parameters are fixed at the values listed in table 1 exceptθ23 and∆m2

32 which are free
to float.

The best fit and error value of the fitter was compared between CPU and GPU oscillation
reweighting methods. The difference between CPU and GPU made spectras and posterior distribu-
tions using identical oscillation parameters was found to be to an acceptable precision, and plotted
in figure5. Furthermore, an order of magnitude speed increase was observed for the overall fitting
procedure by off-loading oscillation reweighting to the GPU.

The results presented are prepared using an Intel Xeon E5640quad-core processor running at
2.67 GHz, and an NVIDIA M2070 GPU with 448 CUDA cores running at 1.15 GHz. The code
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is compiled for 64-bit hardware using the gcc compiler version 4.6.3 with the -O2 optimization
flag, and the CUDA toolkit version 5. OpenMP code is restricted to use 4 threads which ensures
execution on the physical cores of the CPU.

3 Conclusion

The parallel implementation of oscillation reweighting enables the improvement of neutrino anal-
yses via the computation of Monte Carlo weights on an event-by-event basis, which is a limiting
factor of an analysis if performed soley on a CPU. Event-by-event reweighting retains all the Monte
Carlo spectral shape information that is otherwise lost when binned into an histogram. More im-
portantly, by being able to discriminate events within a sample of Monte Carlo, event migrations
can be modelled, and as statistics of neutrino experiments increases this systematic effect will be-
come more prominent. This has scope in current long-baseline neutrino experiments like T2K and
NOνA, and future ones such as LBNE.

The CUDA implementation ofProb3++ is available at the following web address:
http://hep.ph.liv.ac.uk/ rcalland/probGPU.
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