Journal of Instrumentation

SISSA

You may also like

Force—extension relations for adsorbing

Accelerated event-by-event neutrino oscillation o suect o e
. . . varez an ittington
reweighting with matter effects on a GPU

- Degeneracy of non-Abelian guantum Hall
states on the torus: domain walls and

5 . . conformal field theory
To cite this article: R G Calland et al 2014 JINST 9 P04016 Eddy Ardonne, Emil J Bergholtz, Janik

Kailasvuori et al.

- Rare events analysis of temperature chaos
in the Sherrington—Kirkpatrick model
Alain Billoire

View the article online for updates and enhancements.

@ = DISCOVER

how sustainability

The \ ' : intersects with
Electrochemical - :

Society

Advancing solid state &
electrochemical science & technology

This content was downloaded from IP address 18.118.254.28 on 21/05/2024 at 23:50

https://doi.org/10.1088/1748-0221/9/04/P04016
https://iopscience.iop.org/article/10.1088/1742-5468/2009/04/P04016
https://iopscience.iop.org/article/10.1088/1742-5468/2009/04/P04016
https://iopscience.iop.org/article/10.1088/1742-5468/2008/04/P04016
https://iopscience.iop.org/article/10.1088/1742-5468/2008/04/P04016
https://iopscience.iop.org/article/10.1088/1742-5468/2008/04/P04016
https://iopscience.iop.org/article/10.1088/1742-5468/2014/04/P04016
https://iopscience.iop.org/article/10.1088/1742-5468/2014/04/P04016
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssgal91LdNvzSnCezKUIC8FzCQZwLNjnjIMQtF827YHeA31FLHESKMfldv9reKqt0B-PcuG-0P26UNjf_FeVma3WrUlyB8nUhkr5NZ-x9a1cswxRIQ4BUTxp6vsS96Yz0cjBawC5RwnLW8iWgJFhBde-DSdYwDogh6c2WPE3Q-9g80EleDl2nMO5adt0UjtVmody8jFKs7igY3AwjxrtNDnf91v6G8CAtwQAnPRyOCXCY8SwnQp_Rc9R10PWrlaAvtxOuaht6W6bOunwIGV97V7NC5qCP-ckUb_Tja2CnWs4Lsyo6DRM2tctzX5PDQJdkrnwg-ThwRn3yIH_XPzwvE4qOU9MSHU&sig=Cg0ArKJSzA33TzDziStd&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

’ inst PuUBLISHED BY |OP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: January 7, 2014
REVISED: February 28, 2014
ACCEPTED March 14, 2014
PuBLISHED: April 17, 2014

Accelerated event-by-event neutrino oscillation
reweighting with matter effects on a GPU

R G. Calland,®! A.C. Kaboth? and D. Payne?
aUniversity of Liverpool, Department of Physics,
Oliver Lodge Bld, Oxford Street, Liverpool, L69 7ZE, U.K.

bDepartment of Physics, Imperial College London,
London, SW7 2AZ, U.K.

E-mail: rcalland®@hep.ph.liv.ac.uk

ABSTRACT. Oscillation probability calculations are becoming iresingly CPU intensive in mod-
ern neutrino oscillation analyses. The independency oéiglwing individual events in a Monte
Carlo sample lends itself to parallel implementation ographics processing unitThe library
Prob3++ was ported to the GPU using the CUDA C API, allowing for largals parallelized
calculations of neutrino oscillation probabilities thgbumatter of constant density, decreasing the
execution time by 2 orders of magnitude when compared t@pagnce on a single CPU.

KEYWORDS Pattern recognition, cluster finding, calibration andrfgtmethods; Analysis and
statistical methods; Data processing methods

ARXIV EPRINT: 1311.7579

1Corresponding author.

© 2014 10P Publishing Ltd and Sissa Medialab sl doi:10.1088/1748-0221/9/04/P04016

mailto:rcalland@hep.ph.liv.ac.uk
http://arxiv.org/abs/1311.7579
http://dx.doi.org/10.1088/1748-0221/9/04/P04016

Contents

1 Introduction 1
1.1 Neutrino oscillation probability 1
1.1.1 Event-by-event reweighting 2

2 Implementation on a GPU 3
2.1 Method 3
2.2 Results and validation 4

3 Conclusion 8

1 Introduction

Current and future long-baseline experiments are desigmelserve an appearance or disappear-
ance of neutrino events by studying a neutrino beam at \ariistances from the beam origin.
This difference can be quantified by comparing the obserpedtsa to the non-oscillation case.
To do this, a probability distribution function (PDF) must bonstructed empirically from detec-
tor Monte Carlo (MC) and reweighted according to the neotoacillation model chosen and any
corresponding systematic uncertainties.

1.1 Neutrino oscillation probability

In the standard 3 neutrino formulation, neutrinos propagata superposition of three mass eigen-
statesmy 2 3. A neutrino interaction is governed by its flavour, and canrtberred indirectly via
observation of the outgoing lepton from a neutrino intécactertex. The probability that a neu-
trino of flavourv, and energyE (GeV) will be be observed with a flavows; after propagation of
distancel (km) through vacuum can be determined from its mass statasd the unitary PMNS
transition matriXJnayourmass

2

P(vg — vg) = (1.1)

3
_ 1 ,L
i;ua. exp(2|mi E>

This equation is illustrated for thg, — v,, survival probability in the top plot of figuré.

The propagation of neutrinos through matter induces najligible effects onve andve due
to forward scattering on electrons in matter. These s@&dathatter effects add computational
complexity but can be calculated as prescribedL]n [

Table 1. Assumed oscillation parameters for all studies presented

Parameter Value
sin2(612) 0.311
Sir?(6,3) 0.5
Sir?(613) 0.0251
Am3, (eV?) 24x10°3
A2, (eV?) 7.6x10°°
Bep 0
Earth Density (g/cr#) 2.6
Baseline (km) 295

Pl -V,

= No Oscillations

s

v, -V, Oscillated

Events (a.u

14 . 2

v, Energy (GeV)

Figure 1. Top v, — vy neutrino survival probability calculated with matter etfe for a prop-
agation distance of 295 km through a constant matter dea&i®y6 g/cn? . Bottom a mockv,,
neutrino beam spectra under the influence of this osciligbimbability, compared to the no os-
cillation case. The trough of the oscillation probabilityn€tion can been seen to line up with the
trough of the oscillated spectra at 0.6 GeV. Oscillationsengalculated using parameter values
listed in tablel with normal hierarchy.

111 Event-by-event reweighting

Neutrino oscillation analyses are often performed by pcodpa large sample of simulated events
in order to estimate the PDF, as many reconstruction effeetg be complex. These simulated
events are produced at a certain set of oscillation parasatel experimental parameters, all of
which must be varied in order to find the optimal output par@nssfor analysis. Binned maximum
likelihood analyses are an effective way to compare thetdatee MC to optimize the parameters.
Calculating the effect of the variation of oscillation arydtematic parameters can be done in two

ways for these binned MC PDFs. One option is to calculate fiieeteof the variation at the center
of each bin and apply it to the whole bin; this has the advantddeing relatively quick, but the
disadvantage of losing any shape information which rediagde the bin boundaries. The other
option is to retain all of the simulated events and calculagevariations on an event-by-event basis;
this has the advantage of retaining any shape informatidnimghe bin, but the disadvantage of
requiring many more calculations.

Both oscillation parameters and systematic uncertaintgimaters are subject to this binning
effect. An example of a systematic uncertainty that woulihiggacted by binning is a scale uncer-
tainty for energy reconstruction, critical for oscillatianalyses. Using a binned weighting method
loses the information about the reconstructed energy ofjasgn event, and so produce a different
predicted number of events than simply scaling the truenstcocted energy of the constituent
MC events. Further discussion of systematic uncertaingié®yond the scope of this note, but it
comprises part of the motivation to find a computationalficefnt way to treat the constituent MC
events individually.

The binning effect on oscillation parameters can be as lasga few percent. One can see
this effect by placing an histogram bin with a typical widfi2é MeV from 0.6 GeV to 0.625 GeV
(near to the oscillation maximum shown in figute Considering the case of integrating the true
neutrino energy spectrum in this bin and multiplying by teitlation probability at the bin center
(0.6125 MeV), and comparing this with the result of integp@gthe product of the oscillation prob-
ability and the input neutrino spectrum one finds a diffeeeat2.6%. This difference arises from
the approximation that all neutrinos within the bin edgegetthe same true energy.

This is a strong motivation to find a way to treat the constitdC events according to their
true properties. Since this method increases the numbeciliation weight calculations by several
orders of magnitude, it is not practical to perform thesewations on a CPU, and so we describe
the implementation of this calculation on a GPU.

2 Implementation on a GPU

A typical CPU consists of- 4 cores with clock speeds in the range of 3—-4 GHz and have the
capacity to run multi-threaded applications. In contrastodern consumer GPU has 100-1000
cores that are used for graphical calculations, howeveatbkitecture can now be exposed for
non-graphical applications with APIs such as CUZ} &nd OpenCL B]. Suchgeneral purpose
graphics processing unité&SPGPU) can greatly outperform a CPU if a problem can be ledizad
accordingly.

Because each event in a Monte Carlo sample is independeiltaiisn weight calculations
can be performed in parallel. The libraPyob3++ [4] was ported to the GPU using tleempute
unified device architectur®CUDA) API to enable fine-grained concurrent calculatiofise results
displayed in figure show the execution times for varying numbers of calculationseries (CPU)
and parallel (GPU). Also compared is the original code mgmhultithreaded using OpenMB]|[

21 Method

In the results presented, a series of C/C++ algorithms floutaing oscillation probabilities were
ported to CUDA. Functions that execute on the device mustonepded separately by thevcc

compiler provided by NVIDIA and linked into the host prograrsing a compiler such agc

Within the GPU code, an array of energy values were allocatednstantiated in host memory
(the system’s RAM) and then copied to the device memory (thphjcs card’s video RAM) using
API function calls provided by CUDA.

In addition to the event energies, components that are depéronly on the oscillation pa-
rameters (i.e. equation 10 df]) are computed on the CPU and then copied to the GPU in the same
manner as the energy array.

The calculations irProb3++ were modified into a set of CUDA kernel functions (functions
that run in parallel on the GPU) and were then executed on elchent of the array in paral-
lel, which performs the oscillation probability calcutaiin double precision. The result of this
calculation is written to an array in the device memory, anthen copied back to the host. All
memory allocation and transfer operations to and from thel @&ice are handled via CUDA API
functions. A simplified example of this process can be foumlisting 1.

Listing 1. Example of copying data to GPU memory and executing a kernel.

// size of array
size_t size = n * sizeof(double);

// allocate host memory

double *true_energy_host = (double*) malloc(size);

double *osc_weight_host = (double*) malloc(size);

// allocate device memory

double *true_energy_dev = cudaMalloc((void **) &true_energy_device, size);
double *osc_weight_dev = cudaMalloc((void **) &osc_weight_device, size);
// £ill energy array

// copy energy array to the device

cudaMemcpy(true_energy_dev, true_energy_host, size, cudaMemcpyHostToDevice);
// instantiate and perform copy of mixing matrix

// execute GPU kernel on the array

calculateOscProb<<<gridsize, blocksize>>>(...);

// copy the results back to the host
cudaMemcpy(osc_weight_host, osc_weight_dev , size, cudaMemcpyDeviceToHost);

2.2 Reaultsand validation

The Comparison of CPU vs. GPU execution times as a functiaruofber of events reweighted
shows the CPU performing better at small number of events, the GPU performing up to 132
times faster at 1.45 million calculations (figu2e The “crossover” point is hardware dependent,

TTo| AR AR ,,,,,,, 4444444 ‘

E e Single Core 3 | |
L ...— CUDA y
— OpenMP | | ‘

[

=
<

o
Q
N

Execution Time (seconds)

=
Q
w

10—5 “H‘H‘? N Hm} i ‘ L1 Hm{

H
Q
S

TRTT
:

R N ““HH ““HH ““HHE

1 10 10° 10° 10* 10° 10°

Number of Oscillation Weight Calculations

Figure 2. Comparison of execution time for varying numbers of caltiohs between CPU and
GPU implementations. The plateau observed in the CUDA tessildue to the total number of
threads not yet fully occupied. At $910* number of calculations, the GPU becomes saturated
and starts to execute in series.

and is expected to change with different CPU/GPU combinati@nd also different algorithm

implementations. At best, the multi-threaded code gaig ®A3 times speed improvement. Fig-
ure 3 shows the benchmark with results plotted as a ratio to sioglle execution time. As seen
in figures2 and3, the GPU implementation plateaus until it reaches a poirgre/iall threads are

occupied and the limit of concurrent execution is react@d [

The overheads associated with copying to and from host aridedmemory across the PCI-E
bus can be a large source of latency, and as can be seen inZigheeCPU will outperform the
GPU if the number of concurrent calculations is small.

To validate the GPU code, 10 million random energy valueswieawn from a uniform dis-
tribution between 0 and 30 GeV, and were used to calculaitad®n weights on CPU and GPU.
The residuals between CPU and GPU calcuations were foureldn the order of 10 for double
precision, and are plotted in figude The residual is attributed to the difference between hardw
implementations of arithmetic operatior,[and in this test is considered negligible.

The GPU implementation and original versionPafob3++ were also compared within a sim-
ple toy oscillation fitter written using thBayesian Analysis ToolkiB]. The motivation is to give
realistic measure of speed improvement for an applicatianghysics analysis, as well as to show
that there is negligible difference between both CPU and @&thods when used in a realistic
way. The fit uses a Markov Chain Monte Carlo to sample thelaticih parameter space, building
a Bayesian posterior density via the Metropolis Hastingsr@hm, from which credible intervals

- L L e e L B 2 e e B T TR T B 4 EET TR B R AR T

107}

Ratio to Single Core

1 10 10 10° 10 10° 10°

Number of Oscillation Weights Calculated

Figure 3: Execution time plotted as a ratio to the single core impleai@on.

=
Q,

[
<

Absolute Residual

10—10

Number of Comparisons

10—11

-0.8-0.6-0.4-0.2 0 0.20.4 0.0.8 1 0 5 100 15 20 25 30

Wepy ™ Wepy Energy (GeV)

[L e

Figure 4. Left: residuals between weights calculated on GRigy and GPUwgpy for the same
oscillation parameters and value of enerByght: the absolute difference between energy spectra
weighted bywcpy andwgpu.

can be constructed. The likelihood function is defined as:

L(3, f|D) =[] p(Dla,) (2.1)

Whered are the two parameters of intere8z and AmZ,, f are the nuisance parameters
61, 613,Am§2 and &:p, and p is the probability mass function of a datagkgiven parameters

) T F
© T [-
T 003 s I
3 2 I
£ € o5
5002 @
ot S
I Or
0.02- !
I 0.5
0.015 :
i -1-
0.01 :
[1.5_—
0.008- b

O IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIII _2. -II

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Sin’e,, SirFe,,,

Figure 5. Left: 1-dimensional sif(8,3) marginal distribution. Right: difference between the
1-dimensional marginal distribution of £if6,3) generated on CPU and GPU. The marginal dis-
tribution encodes information about the most probableevalud the uncertainty of the parameter.

and f. The toy fit simulates a long baseling disappearance analysis by fitting a fake far-
detector energy spectid, created by sampling from a landau function and weightedguttie
oscillation parameters found in tatle

The PDF is constructed by taking a large number of samplesh@order of millions) from
the landau distribution and binning these samples into tdriam weighted by the oscillation
probability calculated wittProb3++. An example of oscillated and unoscillated spectra can be
seen in figurel.

As the Markov Chain Monte Carlo proposes a new set of osoiligtarameters each step, the
PDF is reconstructed using the event-by-event method ibesicabove and compared to the data.
Therefore the calculation of oscillation weights providelarge overhead to the fit method and is
directly related to the calculation of likelihood.

The 5 oscillation parameters have flat prior distributiond #aus have no likelihood constraint
term, and all parameters are fixed at the values listed i fadkceptd andAm3, which are free
to float.

The best fit and error value of the fitter was compared betweed @nd GPU oscillation
reweighting methods. The difference between CPU and GP¢mseetctras and posterior distribu-
tions using identical oscillation parameters was foundet@doan acceptable precision, and plotted
in figure 5. Furthermore, an order of magnitude speed increase wasveldder the overall fitting
procedure by off-loading oscillation reweighting to the &GP

The results presented are prepared using an Intel Xeon EhGdbcore processor running at
2.67 GHz, and an NVIDIA M2070 GPU with 448 CUDA cores runningldl5 GHz. The code

is compiled for 64-bit hardware using the gcc compiler varsd.6.3 with the -O2 optimization
flag, and the CUDA toolkit version 5. OpenMP code is restddi® use 4 threads which ensures
execution on the physical cores of the CPU.

3 Conclusion

The parallel implementation of oscillation reweightingables the improvement of neutrino anal-
yses via the computation of Monte Carlo weights on an evgradent basis, which is a limiting
factor of an analysis if performed soley on a CPU. Eventimnereweighting retains all the Monte
Carlo spectral shape information that is otherwise lostrwihiened into an histogram. More im-
portantly, by being able to discriminate events within a genof Monte Carlo, event migrations
can be modelled, and as statistics of neutrino experimantsases this systematic effect will be-
come more prominent. This has scope in current long-basakutrino experiments like T2K and
NOVA, and future ones such as LBNE.

The CUDA implementation dfrob3++ is available at the following web address:
http://hep.ph.liv.ac.uk/ rcalland/probGRPU

Acknowledgments

The author would like to thank R. Wendell for providing théamal Prob3++ library, the Liverpool
High Energy Physics computing staff for their support, ane T2K experiment for access to
official Monte Carlo and oscillation analysis software nfravhich this study was inspired.

References

[1] V.D. Barger, K. Whisnant, S. Pakvasa and R.J.N. Phillatter Effects on Three-Neutrino
Oscillations Phys. RewD 22 (1980) 2718

[2] NVIDIA Corporation,NVIDIA CUDA C Programming Guideluly 2013.

[3] Khronos OpenCL Working Groufd;he OpenCL Specification, version 1.0.8®ecember 2008.

[4] R. Wendell,Prob3++ software for computing three flavor neutrino os&ilbn probabilities
http://www.phy.duke.edu/ raw22/public/Prob3{2012).

[5] OpenMP Architecture Review Boar@penMP application program interface version 3.0
http://www.openmp.org/mp-documents/spec3Q.ptiy 2008.

[6] P. PomorskiProgramming GPUs with CUDA — Day; Lecture University of Waterloo, Canada
(2013).

[7]1 N. Whitehead and A. Fit-flore®recision & performance: Floating point and ieee 754 coraptie for
nvidia gpug2011).

[8] A. Caldwell, D. Kollar, and K. KroningeBAT — The Bayesian analysis tooJKitomput. Phys.
Commun180 (2009) 2197.

http://hep.ph.liv.ac.uk/~rcalland/probGPU
http://dx.doi.org/10.1103/PhysRevD.22.2718
http://www.phy.duke.edu/~raw22/public/Prob3++/
http://www.openmp.org/mp-documents/spec30.pdf

	Introduction
	Neutrino oscillation probability
	Event-by-event reweighting

	Implementation on a GPU
	Method
	Results and validation

	Conclusion

