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ABSTRACT: Planar Fourier capture arrays (PFCAs) are optical sensorsbuilt entirely in standard mi-
crochip manufacturing flows. PFCAs are composed of ensembles of angle sensitive pixels (ASPs)
that each report a single coefficient of the Fourier transform of the far-away scene. Here we charac-
terize the performance of PFCAs under the following three non-optimal conditions. First, we show
that PFCAs can operate while sensing light of a wavelength other than the design point. Second, if
only a randomly-selected subset of 10% of the ASPs are functional, we can nonetheless reconstruct
the entire far-away scene using compressed sensing. Third,if the wavelength of the imaged light is
unknown, it can be inferred by demanding self-consistency of the outputs.
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1 Introduction

1.1 Planar Fourier capture arrays

Planar Fourier capture arrays (PFCAs) [1] are ensembles of angle sensitive pixels (ASPs) [2, 3]
that directly capture the Fourier transform of a far-away image. The light sensitivity of an indi-
vidual ASP is a sinusoidal function of incident angle [2]. A carefully-chosen ensemble of ASPs
can report the entire Fourier transform of the far-away scene up to the Nyquist limit set by the
highest-frequency ASP in the ensemble [1]. As ASPs are extremely thin, light and cheap to man-
ufacture, PFCAs have the potential to become a disruptive technology in the fields of sensing and
robotics [4]–[7] when volume, mass or cost constraints are paramount.

For PFCAs to reach their full potential, it would be useful tounderstand some of the limita-
tions and freedoms afforded by this new class of imager. Our first PFCA was optimized for green
incident light, and the reconstruction algorithms we used previously [1] assume all sensors are
functional. In this publication we thoroughly report PFCA design considerations, then investigate
the performance of PFCAs imaging light of a different colourthan the design specification, both
when that colour is knowna priori and when it must be determined blindly. Further, we will show
that by using a signal-processing technique called compressed sensing, we can reconstruct images
even when the outputs of only a small fraction of the ASPs are available.

– 1 –
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Figure 1. Interaction Between Incident Light and ASPs. Left: light incident at 10◦ produces spatial maxima
that align with gaps in the second grating, resulting in a large photocurrent. Center: light incident at 25◦

produces spatial maxima that are largely blocked by the second grating, resulting in a small photocurrent.
Right: photocurrent is a sinusoidal function of incident angle.

Talbot Effect

Z
T

Figure 2. The Talbot Effect. Wave simulation of monochromatic lightstriking a grating at the normal. The
grating periodicity is recapitulated at regularly-spaceddepths below the grating; a phenomenon known as
the Talbot effect. The Talbot depthZT is shown at right.

1.2 Angle sensitive pixels

Angle sensitive pixels (ASPs) [2, 3] are photosensitive pixels that, using diffraction gratings, couple
to far-field light sources with an efficiency that is a sinusoidal function of incident angle. ASPs at-
tain their angle sensitivity through the moiré effect using two metal gratings with identical spacing
but at different heights above a photodiode below (see figure1). Due to the vertical displacement of
the gratings, the angle subtended by one spatial period of the top grating viewed by the photodiode
is slightly less than that subtended by the bottom grating. This angular disparity invokes the moiré
effect, making the effective transmission aperture a sinusoidal function of incident angle. Both of
the gratings can be manufactured using metal interconnect layers intrinsic to the CMOS process,
and the photodiodes can be manufactured using intrinsic semiconductors, meaning ASPs can be
manufactured entirely using existing unmodified CMOS process flows.

The moiré effect is essentially a ray optics effect, however at the small spatial scale of CMOS
structures photons cannot be modeled as non-diffracting rays. Fortunately, the moiré effect can
be rescued by exploiting the Talbot effect [8, 9]. The Talbot effect is the property that a regular

– 2 –
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periodic grating illuminated by monochromatic light creates self-images at integer multiples of the
Talbot depthZT = 2p2

λ − λ
2 (see section1.3) wherep is the grating pitch (spatial period) andλ is

the wavelength of light (see figures1 and2). By ensuring that the second grating is located at an
integer multiple of half1 the Talbot depth, the moiré effect is rescued and further diffraction effects
can be neglected.

The transfer function of light incident on an ASP can be modeled as in eq. (1.1).

R= I0(1−mcos(bθ + α))F(θ)(1+ η), (1.1)

whereR is the readout of the ASP,I0 is proportional to the light flux at the ASP,θ is the incident
angle along the sensitive axis,b is the angular sensitivity (designed to range from 7 to 39 - see
eq. (2.1)), m is the modulation depth of the ASP (see eq. (2.2)), α is a designable phase offset
caused by a displacement between the top and bottom gratings, F(θ) is a slowly-varying aperture
function andη is multiplicative noise.

1.3 Deriving the Talbot depth

The λ
2 term ofZT = 2p2

λ − λ
2 is often omitted especially in considerations of Talbot periodicity rather

than absolute depth and whenp2 ≫ λ 2, but is derivable from a consideration of optical path lengths
and provides a noticeable increase in accuracy when modeling and designing ASPs. Consider the
geometry of figure3. For a local minimum to occur atr1 = ZT

2 , the path length difference between

r1 = ZT
2 andr2 =

√

(ZT
2

)2
+ p2 should beλ

2 . Thus,
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λ
2
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2
=
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λ
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(1.2)

2 Designing PFCAs

An ASP’s angular sensitivity (b from eq. (1.1)) can be found by considering the angular displace-
ment required for a lobe of the Talbot diffraction pattern totraverse a full period of the analyzer
grating, as in eq. (2.1).

b = 2π
zeffective

pn
, (2.1)

1At half-integer multiples of the Talbot depth the periodicity of the initial grating reemerges, but with its phase
reversed; see figures1 and2.
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Figure 3. Calculating the Talbot Depth. The geometry in this configuration leads to our expression for the
half Talbot depth in eq. (1.2).

wherezeffective is the effective vertical displacement between gratings (see eq. (2.3)) andn is the
refractive index of the medium, in this case SiO2. The depthsz at which modulation depthm is
maximal correspond to integer multiples of half the Talbot depth, as in eq. (2.2).

mmaximal whenz= a

(

p2

λ
− λ

4

)

; a∈ I. (2.2)

2.1 Effective depth

Since the PFCA was built, detailed measurements have indicated that when using eq. (2.1), b is
more accurately predicted by replacing the vertical separation between gratingszwith an effective
depth,zeffective, set by the nearest half-Talbot depth as follows.

aclosestTalbot= round





z
(

p2

λ − λ
4

)





zeffective = aclosestTalbot

(

p2

λ
− λ

4

)

(2.3)

At optimal depths for a particularλ , zeffective = z. However, for non-optimalλs, zeffective and
thusb vary as a function ofλ , an effect previously observed [1–3] but not explained.

The phenomenon that the effective depth is the closest idealTalbot pattern was demonstrated
in a test structure accompanying our original PFCA prototype. A long, linear array of photode-
tectors was built with smoothly varying pitch. The observedangular sensitivityb as a function of
pitch p is plotted in figure4, along with predictions based upon actual and effective depths applied
to eq. (2.1). It can be seen that parameterb is better predicted by the effective depth from eq. (2.3)
than the actual separation of the gratings.

2.2 Combining ASPs into a Fourier-complete array using CMOS

The metal interconnect layers of a CMOS process are manufactured at process-specific heights
above the silicon substrate; to work within an established CMOS process it is necessary to manu-
facture all metals at one of the specified depths. There are therefore a discrete spectrum of inter-
metal depths available. Using eqs. (2.2) and (2.1), it is possible to determine the spectrum of
manufacturableb values that have locally-maximalm (see filled circles of figure5).

– 4 –
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Figure 4. Closest Talbot Pattern Determinesb. Observedb(p) agrees better with the assumption that
zeffective equals the closest optimal Talbot depth, and not the manufactured depth. Blue circles: measuredb
as a function of pitch for incident green light on a series of devices spanning a range ofp from 0.7 to 1.3
microns. Red xs: modeledb assuming eqs. (2.1) and (2.3). Black line: modeledb assumingzeffective= zand
eq. (2.1). Grey bars: depth of closest Talbot pattern.
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Figure 5. Selecting Devices for the PFCA. Filled black circles indicate manufacturable devices with maxi-
malm for 520nm light; open circles indicatep and (λ -dependent)b for the suite of devices we manufactured.

For Fourier completeness, it is important to sample Fourierspace with an adequate density
to ensure coverage. The more densely-packed the Fourier frequency measurements, the larger the
angular region that can be observed with Nyquist sampling. As reported previously [1], the rela-
tionship between the maximum allowable incident light angle h and the maximum difference inb
between consecutive designs is

h =
180◦√

2∆b
. (2.4)

The first prototype we built included devices withp tuned for a range of wavelengths other
than the design point (520 nm) by manufacturing devices withp differing slightly from that of
locally-optimal devices (see eq. (2.2)). The ASPs included in the manufactured device are shown
as empty circles in figure5; note each design of constantp andz has differentb for different λs.

– 5 –
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570 Microns

Figure 6. Manufactured PFCA. Concentric rings of ASPs with increasingly higherb yield a complete
Fourier description of the light intensity from the far field. Slowly varying orientation is evident from the
enlarged section, where schematics show different metal layers in different colours.

We arranged 1444 ASPs in two PFCAs with complementaryαs (see eq. (1.1)). All ASPs of a given
design (combination ofzandb) are found in one of 18 concentric rings arranged around fourlow-b
devices described elsewhere [10]. Rings with higherb are placed further from the center to allow
for a greater variety of grating orientations, as is required for Fourier tiling. Although in general
higherb requires lowerp, as seen in figure5 the first 6 devices chosen have the opposite trend since
they are all designed to the first half-Talbot depth for four different metal layers. The schematics in
figures6 and7 showp increasing as one moves outward from the center, but in general this is not
the case and the outermost device rings have the smallestp and highestb.

Resolution limits are set by the maximumb of any devicebmax. This Nyquist limit corresponds
to two rows or columns of pixels per period of the highest-b device. Forh≈ 45◦, the total number

of effective pixels is
(

bmax
2

)2
, or approximately 400 pixels for this prototype.2

The prototype’sbs span the space relatively well for blue and green light (largest∆b is 3.6 and
3.3 respectively; correspondinghs are 35◦ and 38◦), but a gap inbs for red light in theb = 13–21
range reduces our expectations that red images will be recovered well for half-anglesh > 17◦.
Furthermore, as the pitch of a device approaches a single wavelength, its signal-to-noise ratios de-
grades, such that red light will intrinsically provide worse performance in fine-pitch ASPs. Both of
these disadvantages working under red light contribute to poor reconstructions (see section3). The
manufactured device is seen in figure6.

2As ASPs’ transfer functions are not pure Fourier componentsbut contain some harmonics, a limited amount of
information outside the expected Nyquist limit is available so long as the coverage of Fourier space is overcomplete and
noise levels are low.

– 6 –
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A CB

Figure 7. PFCA Calibration. Transfer functions of each pixel are found by presenting 6710 random binary
50× 50 calibration images (A) on a CRT screen (presentation time16.7 ms each) to the array (B) and
performing reverse correlation between the observed photocurrent of each sensor and the image presented.
The kernels of three ASPs are shown (C); these resemble Fourier components.

2.3 Reconstructing images

The prototype PFCA was presented with calibration (figure7A) and test images using a square
CRT area 20cm on a side, 22.86cm from the PFCA3 for anh of 31.7◦ at the square’s corners. This
h is small enough to allow full Fourier coverage for blue and green, but not red light (see eq. (2.4)).

To reconstruct images computationally, we performed the following operations. First, we com-
puted the relationship between the photocurrent and the observed voltage drops at the photodiodes
by fitting a quadratic function toV(t) under constant illumination from an LED lit by a steady
power source. Then we threw out all data from any ASP that was saturated for more than 30% of
all image presentations (24.5% of all sensors). This was necessary because long range diffusion of
photo-generated carriers tended to add a background photocurrent to many of the ASPs close to the
edge of the array. Next, we performed reverse correlation [11] between inferred photocurrents and
the calibration images with the following steps. We computed the pseudoinverse of the matrix4 of
calibration stimuliC, and multiplied it by the matrix of responsesR to obtain an estimate of the
individual transfer functionsH as follows. We assumeR is linearly related toC by H, therefore

R = CH. (2.5)

C is not square since there are 6710 patterns of 2500 free parameters each, so we can compute
and multiply both sides of eq. (2.5) by C’s pseudoinverse(CTC)−1CT.

(CTC)−1CTR = (CTC)−1(CTC)H.

(CTC)−1CTR = H. (2.6)

Having computedH (sample rows ofH are shown in figure7C), we need to find a way to
invert it so we can reconstruct a new stimulussnew given a new set of responsesrnew. We computed
the eigenspectrum ofHHT (see figure8) and found a regularized pseudoinverse ofH using ridge
regression [12] as follows. Ridge regression de-emphasizes eigenvectorsof HHT that have little

3As 23cm≫ 570µm (the PFCA’s size), images presented are in the far field regime where the light field at each
point in the PFCA is essentially identical.

4Matrix quantities such asC shall be in capital bold, vector quantities in lowercase bold.

– 7 –
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Figure 8. Eigenspectrum ofH. The strongest 36 eigenvectors ofH for green light are shown in order from
left to right, then top to bottom.

power. It is an acknowledgement that some stimulus eigenvalues are not represented strongly in
R and thus should be attenuated to avoid letting noise in poorly-determined stimulus components
overwhelm signal in well-determined components.5

rnew = snewH

rnewHT(HHT + αI)−1 ≈ snew (2.7)

Here α was chosen by inspection of the eigenspectrum ofHHT, and values of 30, 20 and
20 were used for reconstructions with red, green and blue light, respectively (see section3) to
reflect cutoffs below which noise dominates signal. These cutoffs preserved approximately 400

eigenvectors ofHHT for green light, implying a 20×20 pixel resolution consistent with
(

bmax
2

)2
.

Using eq. (2.7), we reconstructed presented images up to this resolution limit as in figure9.

3 Robustness to changes in imaged wavelength

Although the prototype PFCA was designed for green light, wealso calibrated and tested it with
blue and red light from the CRT. For each wavelength of light,a separateH was calculated (see
eq. (2.6)) and images were reconstructed as for green light (see eq. (2.7)). The reconstructed images
for all three colours can be found in figure10.

As expected, blue light does not produce images of the same quality as green light, and red
light yields much worse reconstructions. The poor reconstructions available from red light are due

5We also attempted ridge regression while determiningH in eq. (2.6), but it did not improve our results.
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A

B

Figure 9. Image Reconstructions. Using the basis functions obtained in the calibration phase (figure7), we
reconstructed (B) the image presented (A) up to the Nyquist limit of our array. No off-chip optics were used;
accumulation times were 16.7 ms.

Red Light Green Light Blue Light

Figure 10. Three Colour Image Reconstructions. Using the basis functions H obtained from red, green
and blue calibration runs, the first prototype chip is able toresolve light images other than at the design
wavelength (520nm). The center green image is identical to that of figure9B on the left.

to the large gap in Fourier information available in theb = 13–21 range6 (see figure5) and the fact
that red light cannot pass easily through the smallest gratings in use due to its larger wavelength
resulting in lower signal to noise ratios.

4 Compressed sensing reconstructions

4.1 Brief introduction to compressed sensing

Compressed sensing (CS) is a recently-developed signal processing tool useful for reconstructing
signals with only partial observations [13]. In general, one can only reconstruct a signal with as
many (or fewer) free parameters as observations. Partial observations imply a degraded reconstruc-
tion. However, if the signal is known to be sparse in some basis, then incomplete observations in
some other basis (unrelated to the basis in which the signal is sparse) can be sufficient to determine
the signal with high precision. For example, natural scenesare sparse in the space of wavelets [14]

6The PFCA’s blind spot to frequencies in this range is more evident in figure12, columns A1 and A2, rows G and B.
These images are derived from eq. (2.7) using theH for red light but with green and blue light incident, leadingto high
noise. Noise in theb = 13–21 range is especially prominent, leading to artifactual “bull’s eyes” in the reconstruction.

– 9 –
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(which, roughly speaking, encode edge information) since most scenes contain far fewer edges
than pixels. Furthermore, since most scenes are well described by their edges, one can encode
most of the information about the pixels in a scene by encoding the strength of the edges in the
scene. Thus, a typical natural scene, when mapped onto a wavelet basis set, can be well approx-
imated by a sparse collection of wavelets with large coefficients. In general, if a system withN
free parameters (pixels) can be accurately described withk (the number of edges) large-magnitude
components, and the system is sparse (k≪ N), then accurate reconstruction can be performed from
only M measurements, even ifM < N, providedM > k by a comfortable7 margin. This is true
because onlyk free parameters need to be fit. Thus, by enforcing sparsity aswell as accuracy, one
can reconstruct many signals with fewer measurements than there are free parameters.

Compressed sensing provides a mathematical framework for arriving at a sparse solution that
still explains observations using convex optimization.8 CS operates first by assuming that datay
form aM×1 vector derived from theN×1 sparse signalx multiplied by aM×N calibration matrix
A. The goal, then, is to find a signalx̃ that accurately estimatesx based ony. To makeAx̃ close to
y, minimizing the mean square error‖y−Ax̃‖2

2 is desirable. To enforce sparsity, theL1 norm ofx
‖x̃‖1 should also be minimized [13]. Combining these two minimizations with relative importance
λ yields the basis pursuit denoising (BPDN) problem [15]:

x̃ = argmin
x

1
2
‖y−Ax‖2

2 + λ‖x‖1 (4.1)

Solving eq. (4.1) leads to a sparse explanation of the signal, which will coincide with the true signal
if it is indeed sparse.

4.2 Compressed sensing permits full reconstructions from incomplete PFCA information

The basis in which natural images are sparse is close to a wavelet pyramid [14], which is different
enough from the Fourier basis that a sparse collection of ASPs from a Fourier pixel should be suffi-
cient to reconstruct a full image, provided it is sparse in the wavelet domain. We therefore projected
H into an overcomplete (2500×8619) wavelet basis [16] W and declaredA from eq. (4.1) to be
HW . The CS reconstruction problem for recovering the image given limited observations becomes

sCS = (WTW)−1WT
(

argmin
x

1
2
‖rsub−HsubWx‖2

2 + λ‖x‖1

)

(4.2)

wheresub indicates only a randomly-chosen small subset (40%, 25%, 10% or 8%) of the responses
r are kept to simulate incomplete measurements. CS reconstructions are of relatively high quality
despite randomly subsampling Fourier space, as seen in figure 11.

As part of related work solving underdetermined imaging problems [3], we wrote the in-crowd
algorithm for solving BPDN [15], which is faster than all alternative methods on sparse, large-scale
BPDN problems such as this one. On a modern desktop computer,computing the exact BPDN
solution for our problems takes approximately one second with the in-crowd algorithm, whereas
other popular alternatives such as GPSR may take longer thanan hour with the same inputs.

7See [13] for a theoretical guarantee of what “comfortable” means inthis context, although provable guarantees place
much more stringent requirements than practically necessary.

8That the problem be posed as convex optimization is important because it eliminates the possibility of local optima,
meaning the task of searching for a sparse signal compatiblewith incoming data is tractable.

– 10 –
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Figure 11. Compressed Sensing Results. We show compressed sensing reconstructions of the test image
using a randomly-selected subset of ASP sensors. Proportion of sensors whose data are used shown in
lower-left corner.

PFCAs are thus able to relate complex images to a certain degree even when over 90% of their
constituent sensors malfunction. Alternatively, it wouldbe possible to design a PFCA with a ran-
dom collection of only 10% of the sensors traditionally considered essential for Fourier coverage
and still be able to reconstruct images, provided they are sparse in some known, non-Fourier basis.
This ability is derived from the fact that each ASP makes measurements in a basis in which natural
images are not sparse (i.e. Fourier components), yet natural images have a known sparsity. There is
only one sparse combination of wavelets that satisfies the incomplete Fourier measurements taken
by the PFCA; this is the solutionsCS of eq. (4.2).

5 Determining colour blindly

Up until now, we have assumed the reconstruction process hasaccess to information about the
wavelength of the light imaged. Introducing uncertainty inthe wavelength imaged makes recon-
struction underdetermined by a factor equal to the number ofpossible wavelengths of light, since
the number of unknowns becomes the number of pixels times thenumber ofλs. However, recover-
ing full colour information may still be possible. In section 4.2we showed that an undercomplete
subset of ASP readings can be sufficient to reconstruct a fullimage. Moreover, as shown in fig-
ure5, theb of every device is wavelength-sensitive, meaning that PFCAsignals should be sensitive
enough toλ to discriminate colours. Given this wavelength sensitivity along with the robustness to
undercomplete measurements as shown in section4.2, it should be possible to determine the colour
of light incident on the PFCA merely by assuming the image is composed of a sparse combination
of wavelets of monochromatic light.

To perform this blind chromatic reconstruction we first computed the matrix of the coupling
of red, green and blue wavelets to the sensor ensemble:[HredHgreenHblue]W3 whereW3 denotes
a triple-tall matrix of wavelet coefficients. Next, we foundthe combination of these wavelets (of
whatever mixture of colours) that is simultaneously sparseand satisfies the observed ASP outputs
r by solving eq. (5.1).

sCS = (WT
3 W3)

−1W3
T
(

argmin
x

1
2
‖r − [HredHgreenHblue]W3x‖2

2 + λ‖x‖1

)

(5.1)

The solution to eq. (5.1) is the triple-tall red, green and blue vector of pixel intensities com-
posed of a combination of a small number of monochromatic wavelets. The solutions to eq. (5.1)
are plotted in figure12. This technique does a remarkable job of discovering the correct colour.
Note that there is no constraint that all wavelets found by eq. (5.1) must be of the same colour
(and numerical inspection reveals that the images in D columns are not strictly monochromatic);
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Figure 12. Blind Colour Imaging. We show reconstructions of test images 1 & 2 without foreknowledge
of the colour of incident light. R, G and B rows: presented images were red, green and blue. A columns:
image reconstructed using eq. (2.7) based onH calibrated using red light. B & C columns: as for A, but
using green- and blue-calibratedH matrices. D columns: reconstruction based on eq. (5.1) without any
assumption about colour, or that the image is monochromatic.

merely enforcing sparsity of the solution and consistency with the observations selects wavelets
that happen to be of the correct colour. Note also that using compressed sensing greatly improves
the performance of the PFCA for red light: compare R, D1 to R, A1 of figure12. Unexpectedly,
Fourier information from the missing bandb = 13–21 has been filled in. CS gives no indication
this completion should be possible since it prescribes random sampling (with no systematic, large
blind spots), yet it performs admirably despite a lack of theoretical guarantee.

6 Conclusions

We have demonstrated techniques for reconstructing imagesacquired by PFCAs that provide ro-
bustness beyond what was initially imagined possible. First, we characterized wavelength robust-
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ness of our PFCA. Although designed for green light, our firstprototype PFCA performs well
under blue light using standard linear algebra techniques (figure10, right) and even under red light
using basis pursuit denoising and compressed sensing (figure12R, D1 and R, D2). Reconstruction
with red incident light is particularly impressive given the large gap in spatial frequencies sam-
pled under red light (figure5) and the poor performance of ASPs whosep approachesλ . Second,
we demonstrated robustness against losing all signal from arandomly-chosen set of ASPs. Us-
ing compressed sensing, we formulated a basis pursuit denoising problem (eq. (4.2)) that permits
impressive reconstructions even with a randomly-chosen set with 90% of the signals destroyed (fig-
ure11). Last, we applied the same compressive sensing techniquesto determine the colour of the
images presented. The reconstructed wavelengths are nearly flawless (figure12), and in the case
of red illumination this technique yields an image of much higher quality than permitted by linear
algebra reconstructions (figure10, left). In principle there is no obstacle to taking polychromatic
images using a PFCA since eq. (5.1) does not require images to be monochromatic, and it should be
possible as well to recover hyperspectral information (i.e. more than 3 colour channels) in a com-
pressed sensing framework, especially using a PFCA designed with a greater number of device
types. Each device type has an idiosyncraticb(λ ) with sharp discontinuities caused by abruptly
rounding effective depth to the nearest optimal Talbot depth (see figure4 and eq. (2.3)), providing
much betterλ sensitivity than initially thought.

In summary, PFCAs enjoy several unusual forms of robustnessstemming from their operating
principles, including insensitivity to lost ASP sensors, flexibility in terms of incident light wave-
length, and the ability to determine source image colour without employing any chromatic filters.
These unexpected forms of redundancy enhance the range of applications appropriate for this new
class of sensing device.

Acknowledgments

We would like to thank Eve De Rosa who helped support this work, Albert Wang for his input and
ideas, and Igor Carron, whose suggestions and advice regarding compressed sensing and wavelet
dictionaries proved invaluable. We would also like to acknowledge our funding sources, including
DARPA, who supported this research via a YFA Grant 66001-10-1-4028 to Alyosha Molnar, and
the NIH, who helped fund this work under R21 grant EB 009841-01.

References

[1] P.R. Gill, C. Lee, D. Lee, A. Wang and A. Molnar,A microscale camera using direct Fourier-domain
scene capture, Optics Lett.36 (2011) 2949.

[2] A. Wang, P. Gill and A. Molnar,Light field image sensors based on the Talbot effect,
Appl. Opt.48 (2009) 5897.

[3] A. Wang, P.R. Gill and A. Molnar,Fluorescent imaging and localization with angle sensitivepixel
arrays in standard CMOS, presented at theIEEE Sensors Conf.(2010) 1706.

[4] B. Batchelor, D. Hill and H. Hodgson,Automated visual inspection, Elsevier Science Pub., New York
U.S.A. (1985).

– 13 –

http://dx.doi.org/10.1364/OL.36.002949
http://dx.doi.org/10.1364/AO.48.005897
http://dx.doi.org/10.1109/ICSENS.2010.5689914


2
0
1
2
 
J
I
N
S
T
 
7
 
C
0
1
0
6
1

[5] T. Lillesand, R. Kiefer and J. Chipman,Remote sensing and image interpretation, fifth edition, John
Wiley & Sons Ltd., U.S.A. (2004).

[6] C. Urmson et al.,Autonomous driving in urban environments: Boss and the urban challenge,
J. Field Robot.25 (2008) 425.

[7] N. Bergström, J. Bohg and D. Kragic,Integration of visual cues for robotic grasping,
Computer Vision Syst.5815(2009) 245.

[8] H. Talbot,LXXVI. Facts relating to optical science. No. IV, Phil. Mag. Ser.3 9 (1836) 401.

[9] S. Teng, Y. Tan and C. Cheng,Quasi-Talbot effect of the high-density grating in near field,
JOSAA 25 (2008) 2945.

[10] C. Koch, J. Oehm, J. Emde and W. Budde,Light source position measurement technique applicable
in SOI technology, IEEE J. Solid State Circuits43 (2008) 1588.

[11] F.E. Theunissen, K. Sen and A.J. Doupe,Spectral-temporal receptive fields of nonlinear auditory
neurons obtained using natural sounds, J. Neurosci.20 (2000) 2315.

[12] A.N. Tychonoff,On the stability of inverse problems, Dokl. Akad. Nauk Ser. Fiz.39 (1943) 195.

[13] D. Donoho,Compressed sensing, IEEE Trans. Info. Theor.52 (2006) 1289.

[14] B. Olshausen and D. Field,Sparse coding with an overcomplete basis set: a strategy employed by
V1?, Vision Res.37 (1997) 3311.

[15] P.R. Gill, A. Wang and A. Molnar,The in-crowd algorithm for fast basis pursuit denoising,
IEEE Trans. Signal Process.59 (2011) 4595. Code available at
http://molnargroup.ece.cornell.edu/files/InCrowdBeta1.zip.

[16] E.P. Simoncelli and W.T. Freeman,The steerable pyramid: a flexible architecture for multi-scale
derivative computation, in IEEE Second International Conf. on Image Processing, Washington DC
U.S.A. October 1995,IEEE Conf. Proc.1995(1995) 444. Code available at
http://www.cns.nyu.edu/∼eero/steerpyr/.

– 14 –

http://dx.doi.org/10.1002/rob.20255
http://dx.doi.org/10.1007/978-3-642-04667-4_25
http://dx.doi.org/10.1080/14786443608649032
http://dx.doi.org/10.1364/JOSAA.25.002945
http://dx.doi.org/10.1109/JSSC.2008.922402
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1016/S0042-6989(97)00169-7
http://dx.doi.org/10.1109/TSP.2011.2161292
http://molnargroup.ece.cornell.edu/files/InCrowdBeta1.zip
http://dx.doi.org/10.1109/ICIP.1995.537667
http://www.cns.nyu.edu/~eero/steerpyr/

	Introduction
	Planar Fourier capture arrays
	Angle sensitive pixels
	Deriving the Talbot depth

	Designing PFCAs
	Effective depth
	Combining ASPs into a Fourier-complete array using CMOS
	Reconstructing images

	Robustness to changes in imaged wavelength
	Compressed sensing reconstructions
	Brief introduction to compressed sensing
	Compressed sensing permits full reconstructions from incomplete PFCA information

	Determining colour blindly
	Conclusions

