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ABSTRACT. Planar Fourier capture arrays (PFCAS) are optical sethsidtentirely in standard mi-
crochip manufacturing flows. PFCAs are composed of ensendblangle sensitive pixels (ASPS)
that each report a single coefficient of the Fourier tramsfof the far-away scene. Here we charac-
terize the performance of PFCAs under the following threg-optimal conditions. First, we show
that PFCASs can operate while sensing light of a wavelendtlrdhan the design point. Second, if
only a randomly-selected subset of 10% of the ASPs are fumalti we can nonetheless reconstruct
the entire far-away scene using compressed sensing. Titimd,wavelength of the imaged light is
unknown, it can be inferred by demanding self-consisteridii@outputs.
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1 Introduction

1.1 Planar Fourier capture arrays

Planar Fourier capture arrays (PFCA%) are ensembles of angle sensitive pixels (ASRsB]
that directly capture the Fourier transform of a far-awapg®. The light sensitivity of an indi-
vidual ASP is a sinusoidal function of incident ang®.[A carefully-chosen ensemble of ASPs
can report the entire Fourier transform of the far-away sagm to the Nyquist limit set by the
highest-frequency ASP in the ensemhblg [As ASPs are extremely thin, light and cheap to man-
ufacture, PFCASs have the potential to become a disruptalentdogy in the fields of sensing and
robotics B]—-[7] when volume, mass or cost constraints are paramount.

For PFCAs to reach their full potential, it would be usefuluttderstand some of the limita-
tions and freedoms afforded by this new class of imager. @strBFCA was optimized for green
incident light, and the reconstruction algorithms we useslipusly [L] assume all sensors are
functional. In this publication we thoroughly report PFCAsin considerations, then investigate
the performance of PFCAs imaging light of a different colthan the design specification, both
when that colour is knowa priori and when it must be determined blindly. Further, we will show
that by using a signal-processing technique called corepdesensing, we can reconstruct images
even when the outputs of only a small fraction of the ASPs eadable.
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Figure 1. Interaction Between Incident Light and ASPs. Left: ligitident at 10 produces spatial maxima
that align with gaps in the second grating, resulting in gdgohotocurrent. Center: light incident at25

produces spatial maxima that are largely blocked by thergbgeating, resulting in a small photocurrent.
Right: photocurrentis a sinusoidal function of incidengken

Talbot Effect

Figure 2. The Talbot Effect. Wave simulation of monochromatic lighiking a grating at the normal. The
grating periodicity is recapitulated at regularly-spadegths below the grating; a phenomenon known as
the Talbot effect. The Talbot dep#y is shown at right.

1.2 Angle sensitive pixels

Angle sensitive pixels (ASPs2[3] are photosensitive pixels that, using diffraction grgéincouple
to far-field light sources with an efficiency that is a sindgsbifunction of incident angle. ASPs at-
tain their angle sensitivity through the moiré effect gsiwo metal gratings with identical spacing
but at different heights above a photodiode below (see fijuBue to the vertical displacement of
the gratings, the angle subtended by one spatial periocedbthgrating viewed by the photodiode
is slightly less than that subtended by the bottom gratirigs @ngular disparity invokes the moiré
effect, making the effective transmission aperture a siilas$ function of incident angle. Both of
the gratings can be manufactured using metal interconagetd intrinsic to the CMOS process,
and the photodiodes can be manufactured using intrinsiéceenuctors, meaning ASPs can be
manufactured entirely using existing unmodified CMOS pssdtows.

The moiré effect is essentially a ray optics effect, howatghe small spatial scale of CMOS
structures photons cannot be modeled as non-diffractipg. r&ortunately, the moiré effect can
be rescued by exploiting the Talbot effe& P]. The Talbot effect is the property that a regular



periodic grating illuminated by monochromatic light cresself-images at integer multiples of the
Talbot depthzZy = ZTPZ — "5 (see sectiori.3) wherep is the grating pitch (spatial period) aidis
the wavelength of light (see figurdsand?2). By ensuring that the second grating is located at an
integer multiple of haff the Talbot depth, the moiré effect is rescued and furthiénadtion effects
can be neglected.

The transfer function of light incident on an ASP can be medels in eq.1.1).

R=1o(1—mcogb6 +a))F(6)(1+n), (1.1)

whereR is the readout of the ASI, is proportional to the light flux at the ASB,is the incident
angle along the sensitive axig,is the angular sensitivity (designed to range from 7 to 3%- se
eg. €.1)), mis the modulation depth of the ASP (see €212)), a is a designable phase offset
caused by a displacement between the top and bottom grafiG@sis a slowly-varying aperture
function andn is multiplicative noise.

1.3 Deriving the Talbot depth

The"f term ofZt = ZTPZ —% is often omitted especially in considerations of Talboiquicity rather
than absolute depth and whph>> A2, but is derivable from a consideration of optical path Iésgt
and provides a noticeable increase in accuracy when mgdafid designing ASPs. Consider the
geometry of figure3. For a local minimum to occur af = %T the path length difference between

r = %T andr, = \/(%)24- p? should be’%. Thus,
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2 Designing PFCAs

An ASP’s angular sensitivityb(from eq. (L.1)) can be found by considering the angular displace-
ment required for a lobe of the Talbot diffraction patterrireverse a full period of the analyzer
grating, as in eq.24.1).
b — pppZefective. @2.1)
pn

1At half-integer multiples of the Talbot depth the periodjcof the initial grating reemerges, but with its phase
reversed; see figurdsand2.



Figure 3. Calculating the Talbot Depth. The geometry in this configion leads to our expression for the
half Talbot depth in eq.1(.2).

where Zseciive IS the effective vertical displacement between gratinge @q. 2.3)) andn is the
refractive index of the medium, in this case $iO'he depthsg at which modulation deptm is
maximal correspond to integer multiples of half the Talbepitth, as in eq.4.2).

P

mmaximal wherz= a <7 — %) ;ael (2.2)

2.1 Effective depth

Since the PFCA was built, detailed measurements have pedidhat when using eg2(l), b is
more accurately predicted by replacing the vertical sejmar®etween gratingswith an effective
depth,Zective, SEt Dy the nearest half-Talbot depth as follows.

Z
AclosestTalbot= round @
X2
PPA
Zeffective = QAclosestTalbo N2 (2.3)

At optimal depths for a particulat, Zsecive = z However, for non-optimal s, Zefective @and
thusb vary as a function ol , an effect previously observed-{3] but not explained.

The phenomenon that the effective depth is the closest Tdglabdt pattern was demonstrated
in a test structure accompanying our original PFCA protetyp long, linear array of photode-
tectors was built with smoothly varying pitch. The obsereagjular sensitivityp as a function of
pitch pis plotted in figure4, along with predictions based upon actual and effectivetdegpplied
to eq. @.1). It can be seen that paramekbeis better predicted by the effective depth from e33)
than the actual separation of the gratings.

2.2 Combining ASPs into a Fourier-complete array using CMOS

The metal interconnect layers of a CMOS process are manuéactt process-specific heights
above the silicon substrate; to work within an establish&t0S process it is necessary to manu-
facture all metals at one of the specified depths. There areftire a discrete spectrum of inter-
metal depths available. Using eg2.4) and @.1), it is possible to determine the spectrum of
manufacturablé values that have locally-maximal (see filled circles of figurs).
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Figure 4. Closest Talbot Pattern Determinks Observedb(p) agrees better with the assumption that
Zeiective €quals the closest optimal Talbot depth, and not the mahwrt depth. Blue circles: measured
as a function of pitch for incident green light on a series @fides spanning a range pffrom 0.7 to 1.3
microns. Red xs: modeldnassuming eqs2(1) and €.3). Black line: modeled) assumin@egective = Zand
eg. 2.1). Grey bars: depth of closest Talbot pattern.
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Figure 5. Selecting Devices for the PFCA. Filled black circles irdeemanufacturable devices with maxi-
malmfor 520nm light; open circles indicafeand @ -dependent) for the suite of devices we manufactured.

For Fourier completeness, it is important to sample Foweice with an adequate density
to ensure coverage. The more densely-packed the Fouriprefiney measurements, the larger the
angular region that can be observed with Nyquist sampling reported previouslyl], the rela-
tionship between the maximum allowable incident light arfigand the maximum difference im

between consecutive designs is
~180°

h= .
V2Ab

The first prototype we built included devices withtuned for a range of wavelengths other
than the design point (520 nm) by manufacturing devices witliffering slightly from that of
locally-optimal devices (see e2.)). The ASPs included in the manufactured device are shown
as empty circles in figurg; note each design of constapiandz has differento for differentAs.

(2.4)
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Figure 6. Manufactured PFCA. Concentric rings of ASPs with increglsi higherb yield a complete
Fourier description of the light intensity from the far fiel8lowly varying orientation is evident from the
enlarged section, where schematics show different matatdan different colours.

We arranged 1444 ASPs in two PFCAs with complementesysee eq.1(1)). All ASPs of a given
design (combination af andb) are found in one of 18 concentric rings arranged aroundltowb
devices described elsewhefdd]. Rings with higherb are placed further from the center to allow
for a greater variety of grating orientations, as is requii@ Fourier tiling. Although in general
higherb requires lowelp, as seen in figur the first 6 devices chosen have the opposite trend since
they are all designed to the first half-Talbot depth for foiffiedent metal layers. The schematics in
figures6 and7 show p increasing as one moves outward from the center, but in geties is not

the case and the outermost device rings have the smpléesd highesb.

Resolution limits are set by the maximumof any devicebmax. This Nyquist limit corresponds
to two rows or columns of pixels per period of the highkestevice. Foth ~ 45°, the total number

2
of effective pixels is<meaX) , or approximately 400 pixels for this prototype.

The prototype’ds span the space relatively well for blue and green lighjésiAb is 3.6 and
3.3 respectively; correspondifg are 35 and 38), but a gap irbs for red light in theb = 13-21
range reduces our expectations that red images will be eeedwvell for half-angle$ > 17°.
Furthermore, as the pitch of a device approaches a singlel@rayth, its signal-to-noise ratios de-
grades, such that red light will intrinsically provide wenserformance in fine-pitch ASPs. Both of
these disadvantages working under red light contribut®tm peconstructions (see sectign The
manufactured device is seen in figuixe

2As ASPs' transfer functions are not pure Fourier componbaotscontain some harmonics, a limited amount of
information outside the expected Nyquist limit is avaitabb long as the coverage of Fourier space is overcomplete and
noise levels are low.
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Figure 7. PFCA Calibration. Transfer functions of each pixel arerfdby presenting 6710 random binary
50 x 50 calibration images (A) on a CRT screen (presentation & ms each) to the array (B) and
performing reverse correlation between the observed ghatent of each sensor and the image presented.
The kernels of three ASPs are shown (C); these resembledf@arnponents.

2.3 Reconstructing images

The prototype PFCA was presented with calibration (figidé and test images using a square
CRT area 20cm on a side, 22.86cm from the PE@A anh of 31.7° at the square’s corners. This
his small enough to allow full Fourier coverage for blue anelgr, but not red light (see e@..4).

To reconstruct images computationally, we performed theviing operations. First, we com-
puted the relationship between the photocurrent and theredd voltage drops at the photodiodes
by fitting a quadratic function t¥ (t) under constant illumination from an LED lit by a steady
power source. Then we threw out all data from any ASP that wasated for more than 30% of
all image presentations (24.5% of all sensors). This wassszzy because long range diffusion of
photo-generated carriers tended to add a background phictat to many of the ASPs close to the
edge of the array. Next, we performed reverse correlatidhetween inferred photocurrents and
the calibration images with the following steps. We comgutes pseudoinverse of the matriaf
calibration stimuliC, and multiplied it by the matrix of respons&sto obtain an estimate of the
individual transfer functionsi as follows. We assumi is linearly related t&C by H, therefore

R =CH. (2.5)

C is not square since there are 6710 patterns of 2500 free ptagesreach, so we can compute
and multiply both sides of eg2(5) by C’s pseudoinvers¢C’C)~1CT.

(C'c)"Ic™rR = (CTCc) {(CTO)H.
(CTC)"'C"R = H. (2.6)

Having computedd (sample rows oH are shown in figur&’C), we need to find a way to
invert it so we can reconstruct a new stimusis, given a new set of responsggw. We computed
the eigenspectrum ¢dHT (see figure8) and found a regularized pseudoinverseHofising ridge
regression 12] as follows. Ridge regression de-emphasizes eigenveofdsd ' that have little

3As 23cm>> 570um (the PFCAS size), images presented are in the far fieldmegihere the light field at each
point in the PFCA is essentially identical.
4Matrix quantities such a8 shall be in capital bold, vector quantities in lowercaselbol



Figure 8. Eigenspectrum ofi. The strongest 36 eigenvectorstbffor green light are shown in order from
left to right, then top to bottom.

power. Itis an acknowledgement that some stimulus eigeasatre not represented strongly in
R and thus should be attenuated to avoid letting noise in pateiermined stimulus components
overwhelm signal in well-determined componehts.

Mew = ShewH
MewHT (HHT +al) ™! ~ s1eu (2.7)

Here a was chosen by inspection of the eigenspectrunidif’, and values of 30, 20 and
20 were used for reconstructions with red, green and blu, liggspectively (see sectid@) to

reflect cutoffs below which noise dominates signal. Thegeffsupreserved approximately 400
2

eigenvectors oHHT for green light, implying a 26 20 pixel resolution consistent wi meaX
Using eq. R.7), we reconstructed presented images up to this resolutionds in figure9.

3 Robustness to changes in imaged wavelength

Although the prototype PFCA was designed for green lightaige calibrated and tested it with
blue and red light from the CRT. For each wavelength of lighteparatéd was calculated (see
eg. .6)) and images were reconstructed as for green light (se@ &). (The reconstructed images
for all three colours can be found in figute.

As expected, blue light does not produce images of the samléygas green light, and red
light yields much worse reconstructions. The poor recoisisns available from red light are due

5We also attempted ridge regression while determikirig eq. .6), but it did not improve our results.



Figure 9. Image Reconstructions. Using the basis functions obddimée calibration phase (figui®, we
reconstructed (B) the image presented (A) up to the Nyqguist bf our array. No off-chip optics were used;
accumulation times were 16.7 ms.

Red Light Green Light Blue Light

Figure 10. Three Colour Image Reconstructions. Using the basis fomeH obtained from red, green
and blue calibration runs, the first prototype chip is ableeolve light images other than at the design
wavelength (520nm). The center green image is identic&ldbdf figure9B on the left.

to the large gap in Fourier information available in the 13-21 rang®(see figures) and the fact
that red light cannot pass easily through the smallestrgraitin use due to its larger wavelength
resulting in lower signal to noise ratios.

4 Compressed sensing reconstructions

4.1 Brief introduction to compressed sensing

Compressed sensing (CS) is a recently-developed signeggsimg tool useful for reconstructing
signals with only partial observation&d]. In general, one can only reconstruct a signal with as
many (or fewer) free parameters as observations. Partsareations imply a degraded reconstruc-
tion. However, if the signal is known to be sparse in someshdisen incomplete observations in
some other basis (unrelated to the basis in which the sigrsalarse) can be sufficient to determine
the signal with high precision. For example, natural scemesparse in the space of waveldi4] [

6The PFCA's blind spot to frequencies in this range is mordai in figurel2, columns Al and A2, rows G and B.
These images are derived from €8.7j using theH for red light but with green and blue light incident, leadioghigh
noise. Noise in thé = 13-21 range is especially prominent, leading to artifalctoull’s eyes” in the reconstruction.



(which, roughly speaking, encode edge information) sinestnscenes contain far fewer edges
than pixels. Furthermore, since most scenes are well deschby their edges, one can encode
most of the information about the pixels in a scene by engptlie strength of the edges in the
scene. Thus, a typical natural scene, when mapped onto delvaasis set, can be well approx-
imated by a sparse collection of wavelets with large coeffits. In general, if a system with
free parameters (pixels) can be accurately describediwttie number of edges) large-magnitude
components, and the system is spaks& (N), then accurate reconstruction can be performed from
only M measurements, evenM < N, providedM > k by a comfortablé margin. This is true
because onlk free parameters need to be fit. Thus, by enforcing sparsityedisas accuracy, one
can reconstruct many signals with fewer measurements lieaa are free parameters.
Compressed sensing provides a mathematical frameworkriving at a sparse solution that
still explains observations using convex optimizatfo©S operates first by assuming that data
form aM x 1 vector derived from thhl x 1 sparse signad multiplied by aM x N calibration matrix
A. The goal, then, is to find a sign@lthat accurately estimatasbased ory. To makeAX close to
y, minimizing the mean square erriy — AX||3 is desirable. To enforce sparsity, thenorm ofx
|IX||1 should also be minimized.B]. Combining these two minimizations with relative imparte
A yields the basis pursuit denoising (BPDN) problets]{

~ 1
x:argmlné\ly—AX\|%+)\||x||1 (4.1)
X

Solving eq. 4.1) leads to a sparse explanation of the signal, which will cidie with the true signal
if it is indeed sparse.

4.2 Compressed sensing permits full reconstructions frormicomplete PFCA information

The basis in which natural images are sparse is close to detgyeamid [L4], which is different
enough from the Fourier basis that a sparse collection ofsA&n a Fourier pixel should be suffi-
cient to reconstruct a full image, provided it is sparse ewlavelet domain. We therefore projected
H into an overcomplete (25008619) wavelet basislp] W and declared from eq. @.1) to be
HW. The CS reconstruction problem for recovering the imagerglimited observations becomes

_ 1
Scs = (WTW) wT <argm|n§Hrsub— Hsuwayy§+/\ Hle> 4.2)
X

whereg, indicates only a randomly-chosen small subset (40%, 25%, Ai08%) of the responses
r are kept to simulate incomplete measurements. CS recotistrs are of relatively high quality
despite randomly subsampling Fourier space, as seen i figur

As part of related work solving underdetermined imagindopgms [3], we wrote the in-crowd
algorithm for solving BPDN15], which is faster than all alternative methods on sparsgelacale
BPDN problems such as this one. On a modern desktop compotaputing the exact BPDN
solution for our problems takes approximately one secont thie in-crowd algorithm, whereas
other popular alternatives such as GPSR may take longeathaour with the same inputs.

"See [L3] for a theoretical guarantee of what “comfortable” meanthis context, although provable guarantees place
much more stringent requirements than practically necgssa

8That the problem be posed as convex optimization is impbbecause it eliminates the possibility of local optima,
meaning the task of searching for a sparse signal compatitiléncoming data is tractable.

—10 -



Figure 11. Compressed Sensing Results. We show compressed sensamgtractions of the test image
using a randomly-selected subset of ASP sensors. Propatisensors whose data are used shown in
lower-left corner.

PFCAs are thus able to relate complex images to a certaieeeyen when over 90% of their
constituent sensors malfunction. Alternatively, it woblkel possible to design a PFCA with a ran-
dom collection of only 10% of the sensors traditionally ddesed essential for Fourier coverage
and still be able to reconstruct images, provided they asiessgn some known, non-Fourier basis.
This ability is derived from the fact that each ASP makes measents in a basis in which natural
images are not sparse (i.e. Fourier components), yet hahages have a known sparsity. There is
only one sparse combination of wavelets that satisfies ttenplete Fourier measurements taken
by the PFCA, this is the solutiosts of eq. @.2).

5 Determining colour blindly

Up until now, we have assumed the reconstruction processadw@ess to information about the
wavelength of the light imaged. Introducing uncertaintythie wavelength imaged makes recon-
struction underdetermined by a factor equal to the numbeos$ible wavelengths of light, since
the number of unknowns becomes the number of pixels timesuinoer ofAs. However, recover-
ing full colour information may still be possible. In sectid.2we showed that an undercomplete
subset of ASP readings can be sufficient to reconstruct anfiaiye. Moreover, as shown in fig-
ure5, theb of every device is wavelength-sensitive, meaning that PEigAals should be sensitive
enough to\ to discriminate colours. Given this wavelength sensitigitong with the robustness to
undercomplete measurements as shown in sedt®it should be possible to determine the colour
of light incident on the PFCA merely by assuming the imageimpgosed of a sparse combination
of wavelets of monochromatic light.

To perform this blind chromatic reconstruction we first carga the matrix of the coupling
of red, green and blue wavelets to the sensor ensentblgiH greenHbiue W3 WhereWs denotes
a triple-tall matrix of wavelet coefficients. Next, we foutite combination of these wavelets (of
whatever mixture of colours) that is simultaneously sparse satisfies the observed ASP outputs
r by solving eq. $.1).

_ 1
Scs = (W-:I’,—W3) 1W3T <argm|n§Hr - [HrengreenH que]W3XH% +A HXH1> (5.1)
X

The solution to eq.5.1) is the triple-tall red, green and blue vector of pixel irgities com-
posed of a combination of a small number of monochromaticeleds. The solutions to edbs.Q)
are plotted in figurel2. This technique does a remarkable job of discovering theecbrolour.
Note that there is no constraint that all wavelets found by(8d) must be of the same colour
(and numerical inspection reveals that the images in D cotuare not strictly monochromatic);

—-11 -
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Figure 12. Blind Colour Imaging. We show reconstructions of test iemd & 2 without foreknowledge
of the colour of incident light. R, G and B rows: presenteddgeswere red, green and blue. A columns:
image reconstructed using e@.7) based orH calibrated using red light. B & C columns: as for A, but
using green- and blue-calibratétl matrices. D columns: reconstruction based on &dl) (without any
assumption about colour, or that the image is monochromatic

merely enforcing sparsity of the solution and consistendy ¥he observations selects wavelets
that happen to be of the correct colour. Note also that usangpcessed sensing greatly improves
the performance of the PFCA for red light: compare R, D1 to R,0Afigure12. Unexpectedly,
Fourier information from the missing barw= 13-21 has been filled in. CS gives no indication
this completion should be possible since it prescribesaansampling (with no systematic, large
blind spots), yet it performs admirably despite a lack obtle¢ical guarantee.

6 Conclusions

We have demonstrated techniques for reconstructing imacppsred by PFCAs that provide ro-
bustness beyond what was initially imagined possible.tRive characterized wavelength robust-
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ness of our PFCA. Although designed for green light, our farsttotype PFCA performs well
under blue light using standard linear algebra technigfigsré 10, right) and even under red light
using basis pursuit denoising and compressed sensinggfigir, D1 and R, D2). Reconstruction
with red incident light is particularly impressive giveretharge gap in spatial frequencies sam-
pled under red light (figur®) and the poor performance of ASPs whgsapproached . Second,
we demonstrated robustness against losing all signal fream@omly-chosen set of ASPs. Us-
ing compressed sensing, we formulated a basis pursuitsleggiroblem (eq.4.2)) that permits
impressive reconstructions even with a randomly-chosewige90% of the signals destroyed (fig-
ure11). Last, we applied the same compressive sensing techniguistermine the colour of the
images presented. The reconstructed wavelengths arg flearless (figurel?), and in the case
of red illumination this technique yields an image of muchhar quality than permitted by linear
algebra reconstructions (figuli®, left). In principle there is no obstacle to taking polyamatic
images using a PFCA since e§.1) does not require images to be monochromatic, and it shauld b
possible as well to recover hyperspectral information (here than 3 colour channels) in a com-
pressed sensing framework, especially using a PFCA dabigiite a greater number of device
types. Each device type has an idiosyncratig ) with sharp discontinuities caused by abruptly
rounding effective depth to the nearest optimal Talbot l¢pee figurel and eq. 2.3)), providing
much betteiA sensitivity than initially thought.

In summary, PFCASs enjoy several unusual forms of robuststessming from their operating
principles, including insensitivity to lost ASP sensorgxibility in terms of incident light wave-
length, and the ability to determine source image colouhevit employing any chromatic filters.
These unexpected forms of redundancy enhance the rangelmfatipons appropriate for this new
class of sensing device.
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