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ABSTRACT: The present study is a comparative investigation of the luminescence properties of
(Lu,Y)2SiO5: Ce (LYSO: Ce), YAlO3: Ce (YAP: Ce), Gd2SiO5: Ce (GSO: Ce) and (Bi4Ge3O12)
BGO single crystal scintillators under x-ray excitation. Results will be of value in designing dual
modality tomographic systems (PET/CT, SPECT/CT) based on a common scintillator crystal. All
scintillating crystals have dimensions of 10×10×10 cm3 are non-hygroscopic exhibiting high ra-
diation absorption efficiency in the energy range used in medical imaging applications. The com-
parative investigation was performed by determining the x-ray luminescence efficiency (emitted
light flux over incident x-ray energy flux) in the range of x-ray energies employed in: (i) general
x-ray imaging (40–140 kV, using a W/Al x-ray spectrum) and (ii) x-ray mammography imaging
(22–49 kV, using a Mo/Mo x-ray spectrum). Additionally, light emission spectra of crystals at vari-
ous x-ray energies were measured, in order to determine the intrinsic conversion efficiency and the
spectral compatibility to optical photon detectors incorporated in medical imaging systems. The
light emission performance of LYSO:Ce scintillator studied was found very high for x-ray imaging.
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1 Introduction

BGO combines good scintillation characteristics however, its decay time (∼ 300 ns) limits its ap-
plications in fast imaging, i.e. Spiral Computed Tomography (SCT) and Positron Emission Tomog-
raphy (PET) [1].

Cerium (Ce3+) doped Gadolinium (Gd2SiO5 or GSO) oxyorthosilicate and Ytrium orthoalu-
minate (YAlO3: Ceor YAP: Ce) are fast emitting scintillators employed mainly in PET and animal
PET detectors [2]. However GSO and YAP exhibit relatively lower light yield (≥ 8000 ph/MeV
for GSO and 21000 ph/MeV for YAP) than Lutetium Yttrium Oxyorthosilicate, (Lu,Y)2SiO5:Ce
(LYSO: Ce), which is a promising scintillation crystal [3], with similar scintillation properties as
LSO:Ce [4].

The present study is a comparative investigation of GSO:Ce, YAP:Ce and LYSO: Ce sin-
gle crystal scintillators with the traditional BGO scintillator, under mammographic and general x-
ray medical imaging conditions for potential use in dual modality tomographic systems (PET/CT,
SPECT/CT) based on a common scintillator crystal.

2 Materials and methods

The emission efficiency (light yield) of a scintillator may be evaluated by determining the x-ray
to light conversion efficiency or luminescence efficiency (LE) [5] (emitted light energy flux over
incident x-ray energy flux).

An additional important parameter to be examined in medical imaging detectors is the Spectral
Matching Factor (SMF), i.e. the compatibility of the scintillator’s light emission spectrum to the
spectral sensitivity of various optical photon detectors [5].

Another critical parameter is the intrinsic conversion efficiency ηC, i.e. the percent of the
absorbed energy converted into light within the scintillator [6].

All crystals used in this study had dimensions of 10mm×10mm×10 mm. Cerium activated
crystals were doped with 0.5% mol of cerium (Ce+3). The crystals were irradiated by X-rays using
a Philips Optimus x-ray unit and a General Electric Senographe DMR x-ray mammography unit.
Appropriate beam filtering was applied to simulate x-ray beam hardening by human body [7].
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Figure 1. The x-ray luminescence efficiency (XLE) of LYSO:Ce, YAP:Ce, GSO:Ce and BGO as deter-
mined by the experimental data for x-ray tube voltages between 50–140 kVp (general radiography). Points:
measured data, line: fitted curve.

The x-ray luminescence efficiency was determined by performing x-ray energy and light flux
measurements, previously described by Valais et al. [5]. The intrinsic conversion efficiency, ηC,
was calculated as follows [6]:

ηC =
Eλ

Eg
·
(

S ·Q
β

)
(2.1)

where Eλ is the mean energy of the emitted light photons, Eg is the forbidden energy gap between
the valence and the conduction energy bands, Sis the transfer efficiency of the electron-hole pair
expressing the fraction of electron-hole energy transferred to the site of the activator (Ce3+), Q is
the absorption efficiency of the activator, expressing the fraction of transferred electron-hole pair
energy absorbed at the activator site and β is a parameter characterizing the excess energy, above
Eg, required to be absorbed so as to allow for an electron-hole pair generation. The mean energy
of light photons Eλ was obtained from light emission spectrum measurements. The energy gap,Eg,
for each material was obtained from published data [6, 8, 9]. The intrinsic conversion efficiency
values are reported in table 1.

The SMF was examined for five optical photon detectors currently used in digital radiography,
computed tomography and nuclear medicine (table 2).

3 Results and discussion

The variation of the [5] x-ray luminescence efficiency is shown in figures 1 and 2. Figure 1 shows
the luminescence efficiency curves of BGO, GSO:Ce, YAP:Ce and LYSO:Ce scintillators, for en-
ergies between 22–45 kVp, used in x-ray mammography (Mo spectrum), and figure 2, for energies
between 40–140 kVp, used in general x-ray imaging (W spectrum).

Under both mammographic and general x-ray imaging conditions, the luminescence efficiency
curves showed a nonlinear response with increasing x-ray tube voltage [10].
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Figure 2. The x-ray luminescence efficiency (XLE) of LYSO:Ce, YAP:Ce, GSO:Ce and BGO as determined
by the experimental data for x-ray tube voltages between 22–42 kVp (mammography). Points: measured
data, line: fitted curve.

Table 1. Theoretical maximum intrinsic conversion efficiency of LYSO:Ce, YAP:Ce, GSO:Ce and GO
scintillators.

Parameter LYSO:Ce YAP:Ce GSO:Ce BGO
Eg(eV) 6.4a 7.7a 6.2c 5.0a

β 4.4d 5.6c 5.8b 8.6d

ηC 0.105c 0.077d 0.081d 0.060c

a Data are from [8].
b Data are from [9].
c Data are from [11].
d Calculated data.

LE data are presented in two separate figures (figures 1 and 2) to clearly indicate the differences
between the corresponding experimental conditions.

The shape of the x-ray energy spectra (and the corresponding mean x-ray photon energy),
are strongly affected by the x-ray tube anode material, the anode filter, and the total filtration,
employed to simulate the patient’s body. This may explain the differences, observed in figures 1
and 2, between XLE values obtained under similar x-ray tube voltages but at different x-ray units
(W anode or Mo anode).

In figure 1 LYSO:Ce exhibits a noticeable increase in XLE at the x-ray tube voltages between
60–70 kVp. This non-proportionality effect may be attributed to the absorption in the K-edge of
Lu ions (63.3 keV) [10]. Similarly in figure 2, YAP:Ce exhibits a non-linear response in the x-ray
tube voltage range between 22 to 28 kVp mainly due to the absorption of the K-edge of Y ions
(20 keV) [10]. Table 1 shows maximum values of the intrinsic conversion efficiency, i.e. Q = 1 and
S = 1 in (2.1).

The mean energy of light photons Eλ was calculated from light emission spectrum measure-
ments as shown in figure 3.
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Figure 3. Normalized spectral response of BGO, LYSO:Ce, YAP:Ce and GSO:Ce single crystal scintillators.

Table 2. Spectral Matching Factors of BGO, GSO:Ce, YAP:Ce and LYSO:Ce with optical detectors.

Optical Detectors BGO GSO:Ce YAP:Ce LYSO:Ce
Extended 0.89 0.90 0.93 0.94
S-20 Photocathode

APD Hamamatsu 0.56 0.76 0.39 0.60
S5343

a-Si:H 108H 0.74 0.70 0.07 0.57
Photodiode

PSPMT Hamamatsu 0.80 0.71 0.95 0.86
H8500

CCD S100AB SITe R© 0.87 0.88 0.85 0.88

These spectra were found to be well matched with the spectral sensitivity curves of most
optical detectors (table 2).

In table 2, BGO, GSO:Ce and LYSO:Ce exhibit highest compatibility when combined to EMI
S-20 photocathode, whereas YAP:Ce when combined to PSPMT H8500.

In the present investigation we observed a clear superiority in the LYSO:Ce light output un-
der medical x-ray excitation over BGO, GSO:Ce and YAP:Ce scintillators. Similarly, although
GSO:Ce and BGO have been reported to exhibit similar light yields, our results (figures 1 and 2)
demonstrate a well defined superiority of GSO:Ce, as far as the XLE is concerned in both ra-
diographic and mammographic x-ray tube voltages. The above considerations may be reasoned
considering the differences in non-proportionality curves at low energies reported by Balcerzyk et
al. [12] and Dorenbos et al. [10].
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4 Conclusions

The light emission performance of LYSO:Ce was found higher than YAP:Ce, BGO and GSO:Ce.
The emission spectra of all four scintillators examined in our study are well matched with the
spectral sensitivities of the optical photon detectors often employed in radiation detectors. The
intrinsic conversion efficiency of LYSO:Ce was the highest of all scintillators examined and this in
turn may explain the superiority of LYSO:Ce XLE. Taking into account the luminescence efficiency
and the short decay time of LYSO:Ce scintillator, it can be considered as potential detector in
modern fast single detector multimodality imaging systems.
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