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Abstract: Semiconductor detector readout chips with pulse processing electronics have made
possible spectroscopic X-ray imaging, bringing an improvement in the overall image quality and,
in the case of medical imaging, a reduction in the X-ray dose delivered to the patient. In this
contributionwe review the state of the art in semiconductor-detector readoutASICs for spectroscopic
X-ray imaging with emphasis on hybrid pixel detector technology. We discuss how some of the key
challenges of the technology (such as dealing with high fluxes, maintaining spectral fidelity, power
consumption density) are addressed by the various ASICs. In order to understand the fundamental
limits of the technology, the physics of the interaction of radiation with the semiconductor detector
and the process of signal induction in the input electrodes of the readout circuit are described.
Simulations of the process of signal induction are presented that reveal the importance of making
use of the small pixel effect to minimize the impact of the slow motion of holes and hole trapping
in the induced signal in high-Z sensor materials. This can contribute to preserve fidelity in the
measured spectrum with relatively short values of the shaper peaking time. Simulations also show,
on the other hand, the distortion in the energy spectrum due to charge sharing and fluorescence
photons when the pixel pitch is decreased. However, using recent measurements from the Medipix3
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ASIC, we demonstrate that the spectroscopic information contained in the incoming photon beam
can be recovered by the implementation in hardware of an algorithm whereby the signal from a
single photon is reconstructed and allocated to the pixel with the largest deposition.

Keywords: X-ray detectors; Pixelated detectors and associatedVLSI electronics; Hybrid detectors;
Front-end electronics for detector readout



2
0
1
6
 
J
I
N
S
T
 
1
1
 
P
0
1
0
0
7

Contents

1 Introduction 1

2 The ideal detector for spectroscopic X-ray imaging 2
2.1 Direct detection 3
2.2 Single quantum processing 3
2.3 Zero dead time 4

3 Hybrid pixel detectors 4
3.1 From high energy physics to other fields of science 5

4 Limiting factors of a real system 7
4.1 Absorption efficiency 7
4.2 Partial charge deposition due to fluorescence 8
4.3 Partial charge deposition due to Compton scattering 9
4.4 Fluctuations in the number of generated charge carriers (Fano factor) 9
4.5 Charge diffusion 10
4.6 Charge trapping in the semiconductor material 10
4.7 Sensor polarization 11
4.8 Ballistic deficit 11
4.9 Electronics noise 11
4.10 Threshold offset and gain dispersion between pixels 11
4.11 Pulse pile-up 12

5 ASICs for spectroscopic X-ray imaging 12
5.1 Digitization methods 14
5.2 Count-rate 17
5.3 Strategies for dealing with high fluxes 20
5.4 Charge summing and hit allocation architectures 21
5.5 Power consumption 22
5.6 Detector tiling 23

6 Conclusions 25

1 Introduction

Today most of the deployed X-ray detection equipment for medical diagnosis and industrial non-
destructive testing are based on energy integrating detector technology. When using such detectors
with polychromatic X-ray sources, the weight of every photon contributing to the formation of the
image is proportional to its energy.

– 1 –
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In recent years, quantum imaging systems have been implemented. In these systems electronic
circuits process the signal produced by every individual photon to extract information about the
energy and/or the time at which the deposition occurred. In quantum imaging systems implementing
a simple photon counting architecture theweight of every photon above the system’s energy threshold
equals one. The implementation of multiple energy thresholds allows assigning energy-dependent
weights to the photons in different energy channels permitting optimization for the signal-to-noise
ratio in the image.

X-ray imaging in spatially segmented detectors containing multiple thresholds is referred to as
spectroscopic X-ray imaging. Spectroscopic X-ray imaging has been shown to improve the overall
image quality for a given X-ray dose or lead to a reduction in the required dose necessary to obtain
a given image quality. Spectroscopic X-ray detectors can enable the identification of the material
composition of the object under study by exploiting the property that the attenuation of X-rays
is energy and material dependent. If the information of the energy spectrum transmitted through
the object is measured and accounted for in the identification algorithm, different materials can
be distinguished. Spectroscopic X-ray imaging can also be used in medical imaging to suppress
beam-hardening artifacts or to discriminate to some extent between calcium or iodine and lighter
elements (Z < 20), which form body tissues [1]. K-edge Computed Tomography (CT) has been
proposed as a potential method for functional CT wherein heavy metal nanoparticles are used as
targeted imaging agents. K-edge CT imaging combined with targeted biomarkers could provide
simultaneous functional and anatomical tomographic images in a single scan thus providing a
new quantitative molecular imaging platform [2]. K-edge imaging relies on the developments of
spectroscopic detectors since the cost and complexity of developments for multiple kVp systems
can be prohibitive. Moreover, multiple kVp with energy integrating detectors does not provide
optimal results because there is cross-talk between the different energy images [3].

In this paper, we aim to give an overview of the fundamentals of the detectors enabling
spectroscopic X-ray imaging. Section 2 discusses the requirements for the ideal detector. An
introduction to the technology of hybrid pixel detectors and the first developments for high energy
physics are given in section 3. The limiting factors in the context of spectroscopic X-ray imaging
are discussed in section 4.

Section 5 provides an overview of the parameters of a number of hybrid pixel detector readout
ASICs. For completeness, readout ASICs which implement photon counting but which do not have
a 2-dimensional matrix of readout channels (and therefore cannot be bump bonded to a 2D sensor)
are included. There is detailed discussion on key parameters such as digitization methods, count-
rate capabilities of the different systems, implementations of architectures for charge reconstruction
and hit allocation in fine pixel pitch designs, power consumption, strategies for dealing with high
fluxes and detector tiling. The most recent measurements with the Medipix3 chip are also presented
to illustrate the benefits of charge reconstructing algorithms at fine pitches.

2 The ideal detector for spectroscopic X-ray imaging

An ideal spectroscopic X-ray detector comprises a number of key features which are outlined in the
following paragraphs.

– 2 –
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2.1 Direct detection

An important characteristic of an X-ray imaging system is the way the radiation quantum is trans-
formed into an electrical signal before it is processed by the readout electronics. Systems are
classified from this point of view into indirect and direct detection systems.

In indirect detection systems the conversion of the photon into an electrical signal is done in
two steps: first the conversion is done from X-rays to visible light by means of a scintillator material
and second, the visible light is detected in a pixelated sensor with photodiodes. Spatial resolution
and the efficiency of the overall detection process are degraded due to this two-step process. The
approach of indirect detection combined with on-pixel photon counting signal processing has been
implemented by Dierickx ([4, 5]).

In direct detection systems the X-ray photons deposit their energy in the detector material
directly creating electron-hole pairs that drift to collection electrodes creating an electrical current.
For the X-ray energies used in medical applications, each impinging photon releases a charge from
4000 to 25000 electrons in a CdTe semiconductor detector. In an indirect conversion system the
detected electrical signal is in the range from 100 to 1000 electrons depending on the scintillator
characteristics.1

Therefore, the ideal spectroscopic system should rely on direct conversion technology.

2.2 Single quantum processing

Most X-ray imaging systems deployed today rely on energy integration: the energy of the detected
photons is integrated over a given exposure time. The integration processmeans that the information
contained in the energy of the individual photon is lost. Moreover, noise sources such as dark current
are included in the integral. This limits the signal-to-noise ratio and the dynamic range of the system.
Also, in integrating systems each photon contributes to the signal with a weighting factor that is
proportional to its energy. Higher energy photons thus contribute more to the signal than the lower
energy ones.

In contrast to this approach, a quantum imaging system implements a readout architecture
capable of processing each single X-ray photon. The requirements for an ideal quantum imaging
system are [6]:

• A signal is attributed to a photon and subsequently processed only when it exceeds a threshold
that is set above the system noise.

• Each converted photon is assigned to only one pixel.

This results in the following advantages:

• Suppression of random electronics noise due to the fact that a threshold can be set above the
electronics noise of the channel. The quantum imaging architecture permits long acquisition
time measurements with full noise rejection.

• Perfect linear behaviour over the entire dynamic range as long as the counter depth is sufficient.
The dynamic range can be chosen for any given application.

1Scintillator materials used in indirect conversion technology are nowadays more economical to manufacture than
high-Z materials. The cost of bump bonding is currently an important fraction of the total cost of an assembly.

– 3 –
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• The implementation of multiple thresholds per pixel for energy binning can enhance the
image quality by applying energy weighting image processing techniques and allows material
decomposition in a subsequent processing step.

Energyweighting is a technique that can be applied for contrast enhancement. Energyweighting
techniques use the information of the energy of the photons to create images by calculating the
intensity by giving a weighting factor to the content of every measured energy bin. For low contrast
objects the optimum weighting function can be approximated to be ω ∼ E−3 ([7, 8]).

In summary, the ideal detector should extract the maximum information from the incoming
beam by measuring the energy and position of every incoming photon. Further, its output should
be limited by the same Poisson noise as the input signal, without any other sources of noise present.

2.3 Zero dead time

In an ideal detector the dead time should be as short as possible. The dead time is defined as
the minimum amount of time that must separate two events in order for them to be recorded as
separate pulses [9]. Dead time is an intrinsic characteristic of pulse processing systems. For a given
application with a specified maximum count-rate per detector element (r [cps]), the detector dead
time (τ [s]) should be much smaller than the mean time between photon events (1/r) in order for
the system to process correctly the incoming photon flux.

3 Hybrid pixel detectors

The technology of hybrid pixel detector imaging systems allows single quantum processing with
direct conversion of the incoming X-ray beam. A hybrid pixel detector is a 2-dimensional matrix
of microscopic sensitive elements, each of which is connected to its own readout electronics. The
sensor material and the readout electronics are processed on different substrates and are electrically
connected to form the imaging system. The connection between both components is done with
micro-bumps. The hybrid architecture allows the possibility to connect different semiconductor
materials (the most common materials are Si, Ge, GaAs, CdTe or CdZnTe) to a readout ASIC. This
allows optimizing the system in an application specific manner.

When radiation quanta deposit their (full or partial) energy in a semiconductor detectormaterial,
electron-hole pairs are created (this can happen by different mechanisms of interaction of radiation
with matter, such as photoelectric absorption or Compton scattering). The free electrons and holes
in the material are separated by an externally-applied electric field. These carriers drift and diffuse
towards the electrodes. The motion of the carriers under the electric field induces an electrical
current on the electrodes of the readout ASIC. The number of electron-hole pairs generated is
proportional to the energy deposited. The pixel electronics processes the electrical signal on an
event-by-event basis.

Although charge integration in hybrid pixel detectors is possible and has been imple-
mented [10], in this study we focus on pulse processing architectures for spectroscopic X-ray
imaging. In these systems, the signal induced in the input pad of the pixel is read out and amplified
by a charge sensitive preamplifier (for a 30 keV photon depositing its energy in CdTe, the total
induced charge is ∼ 1 fC). A band-pass filter can then be used to improve the signal-to-noise ratio.

– 4 –
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Since the filter changes the time response (the time shape), this filter is referred to as pulse shaper.
The output of the shaper is compared to one or several thresholds by means of comparators. The
comparator output pulses are subsequently fed to the digital processing circuitry on the pixel. The
digital circuitry temporarily stores the processed information before transmitting it to the off-chip
readout electronics. A block diagram representation of the detection channel is shown in figure 1.

Figure 1. Block diagram of the circuitry in a typical detector readout channel.

3.1 From high energy physics to other fields of science

The technology of hybrid pixel detectors was developed at CERN in the late 80’s and beginning
of 90’s for the tracking detectors of particle collider experiments. Tracking detectors are the
instruments closest to the interaction point and their purpose is to disentangle the various particle
tracks and to assign them to primary or secondary vertices. The very high track density together
with a high beam crossing rate which were foreseen at the LHC (Large Hadron Collider) lead to the
following requirements:

• Good spatial resolution (in the micrometer range) to distinguish 2 closely separated tracks.

• The ability to assign hits to single bunch crossings (which are separated by 25 ns).

• Low effective mass in order to not disturb particle identification in the outer detectors.

• Low power consumption to minimize the cooling infrastructure.

• High radiation tolerance for the detectors and readout electronics.

• Short readout time to cope with high event rates.

In High Energy Physics, the “objects” to be imaged are the interactions (events) between
incoming particles, which result in other outgoing particles [11]. The ionization created by these
outgoing particles in a suitable medium (e.g. semiconductor material or gas) makes possible the
electrical signal processing and the reconstruction of the particle tracks.

– 5 –



2
0
1
6
 
J
I
N
S
T
 
1
1
 
P
0
1
0
0
7

Hybrid pixel detectors with on pixel pulse processing were first tested in a three pixel chip
telescope in 1991 [12] and successfully used in the lead beamexperimentWA97 [13]. Figure 2 shows
the reconstruction of a Pb-Pb event in the telescope of the WA97 experiment. The dots represent
hits in the silicon detectors from which the tracks are reconstructed. Every dot is associated with a
track. By setting the threshold level above the random noise (∼ 10×) its impact in the measurement
is eliminated.

Figure 2. WA97 experiment setup (left). In the right, perspective view of fixed target Pb-Pb event
reconstruction with 153 tracks using a 7-plane telescope inWA97 (Setup 1995 using ‘Omega2’ arrays). Each
window represents a 5 × 5 cm2 with 72000 pixel cells. The red dots represent hits in the silicon detectors
after which the tracks have been reconstructed. Every dot is associated with one track. The image was taken
without magnetic field [13].

Currently the ATLAS (A Toroidal LHC ApparatuS), CMS (Compact Muon Solenoid) and
ALICE (A Large Ion Collider Experiment) experiments at the LHC are equipped with inner
tracking detectors based on hybrid pixels. The LHCb (Large Hadron Collider beauty) experiment
has a photon detector system which also uses hybrid pixels in its readout. The ATLAS and CMS
experiments validated the Englert-Brout-Higgs mechanism explaining the origin of mass of the
subatomic particles in the standard model that lead to the award of the Nobel Prize in physics
(2013) to François Englert and Peter Higgs for their theoretical prediction of the mechanism.
The hybrid pixel detector based systems on those experiments have proven to provide vital data
contributing to the recent discoveries.

With some modifications in the ASIC architecture the same technology that was developed to
“image” the collisions between particles can be used in other imaging applications. The technology
of hybrid pixel detectors has been transferred to many fields of science including medical X-ray
imaging [3], X-ray inspection [14], synchrotron radiation applications (where they have become the
standard technology in experiments like crystallography [15]), low energy electronmicroscopy [16],
material analysis using X-ray diffraction [17], adaptive optics [18], dosimetry, space dosimetry [19]
and others.

– 6 –
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4 Limiting factors of a real system

Hybrid Pixel Detectors are attractive for X-ray imaging applications because (1) they allow direct
detection, (2) they treat the signal of each incoming photon individually, allowing to classify them
according to their energy and (3) because the hybridization between semiconductor sensor and the
readout ASIC permits an optimal choice of sensor material for a given application. However, they
also suffer from some limitations (some of which are shared with other types of detector). Below,
we describe these limitations and explain their impact on spectroscopic resolution and detection
efficiency.

4.1 Absorption efficiency

High Energy Physics vertex detectors have traditionally used silicon as detector material. Silicon
has properties that make this material ideal to the requirements of vertex detectors namely its low
mass (Z=14), the homogeneity of the sensor wafers, availability and cost. However, for X-rays the
absorption efficiency of thin layers of silicon (∼ 300 µm to 1mm) decreases rapidly for energies
above 20 keV (see figure 3).

For the majority of X-ray imaging applications, where the incoming X-ray beam is between
20 keV and 120 keV, a high quantum efficiency is required, for which higher-Z materials are em-
ployed. Commonly used materials are Ge [20], GaAs [21], CdTe [22] and CdZnTe [23]. Another
approach to increase the quantum efficiency of a system is to use silicon sensors in a geometry
oriented edge-on to the beam ([24, 25]).

Figure 3 shows the absorption efficiency of four different materials commonly used in radiation
detectors. The plot on the left shows the comparison of the absorption coefficient of the materials
for the same detector thickness. The conversion efficiencies of Ge and GaAs are very close due to
the close atomic numbers of the three elements (Ge, Ga and As) and therefore the plots overlap.
The plot on the right shows the absorption efficiency for different materials with commonly used
thicknesses for radiation detectors.

Figure 3. Absorption efficiency of different materials (Si, GaAs and CdTe) for different thicknesses [26]. In
the left hand plot the Ge and GaAs curves are overlapping.

– 7 –
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4.2 Partial charge deposition due to fluorescence

At the energies normally associated with X-ray imaging and with the detector materials which
are most commonly used, two processes of interaction dominate: photoelectric absorption and
Compton scattering.

In the mechanism of photoelectric absorption, the incoming photon disappears. Its energy is
absorbed by an atom in the target material. A photoelectron from the interacting atom is ejected
with a kinetic energy equal to the energy of the incoming photon (hν) minus the binding energy
of the electron (E = hν − Eb). The vacancy in the shell of the ionized atom is immediately filled
through a rearrangement of the electrons from the other shells. This rearrangement can lead to the
emission of one or more characteristic fluorescence photons, or the excess energy can free other
electrons from their shells (Auger electrons). In the case of fluorescence emission, one electron
from an upper shell fills the vacancy in the lower shell. In this transition, a photon is generated with
an energy equal to the difference of the binding energies in the two corresponding levels. On the
other hand, an Auger electron could originate from the L-shell with an energy of EK −2EL , or from
the M-shell, with an energy equal to EK − EL − EM . The probability to eject a fluorescence photon
instead of an Auger electron increases with the atomic number Z. Sensor materials exhibiting a
high absorption are thus prone to emitting long range secondary photons from the original site of
interaction.

Table 1 shows the K- and L-edges for some elements commonly used in photon detection
materials. The α coefficients represent the energies of the most probable fluorescence photons.
The mean free path for those emitted fluorescence photons (dα1 and dα2) are also indicated. The
fluorescence yield ωK (the subscript indicates the atomic shell where the vacancy is created) gives
the probability of fluorescence emission. Note that the fluorescence yield (ωK ) increases with Z.

When a photoelectric interaction occurs accompanied by the emission of a fluorescence photon,
the fluorescence photon carries away from the initial interaction point part of the information of the
incoming energy. Such a fluorescence photon can even escape the sensor detection volume or be
detected in neighbouring detection channels.

The reader should note that the fluorescence yield is above 50% for the elements in GaAs and
above 80% in CdTe. In CdTe, the mean free path lengths of the generated fluorescence photons are
equal to ∼ 110 µm and ∼ 58 µm for the photons generated by cadmium and tellurium, respectively.
Therefore, for today’s pixel detector sizes, fluorescence in high-Z materials can distort the measured
energy spectrum.

Table 1. K- and L- edges above 0.1 keV for different detector materials used for photon detection. α1 and α2
are the energies of the generated fluorescence photons. The mean free path for the generated fluorescence
photons (dα1 and dα2) is also indicated. ωK is the fluorescence yield [8].

Z K-edge [keV] L1-edge [keV] L2-edge [keV] L3-edge [keV] α1 [keV] kα2 [keV] dα1 [µm] dα2 [µm] ωK

Si 14 1.839 0.150 0.100 0.100 1.74 1.739 11.86 11.86 0.041
Ga 31 10.367 1.298 1.142 1.115 9.25 9.225 40.62 40.28 0.505
Ge 32 11.110 1.426 1.259 1.228 9.89 9.856 50.85 50.40 0.548
As 33 11.867 1.527 1.359 1.323 10.54 10.508 15.62 15.47 0.566
Cd 48 26.711 4.018 3.727 3.538 23.17 22.984 113.2 110.7 0.836
Te 52 31.814 4.939 4.612 4.341 27.44 27.202 59.32 57.85 0.873

– 8 –
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4.3 Partial charge deposition due to Compton scattering

Compton Scattering corresponds to the inelastic scattering of a photon with an electron that can be
considered free. This assumption is valid when the energy of the photon is large compared to the
binding energy of the electron. The energy and momentum lost by the photon is transferred to the
electron, which is emitted at a given angle while the photon is scattered from its initial trajectory.
There is a maximum in the kinetic energy of the electron that occurs when the photon is fully
backscattered and the recoil electron is emitted in the direction of the impinging photon.

The impact of Compton Scattering on the measured energy spectrum consists of a continuum at
low energies that extends up to the energy corresponding to the maximum energy transfer (known as
the Compton edge). Figure 4 shows the cross section of Compton scattering and the photoelectric
effect for different materials. In silicon, Compton scattering becomes the dominant interaction
mechanism above ∼ 57 keV. In CdTe, on the other hand, the photoelectric effect is the dominant
mechanism up to ∼ 265 keV.

Figure 4. Compton scattering and photoelectric cross sections of commonly used materials in radiation
detection [26].

4.4 Fluctuations in the number of generated charge carriers (Fano factor)

Once a high energy photoelectron is produced and interacts with electrons in the surrounding atoms,
an electron-hole shower is generated in the semiconductor. During the creation of the shower, energy
losses occur both to ionizing processes (which result in signal charge) and to vibrational processes

– 9 –
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(with no resulting signal). These fluctuations are Gaussian and usually expressed in terms of the
Full-Width at Half-Maximum (FWHM):

FWHM
E0

= 2.35
√

F
N
. (4.1)

Here, E0 is the absorbed energy, N is the number of generated charge carriers and F is the Fano
factor. For silicon detectors F is around 0.12. These fluctuations are usually negligible compared
to the electronics noise of the signal processing chain, but represent a lower limit for the achievable
energy resolution.

4.5 Charge diffusion

The free charge carriers (electrons and holes) which are produced subsequent to the photon interac-
tion drift to the corresponding electrodes under the influence of the electric field. The drift motion is
accompanied by diffusion which causes the charge cloud to spread out. When the photon interacts
close to the edges or corners between adjacent pixels, the total induced charge in the detecting
electronics is shared between those pixels. This is known as “charge sharing”. Charge sharing
effects lead to distortion in the energy spectrum. The distortion produces a low energy tail in the
observed spectrum. The impact of the distortion increases as the pixel pitch decreases with respect
to the sensor thickness. The amount of charge sharing that occurs is dependent on the sensor bias
voltage, as higher voltages imply shorter drift times.

4.6 Charge trapping in the semiconductor material

Charge trapping is an important aspect to be taken into account in the design of semiconductor-based
detector systems. It tends to be more pronounced in high-Z compound semiconductor detectors like
CdTe and CdZnTe. The impact of charge trapping is a reduction of the signal induced in the readout
channel due to defects that can temporarily trap electrons and holes. The latter are generally much
more susceptible to trapping in the material. Strategies for dealing with charge trapping consist of
a reduction of the sensor thickness (at the cost of quantum efficiency), increasing the electric field
inside the material, and using materials with higher carrier mobility [27].

The pixel geometry also helps dealing with charge trapping. If a detector has small pixels,
the carriers drifting towards the electrodes will induce most of the signal. If a material has much
lower electron trapping, which is the case in Cd(Zn)Te, then the small pixel effect can be exploited
to improve charge collection (and therefore spectroscopic performance) by strongly attenuating the
contribution of the holes in the signal formation [28].

The material quality of CdZnTe is constantly improving. The value for the lifetime-mobility
product for electrons in CdZnTe crystals produced using the Traveling Heater Method that has been
recently reported is 2.2 10−2 cm2/V [29]. In contrast to this, a lifetime-mobility for holes around
1 10−5 cm2/V was reported [30]. With a sensor thickness of 1mm and a sensor voltage of 300V
the mean drift distance before trapping would be 660mm for electrons and 0.3mm for holes. If the
charge carriers had to drift across the full detector thickness, ∼ 0.15% of the electrons and ∼ 96%
of the holes would be lost by trapping or recombination. This supports the argument for the use of
the small pixel effect to limit the impact of hole trapping.

– 10 –
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4.7 Sensor polarization

Polarization is a phenomenon occuring in semiconductor detectors that leads to a time-dependent
decrease of the count-rate and charge collection efficiency [9]. It happens due to trapping and
detrapping [23] of the carriers within the crystal that affect the electric field profile in the detector.
The sensor design must be such that the charge generated by the X-ray photon is removed from
the device at sufficiently high rate through both drift and recombination. It is possible to minimize
the polarization effects by using high bias voltages and low temperature operation [31]. Good
reliability of CdZnTe has been recently reported and systems with such detectors are commercially
available [23].

4.8 Ballistic deficit

Ballistic deficit refers to the loss of signal amplitude at the shaper output due to an incomplete
integration of the sensor signal by the readout electronics. This effect is related to a signal peaking
time shorter than the sensor induced signal time. Ballistic deficit can have an impact on the energy
resolution of the system.

4.9 Electronics noise

Random electronics noise degrades the energy resolution of the detector channel. It is usually
specified as the ENC (Equivalent Noise Charge). The ENC is defined as the ratio of the total r.m.s.
noise at the output of the pulse shaper to the signal amplitude due to one electron input charge. In
other words, the ENC is equal to the detector signal that produces a signal to noise ratio of one at
the shaper output. The ENC is given by the equation:

ENC2 = (Cd + Cin)2


V̄ 2
thermal
τs

aw + Af 2πa f


+ ī 2

pτsap , (4.2)

where Cd is the detector capacitance, Cin is the capacitance at the input node (including the input
mosfet gate capacitance), v2

thermal is the power spectral density of the thermal noise of the input
transistor, τs is the shaping time, Af is a parameter related to the flicker noise of the input transistor
(it includes technological constants and is inversely proportional to the area of the transistor), i2

p is
the power spectral density of the parallel noise sources (mainly from the detector leakage current,
from the leakage current compensation network and from the reset of the preamplifier feedback
capacitance network), aw , a f and ap are constants related to the shaper transfer function. There is an
optimum value for the shaping time (τs) to minimize the ENC of the pixel. However, depending on
the specification for the count-rate of the system, the shaping time may be required to be decreased
in order to deal with high photon fluxes. The impact of the ENC to the energy resolution is
independent of the energy of the photons interacting in the detector.

4.10 Threshold offset and gain dispersion between pixels

Threshold (offset) and gain dispersion between detection channels generate an energy-dependent
degradation in the energy resolution. The origins of the dispersion are systematic (e.g. dimensional
errors, mechanical stresses, temperature differences, etc.) and stochastic effects (e.g. ion implanta-
tion in the transistor channel, dopant diffusion, etc.) during the manufacturing of the transistors of
the readout ASIC.

Digital calibration of the offset and gain dispersion are usually implemented to equalize the
energy thresholds in the detector channels.
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4.11 Pulse pile-up

TheX-ray photon events in the semiconductor detector occur following a Poisson distributed random
process. The probability density function between successive pulses follows an exponential law:

p(t) = r exp(−rt) (4.3)

where r is the average incoming photon rate. Due to the stochastic nature of the photon arrival times
there is some probability that the signals in the processing chain due to two or more consecutive
photons overlap. This is called pile-up and, at high flux rates, results in the distortion in the pulse
amplitude measurement and in a subsequent loss of counts (also known as dead time losses).

There are two main types of pile-up. In case of the so-called peak pile-up, coincidences during
the initial part of the pulse are recorded as a single count at a higher energy than the original pulse
energy. In the case of tail pile up a pulse occurs during the tail of the preceding pulse leading to
a distortion in the recorded amplitude of the second pulse. Figure 5 (left) illustrates the effects of
pulse pile-up for a detector channel. The simulation assumes incoming pulses from an ideal detector
and does not include charge sharing. The photon arrival time (top plot) and the simulated shaper
output (bottom plot) are shown. The energy of the incoming photon amplitude was 10 keV. Noise
corresponding to 0.4 keV r.m.s. was added to the simulation. The third photon in the simulation is
an example of peak pile-up, while the fourth one represents tail pile-up.

Analytical models have been presented for the dead time losses based on descriptions of the
functionality implemented in the pulse processing electronics. The two models that are commonly
used in the literature are the paralyzable and the non-paralyzable detector modes.

In the case of a non-paralyzable system the photon events arriving during the dead time are
ignored and have no effect in the measurement. In the case of a paralyzable system, an event
happening during the dead time of a first event is not accounted for in the total counts, and extends
the dead time of the detecting channel by another dead time period (τ) following the second
occurrence. These represent simplified models of the full processing chain.

Figure 5 (right) shows the output count-rate measured at three different thresholds (1, 5 and
9 keV). The simulated pulse processing electronics implements counting of the pulses generated at
the comparator output. The system is “paralyzed” during the time the comparator output is active.
The arrival of a new pulse during this time will extend the time in which the system cannot respond
to subsequent incoming pulses. The fit with the paralyzable model shows dead times of 215 ns,
148 ns and 115 ns for the 1, 5 and 10 keV thresholds respectively.

Methods have been developed based on the properties of detectors to compensate for pile-up
effects in the most demanding imaging modalities in terms of incoming flux [32].

5 ASICs for spectroscopic X-ray imaging

A number of ASICs for the readout of semiconductor detectors for spectroscopic X-ray imaging
have been designed. Some of the limiting factors intrinsic to direct-conversion radiation detectors
presented in the previous section have been addressed with ASIC implementations and system level
solutions.

Table 2 presents a review of photon counting hybrid pixel detector readout chips. Three hybrid
pixel detector readout ASICs which do not strictly implement photon counting but spectroscopy are
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Figure 5. (Left, top) Simulation of the time of arrival of 10 keV photons to a detector and (left, bottom) the
shaper output in response to those incoming events. The shaper transfer function for this example was chosen
to be Gaussian with a FWHM of 100 ns. The rate of incoming photons was 3.36Mcps. (Right) Observed
count-rate as a function of the real count-rate for three different values of the threshold (1 keV, 5 keV and
9 keV). The fitted paralyzable model shows a dead time value of 215 ns, 148 ns and 115 ns respectively.
0.4 keV r.m.s. noise was added in the simulation.

added for completeness and in order to illustrate architectures that process the individual photon
information off-chip. The ASICs are sorted from small to bigger pixel sizes. The column indicated
as “Buttable sides” indicates the number of sides on which the ASIC can be tiled seamlessly.

Table 3 presents photon counting semiconductor readout ASICs that are not hybridized to the
sensor and, as a consequence, cannot be bump-bonded to a 2D sensor. In these chips the size of the
sensor pixel does not necessarily match the size of the readout channel.

The measured electrical parameters for all these chips are shown in table 4 and table 5. The
maximum count-rates correspond to the input flux at which the output count-rate saturates which
corresponds, for the particular case of the paralyzablemodel, to the inverse of the dead time. Beyond
this value it is no longer possible to linearize the count-rate, resulting in ambiguous and therefore
inconsistent datasets.

The electronics noise or ENC and the energy resolution are also reported. Note that the
ENC corresponds to an electrical parameter related to a single detection channel whereas the
energy resolution is usually specified for the full detector system. As a consequence, pixel-to-pixel
threshold and gain mismatch are accounted for in the energy resolution.

Please note that the reported values for the maximum count-rates and the energy resolution
have a strong dependency on the measurement conditions (for example, the maximum count-rate
depends strongly on the energy of the incoming radiation and on the threshold level programmed
on the ASIC). The measurements presented in the following tables were not taken under the same
measurement conditions. As a consequence, those numbers should not be taken as absolute values
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Table 2. Hybrid pixel detector photon counting chips. The indexes (in italics and inside curly brackets) in
the table identify the chips in the following plots (they should not be confused with the references). (NS
means that the data was not specified in the reference).

to compare the different designs but should be rather used to identify trends and performance
envelopes.

5.1 Digitization methods

Various methods have been used for the digitization of the amplified signal. Most of the pho-
ton counting ASICs implement n discriminators to compare the energy-proportional signal with
n thresholds. The thresholds are usually implemented as global signals that are distributed to all
detection channels. There is a local on-pixel Digital-to-Analog (DAC) converter associated to each
comparator to compensate for the intrinsic channel-to-channel offset mismatch. Threshold com-
parison with a given number of discriminator circuits working in parallel is the fastest digitization
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Table 3. Photon counting ASICs not hybridized to the sensor.

Table 4. Electrical parameters for hybrid pixel detector photon counting chips.

scheme. However, there is a penalty in power consumption and in the circuit area because every
threshold requires one comparator, one DAC and latches to store the optimum code for the DAC.

In the Timepix3 [37] and Dosepix [53] chips, the data is digitized in the pixel by means of the
Time-over-Threshold (ToT) method. During the time the preamplifier output voltage is above the
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Table 5. Electrical parameters for photon counting ASICs not hybridized to the sensor.

threshold level, the pixel counter increments at every clock cycle. The Timepix3 chip combines this
digitization scheme with a data push architecture: when the preamplifier output voltage returns to
the level below threshold, the recorded counter value, the corresponding time stamp (with 1.56 ns
resolution) and the pixel coordinates are encapsulated into a data packet which is sent to the
periphery of the chip and subsequently to the readout system. Corrections for charge sharing and
fluorescence photons inside the sensor material can be done offline in the readout system.

Time-over-Threshold digitization has the advantage of processing the signal in the digital
domain (for which very deep sub-micron CMOS technologies are optimized). For ToT-based
systems, the analog front-end is relatively simple and consists of a preamplifier with constant-
current discharge of the feedback capacitor followed by a discriminator. The time required for the
preamplifier output to return to its baseline is usually much longer than the peaking time and this
limits the count-rate of the system. As a consequence, in order to process every photon correctly the
system can only tolerate a relatively low flux. If a data push architecture is combined with this type
of digitization, the requirements on the speed of the output link are very demanding. The amount
of information that can be sent off chip sets a limit to the incoming flux that can be processed by
the chip. For example in the case of the Timepix3 chip [37], assuming uniform irradiation across
the chip, the maximum count-rate is limited by the data that can be transferred by the output link
(5.12Gbps) to 0.4Mcps/mm2 (every event in a pixel generates a packet of 48 bits). So-called
Through Silicon Vias (TSVs)2 could in the future speed up the rates at which these systems can
work by increasing the number of output links distributed through the chip and by reducing the
delays associated to interconnection distances.

Analog-to-Digital (ADC) converters have also been used for the digitization of the analog
signal. In this case, a peak-detect-and-hold circuit [79] is added in the channel processing chain.
ADCs have been integrated on-pixel or placed outside the ASIC, in the readout board. The Samsung
PC [39] implements a modified version of a successive approximation ADC scheme on the pixel.
In the case of the Hexitec system [58], the pixel contains a preamplifier, a shaper and a peak-detect-
and-hold circuit. The analog value of the latter is digitized by an off-chip ADC (14 bits).

2A TSV is a vertical electrical connection passing through a silicon wafer or die. This technology allows stacking
multiple ASICs. In the case of hybrid pixel detectors it allows the elimination of wirebonds reducing the area of the
insensitive regions at the edges of the pixel matrix.
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There is an increased interest by the microelectronics industry in Successive Approximation
ADCs motivated by the demand for low power consumption [80]. Successive approximation ADCs
convert the analog signal to a digital one by the execution of a binary search algorithm. A single
comparator circuit is used. Fine pixel pitch photon counting ASICs could benefit from the low
power and small area offered by this ADC architecture.

5.2 Count-rate

Table 2 shows the maximum count-rate in million counts per millimeter square per second as a
function of the equivalent pixel side. In the case of hybrid pixel detectors with square pixels the
equivalent pixel side corresponds to the pixel pitch. In the case of (1) hybrid pixel detectors laid
out with rectangular or hexagonal pixels or (2) for photon counting chips that are not hybridized to
the sensor, the equivalent pixel side corresponds to the square root of the area of the sensor pixel
for the geometry used in the corresponding reference. The red dots represent hybrid pixel detectors
while the blue dots correspond to the non-hybridized systems. The dashed green line is a guide for
the eye that corresponds to:

Count rate
[
Mcps
mm2

]
=

10
pixel area[mm2]

. (5.1)

Figure 6. Maximum count-rates normalized to the sensor pixel area as a function of the pixel side. The
numbers correspond to the indexes in table 2 and table 3. The fundamental limit for integration of 95% of
the charge for a 1mm thick CdTe sensor are shown (red dashed curves).

From the plot it can be observed that increasing segmentation (reducing the pixel pitch) helps
to deal with increased fluxes. However, two effects intimately related to the segmentation have to
be taken into consideration:
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• When decreasing the pixel pitch the distortion in the energy spectrum due to charge sharing
and due to fluorescence photons in high-Z materials increases (for the same sensor thickness).
This is shown in the spectra simulated at different pixel pitches shown in figure 7. This
simulation does not account for charge trapping (a phenomenon that itself leads to spectral
distortion, see paragraph 4.6) nor pixel-to-pixel threshold mismatch. When the pixel pitch is
decreased from 1mm to 500 µm the amplitude of the main peak (at 80 keV) is decreased. At
the same time the peak from the fluorescence photons and escape peaks increase inmagnitude.
When decreasing the pixel pitch further to 100 µm, the charge sharing tail is clearly visible.
For pixel pitches below 100 µm the energy information contained in the incoming beam is
lost. This leads to the conclusion that in order to recover the spectral information at fine pixel
pitches (i.e. high spatial resolution), a processing architecture is needed in which the charge
deposited by a single photon in a cluster of pixels is reconstructed and the hit is allocated to
a single circuit. This processing algorithm can be done either on pixel in an event by event
basis (e.g. Medipix3) or off-chip in those architectures in which the information of every
photon is available (e.g. Timepix3).

• When decreasing the pixel pitch the designer can benefit from the small pixel effect. The
consequence of having small pixels (with respect to the sensor thickness) is that, in the case
of electron collecting pixels, the electron motion will contribute much more to the induced
signal than the motion of holes, for photon interactions depositing their energy over most
of the detection volume. This is of particular importance in high-Z materials, where hole
mobility is normally lower than the electron mobility and where holes are more susceptible to
trapping. The fact that the motion of charge carriers close to the pixellated surface contributes
more strongly to the induced current has also a positive impact on its speed, allowing the
designer to choose shaping times in the order of tens of nanoseconds. Figure 8 (top, left)
shows the induced current on a pixel electrode for 1mm thick CdTe sensor and different pixel
pitches (50 µm, 100 µm, 200 µm, 300 µm, 400 µm and 500 µm). A point charge of 2.15 fC
(this is the charge deposited by a 60 keV photon in the sensor material) was deposited at a
sensor depth of 240 µm (which corresponds to the mean free path of a 60 keV photon) and in
the centre of the pixel. The time required for the integration of the signal is also shown in the
plot (bottom, left). The impact of the small pixel effect is visible: in the case of small pixels
the signal is faster and the contribution due to holes becomes negligible. The figure also
shows the shape of the induced signal (and its integral) for a 2mm thick sensor and different
pixel pitches. The simulation accounts for charge sharing but assumes no charge trapping and
therefore represents a best case result for large pixels. The results show that it takes 2.4 ns
and 13.5 ns to integrate 90% and 97.5%, respectively, of the charge delivered by a 1mm thick
CdTe sensor connected to 50 µm pixels. In the case of a 300 µm pixel, it takes 14.7 ns and
38.2 ns to integrate 90% and 97.5% of the total charge induced in the pixel respectively.

The time required for the induced signal to develop sets a lower limit for the peaking time of
the shaper. For peaking times below that limit, the readout channel experiences ballistic deficit
which results in a degradation of the energy resolution due to incomplete collection of the charge.

For a first order calculation we can assume that, if the shaper transfer function is symmetrical
in the time domain, the dead time (τ) of the channel can be defined as twice the peaking time.3 This

3This approximation is not valid for ToT based systems where the time for the amplified signal to return to the baseline
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sensor (-800V). 100e− r.m.s. noise in the channel. No charge trapping and no gain and offset mismatch
between channels was included in the simulation.

determines the maximum count-rate of the system, normalized to the pixel area:

Max count rate
[
Mcps
mm2

]
=

1
τ

1
pixel area

. (5.2)

The red-dashed line in figure 6 corresponds to the maximum count-rate for a dead time
calculated as twice the peaking time. The peaking time was calculated in order to integrate a given

is usually much longer than the peaking time.
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Figure 8. (Top) Simulated time waveforms of the induced signal in a pixel input pad for a 1mm and 2mm
thick CdTe sensor and different values of the pixel pitch. The sensor bias voltage was -800V. (Bottom) The
time required for the integration of the charge is shown.

percentage of the signal (in this case 95%). The time required for the integration was extracted from
the simulation shown in figure 8. Please note that strictly speaking, the equation above should be
corrected for small pixel sizes to account for multiple hits generated by single photon interactions.

The outlier labeled (31) in figure 6 corresponds to the implementation by M. Danielsson [72]
using silicon strips placed edge-on to the beam for photon counting applications. The silicon strip
detector is segmented in the direction of the beam in 16 sectors. Each sector is associated with a
readout channel in the ASIC and the length of each segment is optimized for the interaction depth
for the incoming beam. This allows the division of the total flux to the sensor pixel by the number
of segments in the direction of the beam.

5.3 Strategies for dealing with high fluxes

Different strategies have been adopted to deal with high fluxes. These are generally effective
in extending the dynamic range of the count-rate of the system while maintaining spectroscopic
capabilities in the low flux regime. However, the energy measurement is usually distorted for the
highest fluxes.

• In the Pilatus3 ASIC, the “instant retrigger technology” was presented [51]. The loss of
counts due to paralysis of the comparator in case of pile-up is reduced by re-evaluating the
comparator output after a calibrated fixed delay of time. This delay before re-evaluation is
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slightly higher than the duration of the pulse for a single photon. This approach is effective for
applications with monochromatic photon beams typically available at synchrotron facilities.

• Kraft et al. (Siemens) presented the [56] pile-up trigger method. This method is based on the
observation that higher thresholds paralyze at higher count-rates. The pile-up trigger method
consists of linearly combining the information from the counter associated with the spectral
threshold (which is set at the energy of interest) with the information of a counter associated
to a threshold which is set slightly above the energy of the beam (and which paralyzes only
at a much a higher count-rate). By using this technique the count-rate is unambiguous up to
the highest fluxes and there is full spectral sensitivity in the low flux regime i.e. in the areas
where the beam is attenuated by the patient.

• The CIX0.2 ASIC [59] implements two channels per pixel. One channel implements photon
counting and the second channel implements charge integration. When the photon counting
channel paralyzes at high fluxes, the integrating channel extends the dynamic range of the
system.

• Gustavsson et al. [74] implemented a pixel with clocked comparators. After the detection of
a hit by the lowest threshold the signal is sampled every clock cycle during a programmed
time (in the order of 40 ns). When the input signal to any comparator exceeds the threshold, a
digital register is set. After the programmed time, a counter associated to the highest detected
threshold is increased. A reset function is then activated before accepting a new pulse. The
observed count-rate becomes non-paralyzable.

5.4 Charge summing and hit allocation architectures

From the plot in figure 7 it was concluded that in order to retain the energy information of the
incoming spectrum at fine pixel pitches, the system must implement an architecture in which the
energy deposited by a single incoming photon in a cluster of pixels is reconstructed and the hit
is assigned to a single pixel, namely that which had the largest energy charge deposition. An
algorithm implementing that functionality was integrated for the first time in the Medipix3 chip
([33–35] and [36]). This is the so called Charge Summing Mode (CSM). Similar architectures for
addressing charge sharing and fluorescence have been implemented in the Pixie III ASIC [40], the
X-Counter PC [43] and the AGH_Fermilab [46].

The energy response function recorded in Single PixelMode and in Charge SummingMode are
shown in figure 9 for a 2mm CdZnTe sensor ([23]) bump-bonded to the Medipix3 chip at 110 µm
pixel pitch. The impact of the architecture in reconstructing the energy spectrum is well seen.
When the CSM algorithm is enabled the effective charge collection area is 220×220 µm2 while the
spatial resolution of the system is maintained at 110 µm. A comparison between the Single Pixel
Mode and the Charge Summing Mode with respect to their imaging properties is presented in [83].

Figure 10 shows a CT scan of a sample containing different concentrations of iodine (right
(50 µmol/ml) and bottom (250 µmol/ml)) and gadolinium (top (250 µmol/ml) and left (50
µmol/ml)). The contrast measured differs in SPM compared to CSM, which enhances it.

In CSM and for high threshold values, the number of photons that contribute to the image
formation is larger than in SPM because the charge deposited by one photon and spread in a group
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Figure 9. Spectrum measured in Single Pixel Mode (SPM) (blue) and in Charge Summing Mode (CSM)
(red) for a 2mm thick CdZnTe sensor connected to the Medipix3 chip with a 110 µm pixel pitch.

of pixels, is reconstructed and assigned to the correct energy bin. The impact of this effect can be
clearly seen for the images at higher thresholds (72 and 92 keV).

The K-edge for gadolinium, at 50.2 keV, can be seen in the CSM measurement whereas it is
not visible in the SPM measurement. The presence of the gadolinium K-edge can be identified by
comparing the attenuation measurement on the top capillary for the CSM images taken at 32 and
52 keV. The measured attenuation increases for the higher energy photons, due to the increase in
the attenuation coefficient of the material for the energies above its K-edge.

The reader can also measure the impact of enabling the charge summing architecture with
respect to having the pixels work independently from their neighbours by comparing the dots
corresponding to labels (1) and (2) in figure 6. A factor ∼ 4 is observed in the measured dead time.
As already indicated the plot shows the maximum count-rate at the value that corresponds to the
input flux at which the output count-rate has a maximum. To measure the incoming spectra with
fidelity the input count-rate should be at least a factor ×5 smaller.

The Microdose Mammography ASIC [69] for the readout of silicon strip detectors implements
an anticoincidence detection logic to distinguish charge shared events by the detection of simulta-
neously arriving photons in two adjacent channels. Only the higher energy bin of the channel with
the largest energy deposition is increased. The distortion due to double counting is removed. The
charge deposited in adjacent channels is not reconstructed.

5.5 Power consumption

The power consumption of the detector channel is plotted versus the channel density in figure 11.
Three lines are drawn, corresponding to the power consumption of the channel for a constant
density of power consumption (0.1W/cm2, 1W/cm2 and 10W/cm2). The lowest level, 0.1W/cm2

– 22 –



2
0
1
6
 
J
I
N
S
T
 
1
1
 
P
0
1
0
0
7

Figure 10. Spectroscopic CT images acquired at four different thresholds (in a single acquisition) in both
SPM and CSM.

corresponds roughly to the limiting heat flux that can be removed by natural air convection with
10o C temperature rise [81]. Roughly, above 1W/cm2 active cooling has to be implemented.

The outlier with label (31) in the plot again refers to citation [72]. An effective sensor channel
is read out by 16 readout channels and this, combined with the relatively high input capacitance
related to the interconnection between the chip and the readout channel, has an impact in the power
consumption density.

The detector temperature usually has to be controlled to avoid changes in the sensor leakage
current that could have an impact on the noise. This is of particular importancewith high-Zmaterials
where leakage currents may be particularly high in the vicinity of defects [82]. Temperature induced
leakage currents could also induce front-end saturation if the leakage current compensation circuit
cannot cope. Temperature control is also beneficial to avoid (inhomogeneous) temperature induced
threshold/gain variations in the channels.

5.6 Detector tiling

Table 2 shows the number of sides on which the readout ASIC can be tiled seamlessly (column
“Buttable sides”). There is an ongoing research to produce systems that can be tiled on four sides
using Through Silicon Via interconnections. The Medipix3, the Timepix3 and the Hexitec [85]
chips were designed with structures that allow connection of the input and output pads with via-
last TSVs. In the particular example of the Medipix3 chip, after the integration of the TSVs and
removal of the wirebond pads, the total active area passes from 88.4% of the total chip area to
94.3%. Figure 12 (top) shows the lateral view of a Medipix3 chip connected to a 200 µm thick
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Figure 11. Power consumption of the readout channel versus channel density.

sensor. The connection to the printed circuit board is done with traditional wire bonding. At the
bottom, a TSV processed chip4 connected to a 500 µm sensor is shown. The sensor bias is routed
through a single wire bond. The area that contains the peripheral circuitry5 is visible. In the
near future, architectural changes in the ASIC could make use of the same via-last TSV process to
completely remove the insensitive areas of the chip.

For completeness, it is worth describing the approach lead by Fermilab in the design of 3D
integrated chips [87, 88]. The Vertically Integrated Photon Imaging Chip (VIPIC) is an ASIC for
X-ray Photon Correlation Spectroscopy (XPCS) that is designed as a 3D integrated IC. The signal
processing is implemented in two ASICs (one dedicated to the analog processing and the other to
the digital functionality), which are connected with each other. Two bonding methods have been
tested: Cu-Cu thermo-compression and Direct Bond Interconnect (DBI). The bonding interface is
composed of small, fine pitch (4µm) metal pads implemented in the top metal of both chips. There
are 50 of these pads for every 80x80µm2 pixel. During the chip manufacturing and in particular
after the Front-End-Of-Line (FEOL) processing steps, fine pitch TSVs have been integrated in the
design. These vias are used to connect on one side the inputs of the analog circuits to the sensor
and on the other side the digital I/O to the printed circuit board.

4The TSVs are 60 µm diameter. The chip is thinned to 120 µm. The wafer post processing steps are described in [86].
5The periphery circuitry contains analog blocks to generate the reference signals for the pixel circuits, and digital

circuitry for interfacing the pixel matrix with the readout system.
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Figure 12. (Top) Lateral view of a Medipix3 assembly on a chip board. (Bottom) Lateral view of a thinned
Medipix3 assembly that has been post-processed with TSVs and interconnected to a chip board with a ball
grid array.

6 Conclusions

The integration of analog and digital electronics to process the signal deposited by incoming
radiation in a semiconductor sensor material, has enabled the implementation of direct-detection
single-quantum-processing systems capable of spectroscopic X-ray imaging. This has been possible
due to technological advances in microelectronics, sensor manufacturing and fine pitch intercon-
nection techniques. In this contribution we review the state of the art in semiconductor detector
readout ASICs for spectroscopic X-ray imaging.

The physics of the interaction of radiation with the semiconductor detector and the process of
signal induction in the readout input electrodes are discussed. In high-Z detectors, like GaAs, CdTe
or CdZnTe, the mobility-lifetime product of electrons is higher than for holes. In order to minimize
the impact of charge trapping in these detectors, it is of high importance tominimize the contribution
of holes in the signal by (1) biasing the sensor for electron collection and (2) minimizing the pixel
size with respect to the sensor thickness to benefit from the small pixel effect [28]. The small
pixel effect has the additional advantage of increasing the speed of the signal induction in the pixel
input electrode. This allows for the integration of faster shaping circuits which, together with the
segmentation increase, lead to the ability of the system to deal with higher count-rates.

However, simulations presented in this work show that fine pixel pitches suffer from distortion
in the energy spectrum due to charge sharing and fluorescence photons. This effect has been
addressed at the architectural level by the implementation of algorithms whereby the signal from a
single photon is reconstructed by summing the charge deposited in overlapping clusters of pixels,
and allocated to the pixel with the largest deposition. Recent measurements with the Medipix3
ASIC were presented in this work to illustrate the impact of such architecture when the ASIC is
connected to a 2mm-thick CdZnTe sensor. The charge sharing tail is effectively suppressed and
the energy of the fluorescence photon is accounted for, provided it is deposited in the volume of a

– 25 –



2
0
1
6
 
J
I
N
S
T
 
1
1
 
P
0
1
0
0
7

pixel neighbouring the original impact point. This leads to the preservation of the fidelity in the
measurement of the incoming spectrum at high spatial resolution. The measured energy resolution
was ∼5.2 keV FWHM at 60 keV. Another way to address the distortion effects at fine pixel pitches is
to use architectures where the information of the time of the deposition and the energy are measured
and are available off-chip ([37, 58]). Charge sharing and fluorescence corrections can be done
off-chip in these schemes.

In this contribution and for completeness, we reviewed photon counting readout ASICs that are
not hybridized to the sensor element. Some of these ASICs were designed for the readout of silicon
strip detectors and have been used in imaging applications with the sensor oriented “edge-on” to
the beam. The geometry presented in [74] whereby the strip detector is segmented in the direction
of the beam has been shown effective for dealing with high fluxes, but at the expense of increased
power density and system complexity.

Most readout channels covered in this work implement one comparator per energy threshold.
This is the fastest digitization scheme but has limitations in terms of circuit area and power
consumption. These limitations are of particular importance for fine pitch laid out channels. ASICs
with on-pixel ([39]) and off-chip ADCs ([58]) have been reported. The Timepix3 chip digitizes the
energy using the Time-over-Threshold technique. The digitization takes place at the pixel and once
it is completed, the information is encapsulated in a data packet which is sent off-chip. The packet
also contains the pixel coordinates and a time stamp (with 1.56ns precision). The chip can deal
with count-rates up to 0.43Mcps/mm2 [37]. As mentioned before, data corrections can be made
off-line.

The power per detector channel for semiconductor readout chips is in most cases between 0.1
and 1W/cm2. It is crucial to minimize the power consumption to avoid an increase in temperature
that could lead to an increase in the detector leakage current leading to additional noise and possible
saturation effects of the front-end.

There is research going on in different groups to integrate TSVs into fine pitch hybrid pixel
detectors with the aim of building detecting blocks that can be tiled seamlessly on four sides. This
will enable the implementation of large detecting areas without insensitive areas. The research in
this field opens up exciting possibilities not only in the field of medical imaging but also in other
fields of science.
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