Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas

To cite this article: R.C. Wolf et al 2015 JINST 10 P10008

View the article online for updates and enhancements.

Related content
- Measurement of Internal Magnetic Field Distribution in Axially Magnetized YIG Rods Based on Magnetoelastic Resonance Absorption
 Ikuo Awai and Jun-ichi Ikenoue
- The motional stark effect with laser-induced fluorescence diagnostic
 E L Foley and F M Levinton
- Motional Stark effect measurements of the local ICRH induced diamagnetism in JET plasmas

Recent citations
- Influence of non-local thermodynamic equilibrium and Zeeman effects on magnetic equilibrium reconstruction using spectral motional Stark effect diagnostic
 R. Reimer et al
- Prospects for a dominantly microwave-diagnosed magnetically confined fusion reactor
 F.A. Volpe
- Investigation of fast ion pressure effects in ASDEX Upgrade by spectral MSE measurements
 René Reimer et al
Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas

R.C. Wolf,1 A. Bock, O.P. Ford, R. Reimer, A. Burckhart, A. Dinklage, J. Hobirk, J. Howard, M. Reich and J. Stober

Max Planck Institute for Plasma Physics, 85748 Garching and 17491 Greifswald, Germany
Plasma Research Laboratory, Australian National University, Canberra, Australia
E-mail: robert.wolf@ipp.mpg.de

ABSTRACT: The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, \(\mathbf{E}_L = \mathbf{v} \times \mathbf{B} \), which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations.

A shorter version of this contribution is due to be published in PoS at:
1st EPS conference on Plasma Diagnostics

KEYWORDS: Plasma diagnostics - interferometry, spectroscopy and imaging; Nuclear instruments and methods for hot plasma diagnostics

1Corresponding author.
1 Introduction

Understanding magnetic confinement of high temperature fusion plasma, i.e. plasma transport and stability, requires the detailed knowledge of the magnetic field inside the plasma. In stellarators, the magnetic field is provided, at least to a large extent, by external magnetic field coils. Nevertheless, at finite β plasma currents modify the vacuum magnetic field and, as a consequence, also the confinement properties. In tokamaks, the poloidal magnetic field generated by the toroidal plasma current distribution forms an essential part of the confining magnetic field. Its intrinsic coupling to the plasma properties such as electrical conductivity or plasma transport makes measurements of the magnetic field distribution an essential tool for understanding tokamak plasmas.

Since the early days of fusion research, non-invasive diagnostic techniques to infer the magnetic field measurement inside plasma have been the focus of intensive developments (see e.g. review by Soltwisch [1]). The problem with all these techniques is, however, that the first order of the magnetic field distribution is generally not of interest. Typically, the equilibrium current distribution or safety factor profile in a tokamak can be derived from the knowledge of the pressure profile and magnetic probes measuring the field outside the plasma. In stellarators, the vacuum magnetic field, which already confines the plasma, can be even measured without plasma, employing electron beam techniques [2]. However, the interesting details of plasma transport or stability often depend on small deviations from these first order safety factor or rotational transform profiles. Also the diamagnetic reduction of the magnetic field is only of the order of a few percent. To measure these small variations, the corresponding technique must offer an appropriate sensitivity and accuracy.
The Motional Stark Effect (MSE) observed on high energy neutrals injected into the plasma turned out to be one of the most powerful methods to measure the magnetic field distribution inside high temperature plasmas. In the older literature, pointing out the diagnostic potential, the Motional Stark Effect is often referred to as translational Stark Effect [3, 4]. Prior to that, the effect was described in the context of fast hydrogen atoms entering the plasma through charge exchange with energetic protons [5]. First introduced on the tokamaks PBX-M [6] and JET [7] in 1989, today MSE diagnostics can be found on many fusion devices including tokamaks [8–10] and stellarators (or heliotrons) [11, 12]. Employing hydrogen or deuterium neutral beams (or in a few cases on JET also tritium beams), the linear Stark effect generated by the Lorentz electric field, \(E_L = v \times B \), in the frame of the fast hydrogen moving with the beam velocity \(v \) with respect to the background magnetic field \(B \) produces a characteristic emission line pattern. MSE diagnostics normally use the Stark-split Balmer-\(\alpha \) transition \((n = 3 \rightarrow 2)\) which basically consists of nine emission lines with a characteristic wavelength splitting and \(\sigma \)- and \(\pi \)-polarization. The relative intensities of the remaining lines is so small (between 0.02 and 0.3\%) that their contribution can be neglected for all practical purposes [13]. The polarization of the line emission and thus the ratio between \(\sigma \)- and \(\pi \)-polarized lines is sensitive to the orientation of \(E_L \), while the wavelength splitting is determined by its strength. Translating this into a measurement of the magnetic field, the orientation of \(B \) can be inferred from the measurement of the polarization or the \(\sigma \)- to \(\pi \)-ratio, while the wavelength splitting contains information about the magnetic field strength. Of course both, \(B \) and \(|B| \) depend on poloidal and toroidal magnetic field components, however in a different way. As a result, they show different sensitivities to changes of \(B_{pol} \) and \(B_{tor} \). Since the radial electric field in fusion plasmas, \(|E_r| \), is typically two orders of magnitude smaller than \(|E_L| \), it only has a significant influence on the MSE polarization measurement, provided the angle between \(E_r \) and \(E_L \) is large enough.

Many magnetic confinement fusion experiments which are also equipped with a neutral beam injection system employ a multi-channel MSE diagnostic to measure the radial profile of the magnetic field. Most such systems focus on the polarization measurement for the determination of the toroidal current density profile. In a few cases also spectrally resolved MSE diagnostics are used to infer \(|B| \) and in some cases also \(B \) from the \(\sigma \)- to \(\pi \)-line ratio. Despite the wide distribution of this technique, it still suffers from a number of issues related to the desired accuracy of such measurements. Calibrating MSE diagnostics and, in particular, polarization measurements in a fusion experiment environment is still challenging. In view of the increasing accuracy with which the spectral and polarization information can be measured, many inconsistencies or inaccuracies in the previous analysis become apparent. These include atomic physics effects such as the correct treatment of the population densities of the atomic levels, which determine the line intensities [14–16], or the admixture of the Zeeman Effect to the Stark Effect [4, 16]. There is also strong evidence that metallic plasma facing walls result in polarized reflections from the plasma background radiation leading to spurious polarization signals in the MSE diagnostic [17].

This paper is organized as follows: first the Motional Stark Effect and its basic features as plasma diagnostic are briefly introduced. Two basic measurement techniques are discussed. The first relies purely on the analysis of wavelength dependent emission distribution of the MSE spectrum, including the measurements of line splitting and line ratios. The second employs polarization measurements utilizing the characteristic polarization information contained in the MSE emission.
Finally, before concluding the paper, the so-called Imaging MSE diagnostic, which is a special form of polarization measurement [18], will be presented.

2 Motional Stark Effect

The Stark Effect describes the removal of the degeneracy of the atomic levels due to an external electric field superimposed to the atomic Coulomb field. The linear Stark effect only appears if the atomic levels are fully degenerate as it is the case for hydrogen. In the translational or Motional Stark Effect the electric field is caused by the $\mathbf{v} \times \mathbf{B}$ electric field (Lorentz electric field) appearing in the rest frame of an atom moving with the velocity \mathbf{v} through a magnetic field \mathbf{B}. In fusion research powerful neutral heating beams, using hydrogen or its isotopes deuterium (and in a few cases at TFTR and JET also tritium [19, 20]), or dedicated diagnostic beams with high power densities have facilitated the development of MSE diagnostics. With beam energies of the order of 100 keV and magnetic fields of several Tesla, $|E_L|$ lies in the range of 10^6 to 10^7 V/m. In the case of the Balmer-α $n = 3 \rightarrow 2$ transition, the $n = 3$ level splits into five and the $n = 2$ into three energy levels. Altogether, the selection rules produce nine distinct transitions which can be measured [7].

![Diagram of beam emission diagnostic](image)

Figure 1. Typical setup of a beam emission diagnostic (here ASDEX Upgrade MSE setup). The beam or beams (magenta) are intersected by a fan of lines of sight (coloured from blue to red). The approximate orientation of the magnetic field (blue) and the corresponding Lorentz electric field (red) are also shown. At the position of the beam, a plasma equilibrium showing the flux surface contours and the separatrix is overlaid.

The emitted light originates from the interaction of the neutral beam with the plasma [21, 22]. The neutral atoms are excited by collisions with plasma particles and the radiative de-excitation generates the characteristic beam emission. As the neutral beam particles are also ionized by beam-plasma collisions, the beam is successively attenuated when penetrating the plasma. Higher
path-integrated electron densities corresponding to larger plasma cross-sections or injection more tangential to the toroidal axis of the device result in stronger attenuation. As a consequence, the intensity of the beam emission decreases limiting the applicability as a diagnostic. The other parameters determining the beam attenuation are the beam energies, which typically lie in the range between 50 and 500 keV, and the energy composition, which in the case of positive ion beam sources consists of three energy species at full, half and third energy.

Figure 2. Example MSE spectrum using deuterium beams measured at ASDEX Upgrade (pulse 26323 at 2.97 s, major radius $R = 1.86$ m, vertical position $Z = 0.09$ m). Measurement (Exp) and fit using a forward model (Mod) are superimposed. Clearly visible are the three energy components E_0, $E_{1/2}$ and $E_{1/3}$. The MSE multiplet is evaluated assuming a superposition of Stark and Zeeman Effects (ZMSE). Other spectral features are: active and passive charge-exchange emission (CX), fast ion D-α component (FIDA) and CII edge emission (Imp). In this measurement the Balmer-α edge emission has been optically blocked to avoid over-exposure of the CCD detector.

Beam and viewing geometries influence the characteristics of the spectrum and the way the measurement can be analysed. Typical viewing and beam geometries are shown in figure 1. To spectrally separate the beam emission from other plasma emission, originating from the same atomic transition, the beams are observed at angles different from 90$^\circ$. In the example shown, the lines of sight look into the beam resulting in a blue shift of the beam emission spectrum. An example MSE spectrum, measured at ASDEX Upgrade, is shown in figure 2. With nine MSE lines per energy component, altogether 27 blue-shifted lines are required to describe the spectrum. The spatial resolution of the diagnostic is given by the cross-section of the lines of sight and the volume defined by the lines of sight crossing the beam diameter. Depending on the dimensions of the beam with respect to the plasma dimensions and the variations of the plasma parameters of interest along the line of sight through the beam, the measurement can be regarded as local with some averaging of the plasma parameters along the emission volume. However, in particular in smaller fusion experiments, using relatively large high power heating beams, inversion techniques might become necessary to infer the plasma parameters from the line integrals through the beam diameter. Using a forward model to describe the measured data, the line integration can be implemented in a straightforward way [23]. In fact, the spectral fit in figure 2 uses such an approach. Finally, in some cases also the influence of the neutral beam on the plasma has to be considered. If the beam, which is used to heat and sustain the plasma, is also used for the MSE measurement, this is not an issue.
In the case where the beam is only applied for diagnostic purposes, dedicated diagnostic beams with lower power but high power density are required. If they are not available, some experiments use short beam blips to minimize the effect of the beam on the plasma [24].

3 Measurement of spectral properties

3.1 Measurement techniques

As an example, the observation system of the ASDEX Upgrade spectroscopic MSE diagnostic is described [25]. Figure 3 shows the observation geometry and the setup of the spectral and the polarimeter measurements. Similar systems can be found on many fusion experiments [12, 22, 26, 27]. Near the plasma boundary, a mirror is used to reflect the light collected from the neutral beam onto a more radial path. Subsequently, a lens system focuses the light onto a fibre bundle which relays the light to a spectrometer which generates the spectra for different radial locations.

On ASDEX Upgrade, a window in front of the mirror protects the mirror against coating from plasma impurities and thus maintains its reflection properties. A dielectric mirror, designed for high reflectivity near the Balmer-α wavelength and for the reflection angles required, guarantees optimal reflection properties also for the differently polarized spectral lines. The beam emission spectra are recorded by a CCD camera. At ASDEX Upgrade, the full spectrum including the Balmer-α edge emission is recorded. Since this spectral emission is usually very strong, the centre of the line is blocked out by a thin metal wire which in the exit plane of the spectrometer is positioned exactly at the wavelength of this line. Keeping the wavelength range around the edge emission in the spectrum has the advantage that the charge exchange components of the spectrum reaching below the MSE spectrum and the Doppler shift between MSE energy components and edge emission are better constrained.

3.2 Spectral properties and analysis

Each energy component of the Stark multiplet consists of σ- and π-lines (see figure 2). The six π-lines are polarized parallel to the projection of \(E_L\), while the three σ-lines are an incoherent superposition of left and right hand elliptically polarized emission. Thus, observed parallel to \(E_L\) the σ-emission is unpolarized, observed perpendicular to \(E_L\) it becomes linear. Inbetween the σ-emission is linearly polarized with an unpolarized background. The ratio of the σ- to π-emission characteristic is given by \((1 + \cos^2 \Theta)/\sin^2 \Theta\), where \(\Theta\) is the angle between \(E_L\) and the line of sight. In addition to this emission, characteristic line intensities depend on the population densities of the \(n = 3\) levels and the transition probabilities. The latter can be easily derived from the atomic physics of the Stark effect. However, already early on it was discovered that the assumption of a statistical population of the upper levels does not agree with the observed line ratios [22]. More recent measurements show a clear density dependence of the relative intensities of the Stark multiplet [14]. Theoretical considerations can explain this by a non-statistical population of the atomic levels involved [15, 28]. Even for plasma densities of a few \(10^{20}\) m\(^{-3}\), a statistical population distribution is not achieved. For calibration purposes, the beam is often injected into the plasma vessel filled with neutral gas. Also in this case, the populations of the \(n = 3\) states is actually far from a statistical distribution [28].
The individual line widths of the Stark multiplet depend on the integration of the emission over the velocity distribution of the neutral beam particles along the line of sight [29]. This results in a dependence on beam and line of sight divergence which basically add up to an effective line width. Other effects which can contribute to the line broadening are variations of the magnetic field over the line of sight and the ripple of the acceleration voltage of the neutral beam injectors [30, 31].

The line splitting contains the information on the magnetic field strength. For the pure Stark effect, the line splitting is proportional to $|E_L|$. In an idealized geometry (beam injection perpendicular to the magnetic field), this results in a direct proportionality to the total magnetic field strength $|B| = (B_{pol}^2 + B_{tor}^2)^{1/2}$ (B_{pol} and B_{tor} are the poloidal and toroidal magnetic field components, respectively).

Although it was pointed out already in the work by Souw and Uhlenbusch [4] and later also in the PhD thesis by Yuh [16], the influence of the Zeemann Effect on the spectral properties of the MSE spectrum is usually neglected. Comparing the relevant terms in the Schrödinger equation [22], their ratio $(\mu_B B)/(3/2eE_L a_0) = \mu_B/(3/2ev_0a_0\sin\alpha)$ (where μ_B is the Bohr magnetron, a_0 the Bohr radius, v the beam velocity and α the angle between B and v) is indeed considerably smaller than one. For ASDEX Upgrade, a rough estimate gives a ratio of about 0.3. However, the increasing accuracy of the method determining the spectral splitting requires a reconsideration of this issue. Since the Zeeman Effect also linearly depends on $|B|$, it is not expected that measurements of

![Figure 3. The MSE setup at ASDEX Upgrade consists of an observation system, viewing one of the neutral heating beams, and dedicated elements for either spectral or polarization measurements. Up to ten radial channels along the beam axis are observed. For the measurement, the collected light is relayed by optical fibres to a Czerny Turner spectrometer which images the spectra onto a CCD detector. The polarization measurement uses photoelastic modulators (PEMs), a polarizer and photomultipliers. Interference filters select the spectral lines of interest. The details of the polarimeter setup are described in section 4.1. For testing the prototype Imaging MSE diagnostic, the last part of the optics including PEMs and polarizer are replaced by the imaging system.](image-url)
magnetic field changes are affected. However, for the determination of absolute values of $|B|$ the influence of the Zeeman Effect is significant.

3.3 Physical properties derived from MSE spectroscopy

The two basic measurements of MSE spectroscopy are that of the line splitting and of the ratio of σ- to π-components. In addition, the Doppler shift of the different energy components reveals information about the radial position of the observation volume and the line broadening can be used to infer the beam divergence [29, 30]. In fact, in [26] the temporal variation of the Doppler shift has been used to rule out any significant changes of the radial position of the observation volumes or of the beam velocity which could falsely hint magnetic field changes.

Assuming that the details of the beam geometry and beam velocity distribution are known, the line splitting can be used to derive the total magnetic field, $|B|$. At JET, this was implemented for the first time, inferring the diamagnetic reduction of the magnetic field due to ion cyclotron resonance heating [26]. Since the associated β-changes are of the order of a few percent, the required sensitivity must be in the per mill range. Knowing the pressure profile from kinetic measurements of plasma density and temperature, this technique can be used to infer the fast ion pressure contribution to the total pressure. Other early measurements also showed that — assuming the toroidal field is known — the inferred radial poloidal field distribution is in agreement with equilibrium calculations which use edge magnetic flux measurements as a constraint [22]. The data analysis originally employed a multi-Gaussian fit to the MSE spectrum using the coupling of parameters such as wavelength splitting and line ratios or their symmetries to minimize the free parameters as far as possible [22]. Recently, a forward model has been developed for the inference of the plasma parameters which also includes effects such as the fast ion contribution to the spectrum [25, 33].

The σ- to π-line ratios can be utilized to recover the orientation of the magnetic field, $B_{\text{pol}}/B_{\text{tor}}$, and from that quantities such as the current or safety factor profile [32]. Combining the σ- to π-ratio and the line splitting, allows to self-consistently derive direction ($B_{\text{pol}}/B_{\text{tor}}$) and magnitude ($|B|$) of the magnetic field [12, 27, 31]. Depending on the details of the measurement, special care has to be taken with the polarization dependent reflectivity of mirrors and the population density of the atomic levels. Both can significantly influence the outcome of the σ- to π-ratio line ratio measurement. Depending on the mirror properties and the alignment between σ- to π-polarization directions and p- and s-axes of the mirror, a large modification of the line ratio measurement can be produced which needs careful calibration [12]. A non-statistical population of the atomic levels introduces a density dependence of the line ratios which has to be included in the analysis of the spectral data [12, 33]. If the spectral resolution permits to resolve the Stark lines individually, the $\sigma \pm 1$ to $\pi \pm 3$ line ratios offer the possibility of a measurement independent of the relative population densities, as these transitions originate from the same upper level [22, 31]. Some diagnostic applications inject the beam into the plasma vessel filled with neutral gas to calibrate the line ratios in the presence of a known magnetic field without plasma and determine the influence of optical components, e.g. a possible mirror, on the measurement [12, 31]. In tokamaks, the vacuum field without plasma is the toroidal magnetic field which has a radial dependence $\sim 1/R$ (where R is the major radius of the torus). In stellarators, the vacuum magnetic field already exhibits a rotational transform and can be calculated from the currents in the magnetic field coils. For beam into gas injection, the question about non-statistical population distribution is even more important [28].
While it has been reported that this calibration method in principle works [12], large discrepancies between predicted and measured σ- to π-ratios have been observed too [28].

Figure 4. Calculation of the magnetic field as a function of wavelength splitting, $\Delta\lambda$, for the ASDEX Upgrade MSE diagnostic (at radial a position corresponding to a major radius of $R = 1.90$ m) distinguishing two cases: MSE assumes pure Stark effect neglecting any Zeeman influence (solid lines). ZMSE is a solution of the Schrödinger including both Zeeman and Stark terms, but neglecting the spin-orbit coupling (dashed-dotted lines). The crosses stand for the actually calculated points corresponding to a magnetic field ramp performed during ASDEX Upgrade pulse 26322. The lines represent fits to these points. The three groups of lines correspond to the full (black), half (blue) and third energy components (red) of the beam. For given values of the wavelength splitting of all three energy components the magnetic field values are indicated by the horizontal lines for, both, MSE and ZMSE cases. Since in the ZMSE case the wavelength splitting also varies within each energy component, $\Delta\lambda$ represents the mean value of all Stark lines from -4π to $+4\pi$.

Basically, following the calculations of Souw and Uhlenbusch [4], the combination of Motional Stark and Zeeman Effects has been revisited. Solving the Schrödinger equation in the strong magnetic field limit and neglecting the spin-orbit coupling, but including a Stark term, the modification of the wavelength splitting has been calculated. The coordinates have been chosen in such a way that according to $E_L = v \times B$ the electric field is perpendicular to the magnetic field. Generally, the wavelength splitting increases with respect to the pure Stark case. In figure 4, the calculated dependence of the magnetic field on the wavelength splitting is shown for an ASDEX Upgrade example. The apparent value of $|B|$, assuming Stark Effect only (MSE case in figure 4), is larger than the value inferred from the combination of Zeeman and Stark Effects (ZMSE case in figure 4). Depending on beam energy, the discrepancies for ASDEX Upgrade beam parameters and a magnetic field of 2.3 T are between 3% (for 20 keV deuterium; third energy component) and 1% (for 60 keV deuterium; full energy component). While the change of the wavelength splitting with magnetic field does not show a significant difference between the two cases, the deviations of the absolute magnetic field values between 1% and 3% are significant. As long as one looks only
at changes of the magnetic field, e.g. for the evaluation of the pressure change of the plasma, neglecting the Zeeman Effect does not affect the result. Both lines (MSE and ZMSE) are sufficiently parallel. This is not surprising as both Zeeman and Stark Effects linearly depend on $|B|$. However, for an absolute measurement of $|B|$ the misinterpretation without considering the Zeeman Effect is of the order of the plasma para- or diamagnetism.

4 Measurement of the polarized line emission

4.1 Measurement techniques

As outlined above, the spectral lines of the MSE multiplet are polarized. Rather than utilizing the different emission characteristics of the σ- and π-lines, MSE polarimetry tries to measure their polarization directions directly. The polarization measurements have the principle advantage that they do not depend measurably on the population distribution of the atomic levels. Up to now, four measurement techniques have been investigated.

The simplest technique combines two static beam splitting polarizers dividing the incoming light of each line of sight into two polarization components. For each polarization component the full MSE spectrum is recorded [22]. A multi-Gaussian fit is used to separate σ- and π-lines and subtract the unpolarized background signal. A half-wave plate in front of the light collecting optics makes sure that the incoming linearly polarization is approximately split into equal parts. As a result, the ratio of the π-emission from the two polarization components is a direct measure of the orientation of E_L and subsequently B_{pol}/B_{tor} [34]. This technique has the advantage that the polarization can be measured while the full spectral information is retained. However, the requirement to record two Stark spectra for each line of sight with sufficient spectral resolution, including a meaningful background measurement, at the time of the measurement limited the possible time resolution. Nowadays, this problem could be overcome by using faster CDD detectors. In addition, the quality of the spectral analysis necessary to separate π- from σ-emission and the unpolarized background determines the sensitivity of the diagnostic to E_L variations as it is the case also for the measurement of the σ- and π-line ratios.

A technique proposed by Voslamber [35] overcomes the last problem. Instead of only using two static linear polarizers, this technique uses three linear polarizers and one circular polarizer for each line of sight which are aligned in such a way that the measured signal corresponds to the four Stokes parameters. Without the necessity of a sophisticated spectral analysis, these four parameters not only contain the information about the polarization of the MSE emission, but also can be used to recover the influence of polarizing elements in the transmission optics, such as a non-ideal mirror, without any extra calibration. To be sufficiently sensitive, the measurement only requires a spectral resolution which separates π- from σ-emission. However, additional effort is generated by the necessity to record up to four spectra per line of sight. An implementation of this technique in a slightly modified form has been installed and tested on the Large Helical Device (LHD) [11] measuring small variations of the rotational transform induced by neutral beam current drive. In this case, four linear polarizers were used at the angles covering an angular range from 0° to 135° in steps of 45°.

The today most commonly used technique was first introduced on the tokamak PBX-M [6]. The polarimeter consists of two so-called photo-elastic modulators (PEMs) [36]. A PEM gen-
erates a time dependent phase modulation by oscillating stress induced birefringence. The MSE polarimeter setup consists of two PEMs at different orientations with respect to their optical axes of birefringence and operating at slightly different frequencies. Typical frequencies of the PEMs used for the MSE polarimeters are 20 and 23 kHz. Adjusting the PEM amplitudes in such a way that the maximum phase shift corresponds $\lambda/2$, they work in a similar way as rotating half-wave plates. Followed by a linear polarizer, the whole assembly transforms any incoming linear polarization into an amplitude modulated signal with the following time response (for the general setup see figure 3):
\[I \propto \sin(2\gamma) \cos(2\omega_1 t) - \cos(2\gamma) \cos(2\omega_2 t) + \ldots, \]
where γ is the incoming polarization angle and ω_1 and ω_2 are the two frequencies of the PEMs [6]. Taking the ratio of the two $\cos(\omega_i t)$ terms, $\tan(\gamma)$ can be recovered. The intensities at the second harmonic frequency of the PEMs can be measured either by lock-in amplifiers driven by the PEM frequencies or recording the full time evolution of the modulated signal. Subsequently, the modulation intensities at $2\omega_i t$ are inferred by Fourier transforming the measured signal.

In contrast to the first two techniques using static polarizers, the PEM-based dynamic polarimeter relies on the spectral filters to select either the σ- or the π-components of the spectrum. Usually, the central σ-component is selected as its central wavelength position only depends on the angle between line of sight and neutral beam and the beam velocity, which determine the Doppler shift, but not on the magnetic field strength. For beam energies between 50–100 keV and magnetic fields between 2–3 T, the width of the spectral filters must be in the range of 2–3 Å which requires temperature control to keep the filter at the desired wavelength. Only in spherical tokamaks with their smaller magnetic fields narrower filters have to be used [37, 38]. Since the Doppler shift causes the central wavelength of each Stark multiplet to differ for different lines of sight, each line of sight requires a different filter. PEM-based multi-channel MSE polarimeters have been installed on many tokamaks [37–45].

Crucial for any MSE polarimeter is the absolute accuracy of the polarization angle measurement and the calibration to achieve this [46]. Issues involved with the calibration of the polarimeter setups are the Faraday rotation induced by the magnetic field inside the observation optics, reflections from (non-ideal) mirrors, any type of spurious birefringence in the observation optics, or coatings of first mirrors or windows from plasma vessel conditioning or from plasma operation. If the orientation of the optical axis of the observation optics is strictly radial with respect to the magnetic field, Faraday rotation does not occur. However, the optics are usually between the toroidal field coils where the corresponding field is radial and very inhomogeneous. Further out, the radial field from the poloidal field coils can also be significant. For most optical setups, the optical axis exhibits at least a small component in the direction of the magnetic field. Special glass with a low Verdet constant can be used to minimize the effect [47]. In doing so, typical values of the Faraday rotation of the ASDEX Upgrade MSE polarimeter are of the order of $1^\circ/T$. In fact, the remaining $1^\circ/T$ is from the protection window in front of the mirror which is still made of fused silica. In the case of DIII-D, even lower values have been achieved [48]. If the Faraday rotation remains an issue for the measurement, the effect can be minimized by inserting a half-wave plate in the path of the collection optics. Considering incident light with arbitrary polarization

\[\mathbf{E} = \begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} |E_x|e^{i\delta_x} \\ |E_y|e^{i\delta_y} \end{pmatrix}, \]
where E_x and E_y are the components of the electric field vector in a Cartesian coordinate system and correspondingly δ_x and δ_y are arbitrary phase shifts, the effect of the Faraday rotation can be described as

$$\vec{E}' = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \vec{E} = \begin{pmatrix} E_x \cos \alpha - E_y \sin \alpha \\ E_x \sin \alpha + E_y \cos \alpha \end{pmatrix}.$$

The angle α represents the Faraday rotation in the first part of the optics. Introducing a half-wave plate, the electric field vector is transformed into

$$\vec{E}'' = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \vec{E}' = \begin{pmatrix} E_x \cos \alpha - E_y \sin \alpha \\ -E_x \sin \alpha - E_y \cos \alpha \end{pmatrix}.$$

The coordinate axes (x,y) represent the optical axes of the half-wave plate. If the electric field vector is rotated by another Faraday angle $\alpha + \Delta \alpha$ in a subsequent part of the optics, the light vector becomes

$$\vec{E}''' = \begin{pmatrix} \cos(\alpha + \Delta \alpha) & -\sin(\alpha + \Delta \alpha) \\ \sin(\alpha + \Delta \alpha) & \cos(\alpha + \Delta \alpha) \end{pmatrix} \vec{E}'' = \begin{pmatrix} E_x \cos(\Delta \alpha) + E_y \sin(\Delta \alpha) \\ E_x \sin(\Delta \alpha) - E_y \cos(\Delta \alpha) \end{pmatrix}.$$

Assuming that $\Delta \alpha$ is small the final light vector can be expressed as

$$\vec{E}''' = E_x + \Delta \alpha \begin{pmatrix} E_y \\ -E_x \end{pmatrix}.$$

If the half wave plate is placed in such a way that the Faraday rotation angles in the first and second part of the optics are the same ($\Delta \alpha = 0$), the influence of the Faraday rotation essentially cancels. The sign of the y-component of the electric field has changed. However, this is same if the half-wave plate were placed in the optical path without Faraday rotation. To ensure that the method also works for a certain range of opening angles, a zero-order half-wave plate has to be used. The minimization of the Faraday rotation not only eases the requirement for a possible calibration of the effect with respect to changes of the magnetic field of the fusion experiment, but also avoids possible problems with the temperature dependence of the Verdet constant. An ideal mirror (with high reflectivity) in principle has the same effect as the half-wave plate. Many MSE diagnostics use such mirrors to image the beam onto the light collecting optics. However, the positions of those mirrors do not necessarily fulfill the condition $\Delta \alpha = 0$.

In order to minimize the influence of the mirror on the polarization measurement, in ASDEX Upgrade the mirror is provided with a dielectric coating which for the wavelength range and the angular range given maximizes the reflectivity [49]. In addition, in ASDEX Upgrade the mirror is protected against coatings by an exchangeable glass window in front of the mirror. In fact, thin deposits were found on this window, which could serve as a possible explanation for observed drifts of the offset calibration of the polarization angles.

Comparing the independently measured polarization angles of the σ- and π-components by tuning the wavelength filters to the corresponding wavelengths, a dependence of the difference of the σ- and π-polarization angles on the plasma density has been found on ASDEX Upgrade. Without any modification of the polarization angles or other spurious polarization contributions, this difference should be 90°. However, above line integrated densities of about 6×10^{19} m$^{-3}$
Figure 5. Dependence of the difference of the σ- and π-polarization angles on the line integrated plasma density, measured through the plasma centre of ASDEX Upgrade. Data points are from the innermost and outermost radial channels of the MSE polarimeter of more than a hundred discharges looking only at the neutral beam for which the diagnostic was designed. In theory, the difference of the measured polarization angles from the σ- and π-components, $\Delta\gamma_m = \gamma_\sigma - \gamma_\pi$, should be 90°. The deviations by up to 15° at higher densities could be an indication for broadband polarized background radiation contaminating the measurement generated by plasma radiation reflected from the metal walls. However, there are also examples which show little or no deviations (ASDEX Upgrade pulse 31163) despite large density variations.

deviations from this value of up to 15° are observed. The effect is illustrated in figure 5. While the reason is still unclear, this behaviour seems to coincide with the introduction of tungsten as a plasma facing material. The question is whether polarized plasma radiation lies within the wavelength band of the polarimeter or whether the wall reflections turn unpolarized background radiation, e.g. bremsstrahlung, into partially polarized light [17]. Measurements of the wall-reflections inside Alcator C-Mod with an unpolarized light source indeed show a large polarization fraction favouring the second explanation. Also beam modulation experiments with plasma show a polarization signal during the beam-off times [17].

4.2 Physical properties derived from MSE polarimetry

In tokamaks, the main objective of the polarimeter systems is to measure the poloidal magnetic field distribution or the current density profile which are crucial quantities determining confinement and stability. In stellarators (or heliotrons), the quantities of interest are currents driven by heating systems or bootstrap currents. To test physical models, both, the measurements in tokamaks and stellarators require a very high absolute accuracy typically corresponding to magnetic field pitch
angle (arctan(B_{pol}/B_{tor})) errors between 0.5° and 0.1°. Considering all possible error sources, the lower value maybe at the limit what is technically achievable.

A famous example is the sawtooth instability occurring in tokamaks and related to this the formation and possible reconnection of internal magnetic islands. Although regularly observed, a conclusive theoretical model does not exist until today. Only recently, theoretical advances give an explanation for the fast reconnection time observed in tokamaks [50]. Closely related to the reconnection process is the behaviour of the safety factor profile. Crucial for the understanding is the temporal evolution of the safety factor at the centre of the plasma, q_0, and whether it drops significantly below 1 or rises above 1 just after the sawtooth crash. However, up to now the experimental evidence is inconsistent supporting both, full reconnection (q_0 rises above 1) [51] or partial reconnection (q_0 stays below 1) [52, 53].

Another important physical quantity which can be derived from an MSE polarimetry measurement is the radial electric field, E_r [43, 54, 55]. In tokamaks and stellarators, the radial electric field plays a central role in the plasma transport and in the understanding of confinement transitions. Despite the small value of $|E_r|$, E_r can make significant contribution to the measured orientation of $E_L + E_r$, in particular because for the usual MSE diagnostic setups E_r is approximately orthogonal to E_L. One possible way to extract E_r from the polarization measurement is to utilize the first and the second energy component simultaneously thus introducing another independent measurement of the polarization angle with different beam velocity values. Another possibility is to employ two differently oriented beams at the same beam energy, using the fact that now the observation angles between line of sight and the neutral beams are different.

Nowadays, many tokamak applications use MSE data as a constraint for equilibrium codes. Thereby, the measured polarization angles serve as a strong constraint for the current density profile [56]. Using this approach, also other quantities can be derived. For instance, the non-inductive plasma current profile can be determined by computing the temporal evolution of the poloidal flux profile [57] derived from such equilibrium calculations.

5 Imaging MSE

Imaging MSE refers to a new technique [18] which up to now has been tested on TEXTOR [58], KSTAR [45] and ASDEX Upgrade [59–61]. The system works like a static polarimeter capable of producing a full 2-dimensional image of the polarized plasma emission [62]. It consists of a conventional imaging system with a CCD or CMOS type detector. A wavelength filter is chosen in such a way that a large fraction of the MSE spectrum (σ- and π-components and also parts of second or third energy component) is transmitted, while the edge Balmer-α is blocked out. Birefringent plates, introduced in the optical path, generate a wavelength and polarization dependent phase shift transforming the incoming polarization information into an interference pattern:

$$I \propto 1 + \zeta \cos(2\gamma) \cos(\omega_x x) + \zeta \sin(2\gamma) \cos(\omega_x x + \omega_y y) + \zeta \sin(2\gamma) \cos(\omega_x x - \omega_y y),$$

where I is the measured intensity as function of the image coordinates x and y, ω_x and ω_y are approximately constant, and ζ is the so-called spectral contrast, which is a slowly varying function depending on the optical properties of the birefringent plates and spectral distribution of the incoming light. Fourier-transforming the image, I, and separating the components yield the polarization
Figure 6. (6a) shows the beam emission image, superimposed with the interference pattern. The Fourier transform, (6b), exhibits the three components which contain the information about the polarization angle. (6c) Plotting the polarization angle as a function of x and y yields a 2-dimensional polarization distribution.

Figure 7. (7a): in-vessel background image recorded with the ASDEX Upgrade prototype Imaging MSE diagnostic showing in-vessel structures and plasma facing components. In (7b) the image of the transformed polarization angle, θ, in (R,Z)-coordinates at the beam intersection plane is superimposed with the flux surface contours. The polarization image reaches from the plasma edge (normalized flux $\psi_N = 1$) to the centre ($\psi_N = 0$).

angle γ (projection of the orientation of E_L onto a plane perpendicular the viewing direction) as a function of the image coordinates. An example of an ASDEX Upgrade measurement [60] is illustrated in figure 6.

A clear advantage of the Imaging MSE technique is the wealth of information gained by recording emission images and at the same time having a 2-dimensional measurement of the polarization angles. Since in contrast to the PEM-based polarimeter the bigger part of the spectrum is used, the signal to noise ratio is very good. Typical filters cover all spectral lines of the full energy components and parts of the second and even third energy component and, therefore, have a width which is about an order of magnitude broader than that required for the PEM-based MSE polarimetry. The imaging technique allows observing different beams or more than one beam simultaneously. In addition, background images of e.g. the plasma vessel walls can be recorded. Together with the beam emission image, this defines the viewing geometry. Figure 7a) shows the background image recorded with the ASDEX Upgrade Imaging MSE prototype diagnostic [60]. In-vessel structures and plasma facing components are clearly visible. Points and dashed lines indicate reference points for the spatial orientation. The diagonal structure in the lower right part of
Figure 8. Temporal evolution of the of the polarization angle as measured (8a) by the PEM-based MSE system and (8b) by the Imaging MSE diagnostic in near-identical pulses with similar sawtooth activity. The temporal resolution of the PEM data is 8 ms, that of the Imaging MSE data 5 ms. For the analysis of the Imaging MSE data radial positions and image areas, over which the data have been averaged, have been chosen in such way that they correspond to the positions and spatial resolution of the PEM-based polarimeter. In (8c) the radial derivative of the polarization angle near the plasma centre is shown, confirming that the sawtooth collapse involves a fast redistribution of plasma current.

However, to get away from plasma dependent calibrations and achieving the desired accuracy requires an understanding of all polarimeter details, such as the behaviour of the spectral contrast which is assumed to exactly cancel when taking the ratio of the Fourier components. Issues which remain also for an Imaging MSE diagnostic are the Faraday rotation calibration or the possible effects of mirrors or spurious birefringence from the optical elements such as vacuum windows. Another advantage of an Imaging MSE system is that it is not affected by a spectrally broadband polarized emission which is suspected to influence PEM-based systems (as shown in figure 5). Polarization effects from narrow band plasma emission in the passband would be apparent as a disturbance to the expected Doppler phase shift and could be masked during the signal processing.

With the ASDEX Upgrade prototype Imaging MSE system, good agreement of the measurements with both, theoretical predictions and the PEM-based MSE polarimeter has been achieved [61]. The time resolution and improved signal to noise allows the resolution of sawtooth oscillations, which has not been possible with the PEM-based MSE system. Figure 8a) and b) show the evolution of the polarization angle as measured by the two systems for near-identical pulses in which similar sawtooth activity is confirmed by soft X-Ray measurements. It is clear that the signal to noise ratio of the PEM-based MSE is insufficient to observe the sawtooth signature. Figure 8c) shows that the radial derivative of the polarization angle near the plasma centre also
exhibits the sawtooth evolution in the Imaging MSE data. This quantity is approximately related to the local plasma current and gives a direct confirmation that the sawtooth collapse involves a fast redistribution of plasma current. However, the determination of the evolution of the central q-value can only be achieved with an exceptionally good absolute calibration, which is the focus of ongoing work.

6 Summary and conclusions

The Motional-Stark-Effect is the most widely used technique to gain information about the internal magnetic field distribution and dynamics of magnetic fusion experiments. Measurements of the full MSE spectrum can be used to derive both the magnetic field strength and its orientation. Aiming at absolute accuracies of |B| of the order of 0.1%, the influence of the Zeeman Effect has to be considered as the corresponding corrections are of the order of 1%. B/|B| can be inferred from a line ratio measurement which either relies on the knowledge of the details of the population density distribution or a very good spectral resolution to accurately resolve the individual line intensities of the Stark multiplet. Polarimeters make use of the polarization information contained in the Stark emission to derive B/|B|. The most commonly used technique is a dynamic PEM-based polarimeter which combines high time resolution with a comparatively simple data analysis. Imaging MSE systems have been introduced recently showing significant advantages. However, the full understanding of these systems is still progressing. After successfully testing a prototype on ASDEX Upgrade, a dedicated Imaging MSE diagnostic has been developed and installed. First results are expected this year. However, all polarimeter techniques need elaborate calibration techniques to achieve the necessary accuracy. This difficulty is reflected e.g. in the fact that the question of partial or complete reconnection during the sawtooth cycle is still unresolved, although progress has been made with resolving sawtooth oscillations with the Imaging MSE prototype.

A frequently asked question is how to implement an MSE diagnostic on ITER. Studies propose both a spectroscopic system [63] and a polarimeter [64]. As was investigated earlier [22], the first study suggests using the measurement of the line splitting to derive the tokamak q-profile thus avoiding detrimental effects of the large number of mirrors required to protect the vacuum window and the subsequent optical elements against neutron radiation. It would be certainly interesting to investigate whether an Imaging MSE diagnostic would solve some of the issues related to a polarimetric measurement on ITER.

References

