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Abstract. In this research, the minimal length effect was analysed on the energy and wave 

functions of the non-relativistic mechanical quantum system by studying the Schrodinger 

equation. The three dimensional Schrodinger equation with minimal length for the exponential 

type potential was solved by using supersymmetric quantum mechanics. To get the solution, 

the exponential type potential was reduced to the Morse potential. The non-relativistic energy 

was calculated numerically for diatomic molecules, LiH and HCl by using the Matlab software. 

From the results were shown that the presence of minimal length gives effect to the non-

relativistic energy, it was seen clearly in the higher value of angular momentum l and quantum 

number n.  

1.  Introduction 

The Schrodinger equation plays the main role in studying the non-relativistic system [1] that is used to 

analyse the non-relativistic energy and non-relativistic wave function which give the information of 

the quantum system [2]. Analytic solutions of the Schrodinger equation have been extensively studied 

with various potentials, as Eckart and Manning-Rosen [3], Morse [4, 5], and Scarf Trigonometry [6]. 

In this research, the Schrodinger equation with minimal length is solved for the exponential type 

potential, where the exponential type potential is reduced to the Morse potential. 

The Schrodinger equation with minimal length for the exponential type potential can be solved by 

using the various methods, such as Nikiforov–Uvarov (NU) [7], Asymptotic Iteration Method (AIM) 

[8, 9], supersymmetry quantum mechanics [10, 11]. Supersymmetry quantum mechanics is one of the 

most well-liked methods which based on the shape-invariance concept. Supersymmetry appears based 

on the theory case in studying quantum mechanics at a higher dimension to unite the four basic 

interaction in nature, that are electro, weak, strong and gravitational interactions [11]. 

In recent years, the Schrodinger equation with minimal length has interested many researchers. The 

effect of minimal length has modified the Heisenberg uncertainty principle into generalised 

uncertainty principle (GUP) [12-14]. By applying minimal length term in the Schrodinger equation, 

the Schrodinger equation is modified with an additional form of p4 [15,16] and become complex. For 

this reason, the modified Schrodinger equation is solved without minimal length. To get the usual non-

relativistic energy, the linear momentum quadratic is only considered a function of r. The studies of 

the Schrodinger equation with the minimal length effect have been solved to scattering states of 

http://creativecommons.org/licenses/by/3.0
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Woods-Saxon interaction [14], Square Well Potential [5], hydrogen atom [16], and Bouncing Particle 

Spectrum [17].  

In this paper, the Schrodinger equation is solved to obtain the non-relativistic energy and non-

relativistic wave functions with the minimal length effect. Numerical non-relativistic energy is 

calculated to LiH and HCl molecule by using Matlab. The paper is structured as follows: The second 

and third section, the supersymmetry quantum mechanic and shape invariant are reviewed 

respectively. Section 4 gives the introduction of the Schrodinger equation with minimal length. In 

Section 5, the solution of the Schrodinger equation with minimal length for the exponential type 

potential using supersymmetric quantum mechanics is presented. Numerical result and discussion are 

presented in Section 6. Finally, the conclusions are given in Section 7. 

2.  Supersymmetry Quantum Mechanics 

The main character in supersymmetric is a supercharge operator that commute with a Hamiltonian. For 

N=2, the supercharge operators are Q and Q+. Commutation relation of the operators with 

supersymmetric Hamiltonian Hss is satisfied the equation [11, 18]. 

  , ssQ Q Q Q QQ H      (1) 

Equation (1) shows that supercharges operators commute with supersymmetric Hamiltonian 

    , , 0ss ssQ H Q H    (2) 

And Fermionic operators anti-commute with itself 

    , , 0Q Q Q Q     (3) 

The supercharge operators are [11] 

  ,        
0 0 0

    
0 0 0

A
Q Q

A







  
    
   

 (4) 

A± is Bosonic operator that written 

 ( )
2

d
A x

dxm
    (5) 

Furthermore, supersymmetric Hamiltonian is defined by  

 
0 0

    
0 0

SS

A A H
H

A A H

  

  

   
    
   

 (6)
 

Where supersymmetric partner Hamiltonian H 
, 

 

2 2

2
( )

2

d
H V x

m dx
    with

2 '
2

V
m

     (7) 

3.  Shape invariance 

Shape invariant potential system is two potentials that have the same shape. Two potential is said to be 

invariant if satisfies the following equation [19]. 

      1 1, ,j j jV x a V x a R a      (8) 

with  j=0,1,2,3….Supersymmetric partner potentials are defined by 

      2, , ' ,
2

j j jV x a x a x a
m

     (9) 

and 

      2, , ' ,
2

j j jV x a x a x a
m

     (10) 

 



3

1234567890 ‘’“”

Seminar Nasional Fisika (SNF) 2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 997 (2018) 012017  doi :10.1088/1742-6596/997/1/012017

 

 

 

 

 

 

By using super-algebra a given Hamiltonian is written as 

  
2 2

0 02
,

2
j

d
H H E V x a E

m dx



        (11) 

Based on equation (8), equation (11) is reduced to 

        2

0 0, , ' ,
2

j j jV x V x a E x a x a E
m

       (12) 

V(x) is an effective potential of the system. In general, kth Hamiltonian is written as 

    
2 2

2 1
_ ;a  ,     0,1,2...

2

k

k k ii

d
H V x R a k

m dx 
      (13)

 

where 

   1(x;a ) (x;a )i i iR a V V     (14) 

So, the general non-relativistic energy from H_ is 

 
( )

1
(a )

n

n kk
E R


  (15) 

Then, the Hamiltonian from equation (11) is changed to the form 

 
 

0n nE E E


   (16) 

En is total non-relativistic energy, and Eo is ground state non-relativistic energy 

To get non-relativistic wave function, the ground state non-relativistic wave function is operated by 

lowering operators and the result must be zero [2]. The equation is written as 

 
( )

0 0A    (17) 

The ground state non-relativistic wave function is obtained as 

    ( )

0 0 0

2
, exp ,xm

x a N x a dx 
 

  
 

  (18) 

N is the normalisation constant. The upper-level of non-relativistic wave function  0;n n a 
can be 

determined by using a rising operator  A
to the non-relativistic ground state wave function. In 

general, the excited non-relativistic wave equation of the nth level becomes 

      0 0 1 1; ; ;n nx a A x a x a   

  (19) 

4.  The Schrodinger Equation with minimal length 

Generalised modified canonical commutation relation with minimal length is given as[12-13] 

    2, 1X P i P   (20) 

where 

  
2

 ,   1i ii i
X x P p p    (21) 

  a very small positive parameter of the minimal length, in an interval 0 1  . Here, ip  is the 

momentum operator at low energies and iP  is the momentum operator at high energies. At low 

energies, energies much smaller than the Planck mass and the second term of the right-hand side of 

equation (20) vanishes. The equation was well-known as Heisenberg uncertainty principle [12,14]. 

According to the equation (21), energy kinetic operator is written as  

 
 

2 2
2

2 2 2

1 2

 ,   
2 2

p p
P

T p
m m



      (22) 
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The Schrodinger equation with the minimal length effect  0  leads to 

 

2 4
2 2 ( )

2
V r E

m m


 

 
     

 
 (23)

 

To obtain the analytic solution of the second order differential, equation (23) is solved for 0   

 

2
0 ( )

2
H V r

m


    (24)

 
From the equation (24) we get 

 

2
2

2 0

2

2
( )

m
V r E

 
      

 
 (25) 

Known that, electron revolute to the nuclei on polar shaped shall. It causes the non-relativistic energy 

and non-relativistic wave functions of an electron are employed by a solution of the Schrodinger 

equation in polar coordinate [20]. The Laplacian operator in polar coordinate is explained as follows 

 
2 2

2 2

1 1
r

r r r r


  
    

  
 (26) 

where 

 

2

2 2

1 1
sin

sin sin


    


   
   

   
 (27) 

Since the used potential only contains the variable r then the solution is only solved on the radial form. 

Where  is the angular part of the Laplacian operator. Then, the angular part changed to 

      , 1 ,m mY l l Y        (28) 

by substituting equation (25) and (26) to equation (23), the Schrodinger equation is rewritten as 

       
2

2
2 0

2 2

1 1
1 4 ( ) 0

2
r l l m V r E V r E r

m r r r r
 

    
                 

 (29) 

Using the new non-relativistic wave function 

    ( ) ,mr F r Y    (30)

 Equation (29) becomes 

        
2 2

2
2 0

2 2

1 1
1 4 ( ) 0

2 2
r l l m V r E V r E F r

m r r r m r


                   
 (31) 

with  
 r

F r
r


 , the Schrodinger equation is reduced to one dimensional only in radial function 

        
2 2 2

2
0

2 2

1
1 4 ( ) 0

2 2

d
l l m V r E V r E r

m dr m r


              
 (32) 

Equation (32) is the Schrodinger equation in the presence of minimal length.  

5.  Solution of the Schrodinger equation with minimal length for the exponential type potential 

using supersymmetric quantum mechanics 

The used exponential type potential is a part of the Morse potential. The potential is written as 

 
xV De   (33) 
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with 0

0

r r
x

r


 stand ear  .  D is dissociation energy, δ is the Morse parameter, r0 is the equilibrium 

inter-nuclear distance. The exponential type potential in equation (33) is substituted into equation (32) 

 
     

  

2 2
2 2 2

22 2

4 8
1( )

( ) ( ) 0
2 2 4

x o x

o

mD e mDE D e
l ld r

r r
m dr r r E m E

  



    
  

    
 
 
  

 (34) 

To get the exact solution of the Schrodinger equation for l ≠ 0, we need a suitable approach. In this 

research, we used the Pakeris approximation. The approximation is selected because of the centrifugal 

term in the exponential series base on the internuclear distance. To get the solution, the centrifugal 

term is simplified around x=0. Then, the second term in equation (34) becomes [7]. 

 
   

 
 

2 2
2

22 2

0

1 1 1
1 2 3 ...

2 2 1

l l l l
x x

m r m r x


 
    


 (35) 

where 

 
 2

2

0

1

2

l l

m r



  (36) 

With assumption fourth term and so on are very small, the approximation in equation (35) is only used 

until the third term. Then, the rotational term is replaced to 

 
2 2

0 1 21 2 3 ... x xx x D De D e         (37) 

Furthermore, equation (37) is rewritten in 

 

2 2 2 2
2

0 1 2

4
1 2 3 ... 1 1 2

2! 2!

x x
x x D D x D x

 
 

   
            

   
 (38) 

By combining the right and left term, the relation between the coefficient and the parameter δ is 

obtained as 

 0 1 22 2 2

3 3 4 6 1 3
1  ,    ,   D D D

     
         (39) 

So, equation (35) becomes 

 
 

 
2

2

0 1 22

1

2

x x
l l

D D e D e
m r

   


    (40) 

By substituting equation(40) into equation (34), the equation (34) is rearranged as 

 

     

2 2
2

0 1 22

2
2 2

( )
.... ( )

2

4 8 4 ( ) ( )

x x

x o x o

d r
D D e D e r

m dr

mD e mDE D e m E r E r

 

 



  

 

 


       

        
  

 (41) 

By introducing the following parameter 

      
2

2

0 0 1 1 2 24  ,   8  ,   4o oA D m E A D mDE D A D mD             (42) 

Equation (41) was changed to the form 

  
2 2

2

0 1 22

( )
( ) ( )

2

x xd r
A Ae A e r E r

m dr

  
        (43) 

Finally, the effective potential is found as  

 
2

0 1 2

x x

effV A Ae A e      (44) 
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Based on the effective potential equation on equation (44), the corresponding superpotential is 

 
1 2

xC C e     (45) 

Using equation (45), equation (12) becomes 

 
2 2 2

1 1 2 2 2 02
2

x x

effV C C C C e C e E
m

    
     

 
 (46)

 

By combining equation (44) and (46), the value of c1, c2 and E0 are defined by 

 1
2 2 1

2

 ,    
2 2 2

A
C A C

A m
    (47) 

and 

 

2

1
0 0

2

 
2 2 2

A
E A

A m


 
   

 
 

 (48) 

By inserting equation (47) into equation (45), the new superpotential becomes 

 1
2

22 2 2

xA
A e

A m

      
(49)

 

Using equation (49), equation (9) and (10) is written as 

 

2

22 1
0 2 1

2

2
(x;a )

2 2 2 2

x x
A A

V A e A e
m A m

   



   
       

   
   

 (50) 

 

2

2 1
0 2 1

2

(x;a )
2 2 2

x x A
V A e Ae

A m

   



 
    

 
 

 (51) 

By comparing equation (50) and (51), we get  

 
2 2

0 1 1 1 2 1

2 4
 ,    ,   

2 2

A A
a A a A a A

m m

 
      (52) 

 

From equations (14), (50), (51), and (52), we get the constant value as 

  

2 2

1 1
1

2 2

3

2 2 2 2 2 2

A A
R a

A m A m

    
      
   
   

 (53) 

  

2 2

1 1
2

2 2

3 5

2 2 2 2 2 2

A A
R a

A m A m

    
      
   
   

 (54) 

Then the general form of constant value R(an) is 

  
   

2 2

1 1

2 2

2 1 2 1

2 2 2 2 2 2
n

n a nA A
R a

A m A m

    
      
   
   

 (55) 

So equation (15) becomes 

  
 

2 2

( ) 1 1

1

2 2

2 1

2 2 2 2 2 2

n

n kk

nA A
E R a

A m A m





   
       

   
   

  (56) 

En
(-) is ground state non-relativistic energy from nth Hamiltonian. By inserting equations (56) and (48) 

into equation (16), the total non-relativistic energy of the system is 
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 

2

1
0

2

2 1

2 2 2
n

nA
E A

A m

 
   

 
 

 (57) 

Equation (57) shows that total non-relativistic energy is influenced by quantum number (n), 

momentum angular (l), minimal length parameter (α). The analytic solution in equation (57) is used to 

get the numerical calculation of non-relativistic energy. The calculation is not allowed to having the 

value A2 in equals zero, so we have to set the value both l and α cannot be zero at the same time. 

To calculate the non-relativistic wave function, equation (49) is substituted into equation (18) and 

we obtain  

 
( ) 1
0 2

2

2
 

2 2 2

xAm
N Exp A e dx

A m

  
   
      

   
   

  (58) 

From equation (58), the ground state non-relativistic wave function is found as 

 
2( ) 1

0

2

2 2
 exp exp

2 2 2

x
AAm m

N x e
A m

 


 
    
       

    
    

 (59) 

With N is normalisation factor. Equation (59) shows that the non-relativistic wave function is 

influenced by momentum angular (l) and minimal length parameter (α). 

6.  Numeric Result 

The numerical results of non-relativistic energy for the diatomic molecules were obtained by Matlab. 

The diatomic molecules were used because the Morse potential describes the vibration of the 

molecules with two atoms. The used molecules in the calculation were LiH and HCl as the example 

of diatomic molecules. In this paper, we used the natural unit for calculating the value of Non-

relativistic energy. The result for the various quantum numbers and the minimal length parameter 

could be seen in Table 1 and 2. Table 1 and Table 2 showed the non-relativistic energy of LiH and 

HCl respectively. 

Table 1 and 2 informed that the minimal length parameter affects the non-relativistic energy value 

both LiH and HCl. For the higher quantum number, the higher minimum length parameter increased 

the non-relativistic energy. The results showed that the non-relativistic energy with minimal length has 

the higher value than non-relativistic energy without minimal length. When α=0, the non-relativistic 

system was not influenced by minimal length and has very small energy than the system with minimal 

length. So, we know that the presence of minimal length which investigated by the Schrodinger 

equation upgraded the relativistic energy system significantly. 

 

Table 1. The non-relativistic energy of LiH for various quantum numbers (n)      

(D = 20287 (cm-1), m = 0.8801221 (amu), r0 = 1.5956 (Å), a = 1.7998368). 

E(eV) 

n,l α = 0 α = 0.005 α = 0.01 

2,1 4.423E+02 3.100E+06 6.039E+06 

3,1 4.429E+02 3.108E+06 6.056E+06 

4,1 4.434E+02 3.116E+06 6.072E+06 

5,1 4.440E+02 3.125E+06 6.088E+06 

6,1 4.446E+02 3.133E+06 6.105E+06 
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Table 2. The non-relativistic energy of HCl for various quantum numbers (n)        

(D = 37255 (cm-1), m = 0.9801045 (amu), r0 = 1.2746 (Å), a = 2.38057042). 

E(eV) 

n,l α = 0 α = 0.005 α = 0.01 

2,1 1.367E+02 2.857E+05 5.495E+05 

3,1 1.394E+02 2.991E+05 5.764E+05 

4,1 1.420E+02 3.127E+05 6.036E+05 

5,1 1.446E+02 3.266E+05 6.314E+05 

6,1 1.473E+02 3.407E+05 6.595E+05 

 

The non-relativistic energy also depended on the value of angular momentum. figure 1 and 2 

showed the relation of non-relativistic energy H2 and LiH as a function of minimal length parameter 

for various angular momentum. The figure showed the higher value of minimal length increases the 

non-relativistic energy both molecules. The effect becomes sensible for higher angular momentum. 

These results were appropriate with ref. [12,13], that the non-relativistic energy increased with 

increasing angular momentum, and at higher minimal length values the non-relativistic energy 

increased visibly.  

 

 

Figure 1. The non-relativistic energy of H2 as the function of minimal length parameter for arbitrary 

angular momentum (l). 

 

Figure 2. The non-relativistic energy of LiH as the function of minimal length parameter for arbitrary 

angular momentum (l). 
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The results showed that there was the difference value of non-relativistic energy both LiH and HCl. 

Table 1 and 2 informed that non-relativistic energy of LiH was higher than HCl, and figure 1 showed 

the different molecules have a slightly different slope. The difference occurred because of the input of 

molecules parameter. Where, dissociation energy (D), Morse parameter (δ), and mass (m) of HCl were 

higher than LiH while the equilibrium inter-nuclear distance (r0) of HCl was lower then LiH. 

7.  Conclusion 

In this research, the Schrodinger equation in the presence of minimal length was soluted. The solutions 

were obtained for the exponential type potential by using the supersymmetric quantum mechanics. The 

research was aimed to analyse the minimal length effect on the non-relativistic energy and non-

relativistic wave function for diatomic molecules, LiH and HCl. The numerical results were calculated 

for molecules LiH and HCl by using Matlab. The results showed that the presence of the minimal 

length influenced the non-relativistic energy system for the various quantum number and angular 

momentum.  
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